综述
肝硬化食管静脉曲张及出血风险影像学研究进展
磁共振成像, 2021,12(9) : 109-112. DOI: 10.12015/issn.1674-8034.2021.09.028
摘要

食管静脉曲张出血(esophageal variceal bleeding,EVB)是肝硬化最常见的并发症,致死率高,提前预防一直是临床难点;胃镜是肝硬化食管静脉曲张(esophageal varicea,EV)及EVB诊断的金标准,但因胃镜具有创伤性并具诱发出血风险而不能广泛开展。目前大量研究期望以无创性检测技术替代胃镜成为该疾病早期诊断、后期随访的重要手段,主要包括超声、CT、磁共振成像、影像组学等影像学技术,这对于EV的诊断具有一定价值,也为EVB风险的评估提供了新思路。作者对近年来EV及EVB无创影像诊断及预测研究进展进行综述。

引用本文: 刘宏, 刘光耀, 周俊林. 肝硬化食管静脉曲张及出血风险影像学研究进展 [J] . 磁共振成像, 2021, 12(9) : 109-112. DOI: 10.12015/issn.1674-8034.2021.09.028.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。

食管静脉曲张(esophageal varices,EV)及食管静脉曲张出血(esophageal variceal bleeding,EVB)的主要病因是门静脉高压。各种原因引起的肝硬化导致肝内血流阻力增高和(或)血容量增加,均可引起门静脉压力升高[1]。门静脉压力持续升高会导致门-体侧支循环形成,食管下段及胃底静脉曲张是最常见的侧支循环,所以门静脉高压最容易并发EV,而EV导致的EVB病死率高,是最常见的消化系统急症之一[1, 2]

近年来,国内外有关肝硬化门静脉高压EV和EVB的无创性诊治研究取得了一定进展[1,3, 4, 5],然而,肝硬化患者中每5%~15%可发生不同程度的EV[1],首次出血后6周内病死率达15%~20%[3],肝功能Child-Pugh C级合并EVB患者病死率高达30%~40%[4]。若未行预防措施,1年再出血率约60%,病死率接近20%[3]。因此,提前预测、防治肝硬化门静脉高压EVB对改善疾病预后、甚至降低病死率具有重要意义。虽然胃镜(食管-胃-十二指肠内镜,esophagogastroduodenoscopy,EGD)是检测EV和EVB的金标准[2],但因其创伤性大,患者依从性较差,临床应用受到限制,亟需新的方法替代。近年来许多研究[6, 7, 8]以无创性方式预测高危EV的存在,其中应用最广泛的无创EV筛查方法是Baveno Ⅵ指南[7, 8],该指南建议肝硬度<20 kPa且血小板计数>150 000/μL的代偿性晚期慢性肝病(compensated advanced chronic liver disease,cACLD)患者可避免内镜筛查。该指南的提出为应用影像学方法对EV进行无创性诊断奠定了基础,但其所用的超声弹性成像技术临床推广度尚有争论[7, 8, 9, 10],仍有一定数量的EV患者被漏诊,并且仍有部分患者进行了不必要的内镜检查。如果决定采用无创性方法来替代胃镜检查,在成本节约、可用性和患者依从性方面的潜在益处必须与误诊和不恰当治疗引起的潜在风险权衡。

在此,笔者总结了目前关于肝硬化EV和EVB影像学诊断方面的文献,分析了几种已经被提出作为无创替代胃镜的方法,同时强调了仍存在的问题,并提出了今后可能的发展方向。

1 超声(Ultrasound)

超声对肝硬化门静脉高压EV的诊断,除了常规测量指标,主要通过弹性成像技术对肝脾硬度的测量来评估EV程度。Bintintan等[11]研究发现门静脉阻力、肝血流动力学指数(门静脉直径/门静脉平均血流速度)、脾门静脉指数(脾脏长径×脾脏短径/门静脉平均血流速度)是EV的最佳预测因子。国内学者[12]研究表明超声造影获得的食管下段黏膜厚度是一种新的、方便的、无创的评价肝硬化患者EV的参数。Stefanescu等[13]和Jansen等[14]采用二维剪切波弹性成像(2-dimensional shear-wave elastography,2D SWE)技术通过测量肝脾硬度来预测EV的存在,发现肝脏2D SWE技术与血小板计数相结合的模型是一种很有前途的非侵入性技术,可以用于评估代偿性晚期慢性肝病患者的EV,当肝脏2D SWE肝脏硬度大于19 kPa并且血小板计数小于10 000 /μL时能够判断EV的存在,准确率为83.07%,特异度与敏感度分别为 84.6%、80.8%。Kim等[15]基于超声弹性成像研究显示脾硬度与EV的存在、严重程度和EVB风险显著相关。黄显光等[16]研究发现瞬时弹性成像技术Fibroscan值是肝硬化患者EVB最可靠的预测因子,尽管诊断准确度低,但可作为EVB的初步筛查工具。

尽管超声弹性成像在门脉高压、EV及EVB的无创性诊断领域有很大的贡献,但不同超声成像技术因受到诸如肋间隙狭窄、腹水及肥胖等多种因素的影响,使部分患者的检查受到限制,并且超声弹性成像因其敏感度及特异度不高等原因在部分国家及地区难以推广。

2 计算机断层成像(computed tomography,CT)

多项研究[17, 18]通过腹部多层螺旋CT增强扫描及CT血管成像(computed tomography angiography,CTA)由有经验的放射科专家评价EV的存在及分级,发现与胃镜有较高的一致性,但研究[18]结果显示多层螺旋CT对于EVB风险的预测准确度有限。Tseng等[19]通过Meta分析发现CT可能取代内镜作为诊断EV的主要筛查工具,但是考虑到其特异度较差,对结果的解释应谨慎。同样的研究[20]发现CT增强扫描对评价是否存在EV的敏感度约90%,但特异度只有50%。Kim等[21]研究发现使用CT食管造影可以分级EV,区分低、高EVB风险的EV,并且比内镜检查具有更好的患者接受度。Shen等[22]发现320排螺旋CT增强扫描对EV的检出和分级及EVB风险预测是一种有用的工具。另有研究[23]发现CT中EV直径与EVB风险直接相关。CT血管成像(computer tomography angiography,CTA)能清楚地显示门体侧支循环,注入对比剂后,可以直接观察食管及食管周围的静脉[21],但由于肝脏具有肝固有动脉及门静脉双重供血的特点,其血流动力学较为复杂,门静脉CTA虽然可将其解剖形态完整的显示出来,但是仅针对血管直径与面积进行检测,无法评估其血流动力学情况[24]。Wan等[25]通过CT门脉造影(CT portography,CTP)测量食管远端静脉曲张来评估EV的严重程度,研究发现EV体积可作为一种新的有效的评价EV的指标,基于CTP的EV体积、直径和横截面积可区分肝硬化患者的轻、中度和重度EV。

近年来多项研究发现能谱CT指标可反映肝脏血流动力学改变[26, 27, 28, 29]。能谱CT是由高、低能量(140 kVp和80 kVp)在0.5 ms内实现瞬间切换后采集两组不同物质密度投影数据,重建出40~140 keV共101个能量级的虚拟单能量图像[30, 31],注入含碘对比剂后,能够通过提供碘(水)基图,直观地定量分析组织器官的摄碘情况,从而间接反映其血供状况[32]。能谱CT在EV和EVB判断方面的研究以国内学者发表文章为主,国外研究不多,国内王芳等[33, 34]研究显示能谱CT胃左静脉指数可以用来评估EV严重程度及出血风险。韩昕君等[35]通过能谱CT测量脾脏血流动力学参数发现脾脏碘容量可反映EV程度,无创预测重度EV。普通CT及CTA仅能评估血管形态学变化,而能谱CT除了可观察门静脉系统的解剖情况外,还可定量分析肝硬化门静脉高压EV患者门静脉系统的血流动力学变化情况,可能在肝硬化门静脉高压EV分级及EVB风险预测方面有一定帮助。

3 磁共振成像(magnetic resonance imaging,MRI)

MRI以往研究多以测量肝脾体积、血管断面面积及血流参数等来评价肝硬化EV程度及其出血发生风险。Morisaka等[36]研究发现门静脉流率及横断面面积、肝硬度、MRI明显显示的EV等可作为独立预测因子区分是否存在EV,其中门静脉流率和MRI明显显示的EV与EV严重程度存在相关性。Takahashi等[37]通过对比研究34例胆管闭锁患儿的肝硬化EV磁共振血管成像(magnetic resonance angiography,MRA)与内镜表现,发现MRA对该类EV的检出并不准确。吴卓等[38]发现三维动态对比增强磁共振血管成像(three-dimensional dynamic contrast-enhanced MRA,3D DCE MRA)可全面显示EV,对EV的评价与内镜结果呈正相关,食管壁外静脉的出现可能降低重度EVB的危险性。3D DCE MRA测得EV直径与内镜分级呈相关性,r值为0.544~0.878 (P<0.01)。

近几年来,越来越多的研究通过磁共振弹性成像(magnetic resonance elastography,MRE)、4D FLOW、扩散加权成像(diffusion weighted imaging,DWI)等功能磁共振成像(functional magnetic resonance imaging,fMRI)来预测EV程度及EVB风险。MRE在EV和EVB研究方面主要集中在肝脾硬度的检测上,通过检测脾硬度来间接判断是否存在EV[39, 40],尚未发现有直接对EV和EVB进行检测或成像的研究。Morisaka等[39]应用MRE技术发现肝脏及脾脏硬度值均与慢性肝病所致的EV程度独立相关,其中脾硬度、肝硬度优势比(95% CI)及P值分别为1.25 (1.04~1.68),P=0.018;1.52 (1.13~2.17),P=0.006。Yoon等[41]通过肝脾MRE来预测儿童肝纤维化患者的EV程度,发现脾脏硬度值对EV具有较好的诊断效能,其受试者工作特征曲线(receiver operating characteristic,ROC)曲线下面积为0.844,其敏感度和特异度分别为83.3%和81.3%。Motosugi等[42]发现使用4D Flow MRI定量测定奇静脉血流量及门静脉分流变化是预测EVB风险的有用标志物。另有研究[43]认为脾脏的ADC值可预测肝硬化EV的发生,并与其他实验室指标(Child 评分、血小板计数和凝血酶原时间)具有相关性。Mesropyan等[44]用MRI定量T1和T2 mapping及肝脏、脾脏的细胞外容积(extracellular volume,ECV)来评价门脉高压及EVB、腹水等并发症的发生,发现脾脏的ECV与门静脉高压水平密切相关。

从当前的研究趋势来看,MRE、4D flow、DWI及fMRI在肝硬化EV程度诊断及EVB风险预测方面效能相对较好,具有一定的研究前景,但该方面的研究数量较少,需进一步充实研究进行验证。

4 影像组学(radiomics)

影像组学可从影像图像(MRI、CT、超声等)中提取大量的定量影像学特征,实现图像到大数据的转换,是一种新兴的利用医学影像大数据进行定量分析预测的方法。

目前,影像组学在肝脏研究领域主要集中于肝肿瘤的诊断、疗效评估及预后预测[45, 46, 47],在肝脏弥漫性病变及血管病变方面研究较少。Liu等[48]基于385 例肝硬化患者,建立了一种名为rHVPG的影像组学模型(包含11个组学特征),用于预测肝硬化患者门静脉高压的发生概率,研究表明该模型的预测结果与实际结果显著相关,模型的ROC曲线下面积为0.849 (0.786~0.911),四个外部验证模型的ROC曲线下面积分别为0.889 (0.752~1.000)、0.800 (0.614~0.986)、0.917 (0.772~1.000)、0.827 (0.618~0.911),可有效地用于肝硬化患者门静脉高压的个体化预测。Tseng等[49]学者也构建了一项CT影像组学模型来无创性预测门脉高压及患者结局,发现该模型可准确地预测门静脉压力值,ROC曲线下面积为0.866。可见影像组学在肝硬化门脉高压的预测方面具有较大价值。Shang等[50]纳入136例患者通过计算肝左叶和肝右叶影像组学评分结合临床相关特征来预测肝硬化患者EV严重程度,发现包含有肝左叶影像组学评分的多参数诺模图和横断面积预测效能在训练集(C指数0.953,95% CI 0.892~0.973)和验证集(C指数0.938,95% CI 0.841~0.961)均较高,可成为胃镜金标准的良好的补充。Yang等[51]基于CT影像组学和相关临床特征建立了3项模型,并比较了其预测乙肝肝硬化继发EVB风险的性能,其中无论在训练集还是验证集综合模型的ROC曲线下面积均较影像组学模型和临床模型高(训练集:0.83±0.09 vs. 0.64±0.08 vs. 0.82±0.10;验证集:0.64 vs.0.61 vs. 0.61)。可见影像组学预测肝硬化门静脉高压及其并发症EV分级和EVB风险方面的研究虽然较少,但其诊断准确性较高,为临床提供了一项无创准确性较高的诊断和预测方法。

综上所述,肝硬化EV及EVB风险无创性评估是临床亟待解决的问题,目前影像学成为其主要的研究方向之一。普通超声、MRI及MRA、CT及CTA在肝硬化EV及EVB无创性诊断方面有很大贡献,但超声成像因其主观性较强使研究结果受到影响;常规MRI及MRA、CT及CTA虽然比较客观,但仅能评估血管形态学变化。肝硬化门静脉高压时血流动力学变化非常复杂,而功能性影像学成像如超声弹性成像、能谱CT、fMRI等可定量分析血流动力学变化情况,在肝硬化门静脉高压EV分级及EVB风险预测方面有一定价值。目前超声弹性成像研究成果显著,Baveno Ⅵ指南建议对于肝硬度<20 kPa且血小板计数>150 000 /μL的cACLD患者,可以避免内镜筛查。其他功能性影像学成像在EV分级及EVB风险预测方面各项研究纳入的参数参差不齐,研究数量较少,目前尚没有明确的统一的诊断标准。因此,继续扩展研究并结合多模态影像学及基于不同影像技术的影像组学可能为EV及EVB风险评估提供新的研究思路,为个体化精准治疗提供决策依据。

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
KimYD. Management of Acute Variceal Bleeding[J]. Clin Endosc, 2014, 47(4): 308-314. DOI:10.5946/ce.2014.47.4.308.
[2]
丁惠国, 徐小元, 令狐恩强, . 《肝硬化门静脉高压食管胃静脉曲张出血的防治指南》解读[J]. 临床肝胆病杂志, 2016, 32(2): 220-222. DOI:10.3969/j.issn.1001-5256.2016.02.003.
DingHG, XuXY, LingHuEQ, et al. Guidelines for the prevention and treatment of esophageal and gastric varicose veins with portal hypertension in cirrhosis[J]. J Clin Hepatol, 2016, 32(2): 220-222. DOI:10.3969/j.issn.1001-5256.2016.02.003.
[3]
FranchisRD. Revising consensus in portal hypertension: Report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension[J]. J Hepatol, 2010, 53(4): 762-768. DOI:10.1016/j.jhep.2010.06.004.
[4]
ToshikuniN, TakumaY, TsutsumiM. Management of gastroesophageal varices in cirrhotic patients: current status and future directions[J]. Ann Hepatol, 2016, 15(3): 314-325. DOI:10.5604/16652681.1198800.
[5]
BarnettR. Liver cirrhosis. Lancet, 2018, 392(10144): 275. DOI:10.1016/S0140-6736(18)31659-3.
[6]
Garcia-TsaoG, SanyalAJ, GraceND, et al. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis[J]. Am J Gastroenterol, 2007, 102(9): 2086-2102. DOI:10.1111/j.1572-0241.2007.01481.x.
[7]
MauriceJ, BrodkinE, ArnoldF, et al. Validation of the Baveno VI criteria to identify low risk cirrhotic patients not requiring endoscopic surveillance for varices[J]. J Hepatol, 2016, 65(5): 899-905. DOI:10.1016/j.jhep.2016.06.021.
[8]
ZhengKI, LiuC, LiJ, et al. Validation of Baveno VI and expanded Baveno VI criteria to identify high-risk varices in patients with MAFLD-related compensated cirrhosis[J]. J Hepatol, 2020, 73(6): 1571-1573. DOI:10.1016/j.jhep.2020.06.042.
[9]
Moctezuma VelázquezC, AbraldesJG. Non-invasive diagnosis of esophageal varices after Baveno VI[J]. Turk J Gastroenterol, 2017, 28(3): 159-165. DOI:10.5152/tjg.2017.16744.
[10]
KaratzasA. Νon-invasive screening for esophageal varices in patients with liver cirrhosis[J]. Ann Gastroenterol, 2018, 31(3): 305-314. DOI:10.20524/aog.2018.0241.
[11]
BintintanA, ChiraRI, BintintanVV, et al. Value of hepatic elastography and Doppler indexes for predictions of esophageal varices in liver cirrhosis [J]. Med Ultrason, 2015, 17(1): 5-11. DOI:10.11152/mu.2013.2066.171.abric.
[12]
QiuL, ZhangX, LiuD, et al. Contrast-enhanced ultrasonography diagnostic evaluation of esophageal varices in patients with cirrhosis [J]. Ultrasound Q, 2016, 32(2): 136-143. DOI:10.1097/RUQ.0000000000000173.
[13]
StefanescuH, AllegrettiG, SalvatoreV, et al. Bidimensional shear wave ultrasound elastography with supersonic imaging to predict presence of oesophageal varices in cirrhosis[J]. Liver Int, 2017, 37(9):1405. DOI:10.1111/liv.13418.
[14]
JansenC, ThieleM, VerlindenW, et al. Prediction of presence of oesophageal varices just by shear-wave elastography of the liver and spleen [J]. Liver Int, 2017, 37(9): 1406-1407. DOI:10.1111/liv.13446.
[15]
KimHY, JinEH, KimW, et al. The role of spleen stiffness in determining the severity and bleeding risk of esophageal varices in cirrhotic patients. medicine (Baltimore)[J]. 2015, 94(24): e1031. DOI:10.1097/MD.0000000000001031.
[16]
黄显光, 李松湖, 黄玫婷, . 不同非侵入性标记物预测肝硬化患者食管静脉曲张出血的效能分析[J]. 肝脏, 2020, 25(7): 724-728. DOI:10.14000/j.cnki.issn.1008-1704.2020.07.022.
HuangXG, LiSH, HuangMT, et al. Prediction of esophageal variceal bleeding in patients with hepatic cirrhosis by different non-invasive markers[J]. Chin Hepatol, 2020, 25(7): 724-728. DOI:10.14000/j.cnki.issn.1008-1704.2020.07.022.
[17]
HanX, AnW, CaoQ, et al. Noninvasive evaluation of esophageal varices in cirrhotic patients based on spleen hemodynamics: a dual-energy CT study[J]. Eur Radiol, 2020, 30(6): 3210-3216. DOI:10.1007/s00330-020-06680-5.
[18]
KimH, ChoiD, GwakGY, et al. Evaluation of esophageal varices on liver computed tomography: receiver operating characteristic analyses of the performance of radiologists and endoscopists[J]. J Gastroenterol Hepatol, 2009, 24(9): 1534-1540. DOI:10.1111/j.1440-1746.2009.05849.x.
[19]
TsengYJ, ZengXQ, ChenJ, et al. Computed tomography in evaluating gastroesophageal varices in patients with portal hypertension: a meta-analysis[J]. Dig Liver Dis, 2016, 48(7): 695-702. DOI:10.1016/j.dld.2016.02.007.
[20]
PerriRE, ChioreanMV, FidlerJL, et al. A prospective evaluation of computerized tomographic (CT) scanning as a screening modality for esophageal varices[J]. Hepatology, 2008, 47(5): 1587-1594. DOI:10.1002/hep.22219.
[21]
KimSH, KimYJ, LeeJM, et al. Esophageal varices in patients with cirrhosis: multidetector ct esophagography comparison with endoscopy [J]. Radiology, 2007, 242(3): 759-768. DOI:10.1148/radiol.2423050784.
[22]
ShenM, ZhuKS, MengXC, et al. Evaluation of esophageal varices and predicting the risk of esophageal varices bleeding with multi-detector CT in patients with portal hypertension[J]. Zhonghua Yi Xue Za Zhi, 2010, 90(41): 2911-2915. DOI:10.3760/cma.j.issn.0376-2491.2010.41.008.
[23]
MaSomsouk, To'oK, AliM, et al. Esophageal varices on computed tomography and subsequent variceal hemorrhage[J]. Abdom Imaging, 2014, 39(2): 251-256. DOI:10.1007/s00261-013-0057-x.
[24]
DengH, QiX, ZhangY, et al. Diagnostic accuracy of contrast-enhanced computed tomography for esophageal varices in liver cirrhosis: a retrospective observational study[J]. J Evid Based Med, 2016, 10(1): 46-52. DOI:10.1111/jebm.12226.
[25]
WanS, WeiY, YuHP, et al. Computed tomographic portography with esophageal variceal measurements in the evaluation of esophageal variceal severity and assessment of esophageal variceal volume efficacy[J]. Acad Radiol, 2020, 27(4): 528-535. DOI:10.1016/j.acra.2019.05.015.
[26]
ZhangLJ, WuSY, WangM, et al. Quantitative dual energy CT measurements in rabbit VX2 liver tumors: Comparison to perfusion CT measurements and histopathological findings[J]. Eur J Radiol, 2012, 81(8): 1766-1775. DOI:10.1016/j.ejrad.2011.06.057.
[27]
赵丽琴, 贺文, 李剑颖, . 应用能谱CT研究肝硬化门静脉高压患者肝血流动力学变化[J]. 中华放射学杂志, 2011, 45(8): 782-783. DOI:10.3760/cma.j.issn.1005-1201.2011.08.018.
ZhaoLQ, HeW, LiJY, et al. The evaluation of hepatic artery index in cirrhosis patient with spectral CT imaging[J]. Chin J Radiol, 2012, 81(8): 1766-1775. DOI:10.3760/cma.j.issn.1005-1201.2011.08.018.
[28]
ShangSF, CaoQ, HanX, et al. Assessing liver hemodynamics in children with cholestatic cirrhosis by use of dual-energy spectral CT[J]. Am J Roentgenol, 2020, 214(3): 665-670. DOI:10.2214/AJR.19.22035.
[29]
ZhaoLQ, HeW, YanB, et al. The evaluation of haemodynamics in cirrhotic patients with spectral CT[J]. Br J Radiol, 2013, 86(1028): 20130228. DOI:10.1259/bjr.20130228.
[30]
SilvaAC, MorseBG, HaraAK, et al. Dual-energy (spectral) CT: applications in abdominal imaing [J]. Radiographics, 2011, 31(4): 1047-1050. DOI:10.1148/rg.314105159.
[31]
YagiM, UeguchiT, KoizumiM, et al. Gemstone spectral imaging: determination of CT to ED conversion curves for radiotherapy treatment planning[J]. J Appl Clin Med Phys, 2013, 14(5): 173-186. DOI:10.1120/jacmp.v14i5.4335.
[32]
张晓鹏. 探索的精神与乐趣: CT能谱成像临床应用研究中的思考[J]. 中华放射学杂志, 2011, 45(8): 709-712. DOI:10.3760/cma.j.issn.1005-1201.2011.08.001.
ZhangXP. The spirit and pleasure of scientific exploration: many thoughts in spectral CT imaging clinical application[J]. Chin J Radiol, 2011, 45(8):709-712. DOI:10.3760/cma.j.issn.1005-1201.2011.08.001.
[33]
王芳, 沈加林, 华静, . 能谱CT评估肝硬化食管静脉曲张程度的价值研究[J]. 临床放射学杂志, 2016, 35(2): 208-212. DOI:10.3969/j.issn.1005-8001.2020.01.006
WangF, ShenJL, HuaJ, et al. Studies of the application of spectral CT evaluating the grading of esophageal varices of liver cirrhosis [J]. J Clin Radiol, 2016, 35(2): 208-212. DOI:10.3969/j.issn.1005-8001.2020.01.006.
[34]
王芳. 能谱CT在评估肝硬化门脉高压食管静脉曲张出血风险的应用研究[D]. 上海交通大学, 2016.
WangF. The role of spectral CT in assessing the risk of variceal bleeding in cirrhotic patients[D]. Shanghai Jiao Tong University, 2016.
[35]
韩昕君, 赵丽琴, 安维民, . 基于能谱CT的脾脏相关参数与食管静脉曲张程度的研究[J]. CT理论与应用研究, 2019, 28(5): 593-600. DOI:10.15953/j.1004-4140.2019.28.05.09.
HanXJ, ZhaoLQ, AnWM, et al. Study of the association between spleen-related parameters and the degree of esophageal varices using dual energy CT[J]. Comput Tomogr Theory Applicat, 2019, 28(5): 593-600. DOI:10.15953/j.1004-4140.2019.28.05.09.
[36]
MorisakaH, MotosugiU, IchikawaT, et al. MR-based measurements of portal vein flow and liver stiffness for predicting gastroesophageal varices[J]. Magn Reson Med Sci, 2013, 12(2): 77-86. DOI:10.2463/mrms.2012-0052.
[37]
TakahashiT, KobayashiH, KuwatsuruR, et al. Magnetic resonance angiography versus endoscopy for the assessment of gastroesophageal varices in biliary atresia[J]. Pediatr Surg Int, 2007, 23(10): 931-4. DOI:10.1007/s00383-007-1973-z.
[38]
吴卓, 梁碧玲, 李勇, . 对照内镜评价三维动态增强MR血管成像诊断食管胃静脉曲张的临床价值[J].中华放射学杂志, 2010, 44(4): 401-406. DOI:i0.3760/cma.j.issn.1005-1201.2010,04.018.
WuZ, LiangBL, LiY, et al. The clinical value of 3D dynamic contrast enhanced MR angiography on haemorrhage of esophageal and gastric varices compared with endoscopy. Chin J Radiol, 2010, (4): 401-406. DOI:i0.3760/cma.j.issn.1005—1201.2010,04.018.
[39]
MorisakaH, MotosugiU, IchikawaH, et al. Association of splenic MR elastographic findings with gastroesophageal varices in patients with chronic liver disease[J]. J Magn Reson Imaging, 2015, 41(1): 117-124. DOI:10.1002/jmri.24505.
[40]
JhangZE, WuKL, ChenCB, et al. Diagnostic value of spleen stiffness by magnetic resonance elastography for prediction of esophageal varices in cirrhotic patients[J]. Abdom Radiol (NY), 2020, 46(2): 526-533. DOI:10.1007/s00261-020-02628-x.
[41]
YoonH, ShinHJ, KimMJ, et al. Predicting gastroesophageal varices through spleen magnetic resonance elastography in pediatric liver fibrosis[J]. World J Gastroenterol, 2019, 25(3): 367-377. DOI:10.3748/wjg.v25.i3.367.
[42]
MotosugiU, Roldán-AlzateA, BannasP, et al. Four-dimensional flow MRI as a marker for risk stratification of gastroesophageal varices in patients with liver cirrhosis[J]. Radiology, 2019, 290(1): 101-107. DOI:10.1148/radiol.2018180230.
[43]
Abdel RazekAAK, Ali MassoudSM, Abdel AzzizMR, et al. Prediction of esophageal varices in cirrhotic patients with apparent diffusion coefficient of the spleen[J]. Abdom Imaging, 2015, 40(6): 1465-1469. DOI:10.1007/s00261-015-0391-2.
[44]
MesropyanN, IsaakA, FaronA, et al. Magnetic resonance parametric mapping of the spleen for non-invasive assessment of portal hypertension[J]. Eur Radiol, 2021, 31(1): 85-93. DOI:10.1007/s00330-020-07080-5.
[45]
ChenS, FengS, WeiJ, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPAenhanced MRI imaging[J]. Eur Radiol, 2019, 29(8): 4177-4187. DOI:10.1007/s00330-018-5986-x.
[46]
JiGW, ZhuFP, ZhangYD, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2019, 29(7): 3725-3735. DOI:10.1007/s00330-019-06142-7.
[47]
ZhengBH, LiuLZ, ZhangZZ, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients[J]. BMC Cancer, 2018, 18(1):1148. DOI:10.1186/s12885-018-5024-z.
[48]
LiuF, NingZ, LiuY, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study[J]. EBioMedicine, 2018, 36: 151-158. DOI:10.1016/j.ebiom.2018.09.023.
[49]
TsengY, MaL, LiS, et al. Application of CT-based radiomics in predicting portal pressure and patient outcome in portal hypertension[J]. Eur J Radiol, 2020 May, 126: 108927. DOI:10.1016/j.ejrad.2020.108927.
[50]
ShangW, WeiY, ZhangX, et al. Multiparametric radiomics nomogram may be used for predicting the severity of esophageal varices in cirrhotic patients[J]. Ann Transl Med, 2020, 8(5): 186. DOI:10.21037/atm.2020.01.122.
[51]
YangJQ, ZengR, CaoJM, et al. Predicting gastro-oesophageal variceal bleeding in hepatitis B-related cirrhosis by CT radiomics signature[J]. Clin Radiol, 2019, 74(12): 976.e1-976.e9. DOI:10.1016/j.crad.2019.08.028.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词