经验交流
三种MRI灌注技术术前评估脑胶质瘤分级的价值对比
磁共振成像, 2022,13(2) : 83-86,95. DOI: 10.12015/issn.1674-8034.2022.02.017
摘要
目的

分析动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI)、动态磁敏感对比增强灌注加权成像(dynamic susceptibility contrast-enhanced perfusion weighted imaging,DSC-PWI)、三维动脉自旋标记(three-dimensional arterial spin labeling,3D-ASL)三种磁共振灌注技术术前评估脑胶质瘤(brain glioma,BG)分级的价值。

材料与方法

回顾性分析我院48例术前经DCE-MRI检查,34例术前经DSC-PWI及3D-ASL检查的BG患者临床资料,分析DCE-MRI各参数[容积转运常数(volume transport constant,Ktrans)、速率常数(rate constant,Kep)、血管外细胞外间隙容积分数(extravascular extracellular space fraction,Ve)、血浆容积分数(plasma volume fraction,Vp)]、DSC-PWI参数[相对脑血流量(relative cerebral blood flowr,rCBF)]及3D-ASL参数(rCBF)对BG病理分级的诊断价值;并比较DSC-PWI参数rCBF与3D-ASL参数rCBF间的差异。

结果

不同BG病理分级者Kep、Vp比较,差异无统计学意义(P>0.05);BG病理分级Ⅱ级者Ktrans及Ve明显低于Ⅲ级、Ⅳ级者(P<0.05),但Ⅲ级与Ⅳ级者间Ktrans、Ve比较差异无统计学意义(P>0.05)。DSC-PWI、3D-ASL检查中,不同BG病理分级者间与对侧半球、灰质及白质对比的rCBF差异均有统计学意义(P<0.05),Ⅱ级者rCBF均低于Ⅲ级、Ⅳ级者(P<0.05),Ⅲ级者低于Ⅳ级者(P<0.05)。ROC曲线分析显示,Ktrans、Ve及DSC-PWI与3D-ASL测量的rCBF均对BG病理Ⅳ级具有较高诊断价值(P<0.05)。DSC-PWI与3D-ASL测量的rCBF差异无统计学意义(P>0.05)。

结论

DCE-MRI判断BG分级效果不及DSC-PWI、3D-ASL,DSC-PWI测量的参数较3D-ASL多,但安全性、无创性不及3D-ASL,3种灌注技术各具优劣,临床可结合实际选择合适的灌注技术。

引用本文: 梅邹, 毕俊英. 三种MRI灌注技术术前评估脑胶质瘤分级的价值对比 [J] . 磁共振成像, 2022, 13(2) : 83-86,95. DOI: 10.12015/issn.1674-8034.2022.02.017.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

脑胶质瘤(brain glioma,BG)为常见颅内原发性肿瘤,发病率可占颅内肿瘤的35%~60%,并呈逐年上升趋势[1]。外科手术为BG的主要治疗手段,但BG生物行为复杂,选择合适的手术方案方可达到理想疗效,而术前准确评估其病理分级是确定手术方案的关键[2]。常规磁共振成像可显示肿瘤的形态及信号特征,常规增强检查还能评估部分血脑屏障信息,辅助判断肿瘤的良恶性,但难以准确评估恶性肿瘤的分级[3]。影响纵向弛豫的T1加权动态对比增强磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI),影响横向弛豫的T2动态磁敏感对比增强灌注加权成像(dynamic susceptibility contrast-enhanced perfusion weighted imaging,DSC-PWI),以水质子为自身内源性示踪剂的三维动脉自旋标记(three-dimensional arterial spin labeling,3D-ASL),上述3种灌注技术均可用于判断BG病理分级,但各具优势与不足[4]。基于此,本研究分析上述3种灌注技术在术前评估BG分级中的应用价值,为BG诊疗提供临床依据。

1 资料与方法
1.1 一般资料

回顾性分析2017年2月至2020年12月我院48例术前经DCE-MRI检查,34例术前经DSC-PWI及3D-ASL检查的BG患者临床资料。纳入标准:(1)术前接受相应影像学检查,术前未接受抗肿瘤治疗;(2)经手术病理诊断为BG且首次诊疗;(3)年龄≥18岁;(4)临床资料完整。排除标准:(1)因头部伪影未获得有效的MRI扫描图像;(2)既往脑部手术史。82例BG患者男43例,女39例;年龄18~71 (50.96±11.28)岁;临床症状以头痛头晕、局灶性或全身性癫痫发作、运动障碍、颅内压增高为主。所有患者术后根据世界卫生组织2007年制定的中枢神经系统肿瘤分级标准分级[5],其中Ⅱ级32例,Ⅲ级24例,Ⅳ级26例。本研究经江汉大学附属湖北省第三人民医院医学伦理委员会批准(批准文号:2021伦审科第19号),免除受试者知情同意。

1.2 扫描方法

MRI扫描采用西门子超导型磁共振成像系统MAGNETOM Verio 3.0 T,常规扫描T1加权矢状位、T1加权横断位、T2加权横断位及FLAIR成像;T1加权动态对比增强MR先行T1梯度回波容积插值屏息扫描(volume interpolated breath-hold examination sequence,VIBE)序列,TR 5.08 ms,TE 1.74 ms,FOV 260 mm×260 mm,矩阵138×192,层厚5 mm,翻转角2°及15°;DCE-MRI扫描采用T1时间分辨交叉随机轨迹成像(time-resolved angiography with interleaved stochastic trajectories,TWIST)序列,TR 4.82 ms,TE 1.88 ms,FOV 260 mm×260 mm,矩阵138×192,层厚3.2 mm,翻转角12°,共采集75次,间隔5.3 s,在采集第6次前,经肘静脉注入钆喷葡胺(批准文号:H20080146,规格:0.5 mmol/mL,德国拜耳医药保健有限公司) 0.1 mmol/kg,注射速率4 mL/s。

DSC-PWI扫描则采用平面回波序列(spin echo echo-planar image,SE-EPI),TR 1500 ms,TE 30 ms,FOV 230 mm×230 mm,矩阵128×128,层厚4 mm,翻转角90°,扫描时间约为1 min 50 s,共50期,每期20帧图,在扫描第6期前注射钆喷葡胺对比剂,使用方法同上述DCE-MRI扫描。

3D-ASL扫描前嘱患者绝对制动,使用伪连续脉冲标记及交错的螺旋快速自旋回波序列背景抑制,达到全脑三维容积采集效果,TR 5000 ms,TE 36 ms,FOV 192 mm×192 mm,矩阵256×256,42层,层厚3 mm,标记后延迟时间1800 ms,采集时长约为4 min 29 s。

1.3 图像处理方法

DCE-MRI数据导入动态对比增强定量分析软件(mini Kinetics tool),应用extended Tofts model模型,输入函数,获得脑组织时间-信号强度曲线,经药代动力学计算并选择感兴趣区自动匹配相应图像(感兴趣区避开坏死、囊变及出血区,下同),得到后处理图及灌注参数——容积转运常数(volume transport constant,Ktrans)、速率常数(rate constant,Kep)、血管外细胞外间隙容积分数(extravascular extracellular space fraction,Ve)、血浆容积分数(plasma volume fraction,Vp);由两名医师分别在DCE-MRI后处理图上采用“热点法”手动放置感兴趣区,面积为25~40 mm2,得到各参数测量值,该方法在异质性肿瘤中选取侵袭性最高的实性部分分析,并结合专业医师的经验,具有良好准确性,两名医师分别取3个感兴趣区,取平均值为各参数的最终测量结果。

DSC-PWI数据传输至后处理工作站(西门子Syngo.via),行头动校正调整阈值后,生成彩色脑血流量(cerebral blood flow,CBF)图,采用“最大层面法”手动调节感兴趣区,面积为25~40 mm2,取肿瘤最大血流量(tumour blood flow values of max,TBFmax)区,以对侧正常半球、灰质、白质作参考,得到相对CBF (relative of CBF,rCBF),两名医师分别取3个感兴趣区,取平均值为各参数的最终测量结果。

3D-ASL数据传输至后处理工作站,自动得到伪彩图,采用“最大层面法”手动调节感兴趣区,面积为25~40 mm2,测得TBFmax,将TBFmax分别与对侧正常半球、灰质、白质血流值作对比,计算rCBF,由两名医师分别取3个感兴趣区,取平均值为各参数的最终测量结果。

1.4 统计学方法

数据分析用SPSS 22.0软件处理;计量资料以均数±标准差(x¯±s)表示,多组间比较采用单因素方差分析,两两比较则用LSD-t检验;计数资料以例或百分比n (%)表示,采用χ2检验;诊断价值采用ROC曲线评估;P<0.05为差异有统计学意义。

2 结果
2.1 不同BG病理分级者DCE-MRI参数比较

不同BG病理分级者Kep、Vp比较,差异无统计学意义(P>0.05);BG病理分级Ⅱ级者Ktrans及Ve明显低于Ⅲ级、Ⅳ级者(P<0.05),但Ⅲ级与Ⅳ级者间Ktrans、Ve比较,差异无统计学意义(P>0.05),见表1,典型病例分析见图1

点击查看表格
表1

不同脑胶质瘤病理分级者动态对比增强磁共振成像参数比较(x¯±s)

表1

不同脑胶质瘤病理分级者动态对比增强磁共振成像参数比较(x¯±s)

分级nKtrans (min-1)Kep (min-1)VeVp
Ⅱ级190.041±0.0101.301±0.2190.171±0.0280.259±0.057
Ⅲ级130.105±0.024a1.289±0.2270.604±0.127a0.272±0.061
Ⅳ级160.118±0.029a1.257±0.2110.621±0.134a0.284±0.059
F62.6210.183106.1170.790
P<0.0010.834<0.0010.460

注:a:与Ⅱ级者比较,P<0.05。

点击查看大图
图1
男性,73岁,右侧额叶胶质瘤Ⅲ级。动态对比增强磁共振成像定量Ktrans、Ve值较低,难以进一步鉴别高级别脑胶质瘤。
图2
Ktrans、Ve诊断脑胶质瘤病理Ⅳ级的ROC曲线。
点击查看大图
图1
男性,73岁,右侧额叶胶质瘤Ⅲ级。动态对比增强磁共振成像定量Ktrans、Ve值较低,难以进一步鉴别高级别脑胶质瘤。
图2
Ktrans、Ve诊断脑胶质瘤病理Ⅳ级的ROC曲线。
2.2 DCE-MRI参数对BG病理Ⅳ级的诊断价值分析

ROC曲线分析显示,Ktrans、Ve均对BG病理Ⅳ级具有一定诊断价值(P<0.05),见表2、图2。

点击查看表格
表2

Ktrans、Ve对脑胶质瘤病理Ⅳ级的诊断价值分析

表2

Ktrans、Ve对脑胶质瘤病理Ⅳ级的诊断价值分析

指标截断值(min-1)AUC95% CIP
Ktrans0.1070.8650.766~0.965<0.001
Ve0.6070.7990.675~0.9230.001

注:AUC:曲线下面积。

2.3 不同BG病理分级者DSC-PWI、3D-ASL参数比较

DSC-PWI、3D-ASL检查中,不同BG病理分级者间与对侧半球、灰质及白质对比的rCBF差异均有统计学意义(P<0.05),Ⅱ级者rCBF均低于Ⅲ级、Ⅳ级者(P<0.05),Ⅲ级者低于Ⅳ级者(P<0.05),见表3,典型病例见图3、4。

点击查看表格
表3

不同脑胶质瘤病理分级者DSC-PWI、3D-ASL参数比较(x¯±s)

表3

不同脑胶质瘤病理分级者DSC-PWI、3D-ASL参数比较(x¯±s)

分级nDSC-PWI rCBF3D-ASL rCBF
对侧半球对侧灰质对侧白质对侧半球对侧灰质对侧白质
Ⅱ级131.481±0.2961.482±0.3051.936±0.3891.428±0.3111.408±0.3042.096±0.427
Ⅲ级112.993±0.428a2.182±0.441a3.551±0.611a2.934±0.395a2.227±0.415a3.724±0.634a
Ⅳ级103.715±0.593ab3.004±0.582ab4.538±0.750ab3.687±0.583ab3.045±0.606ab4.752±0.672ab
F77.87033.24158.44282.83138.48262.683
P<0.001<0.001<0.001<0.001<0.001<0.001

注:DSC-PWI:动态磁敏感对比增强灌注加权成像;3D-ASL:三维动脉自旋标记;rCBF:相对脑血流量;a:与Ⅱ级者比较,P<0.05;b:与Ⅲ级者比较,P<0.05。

点击查看大图
图3
男,60岁,左侧颞叶胶质瘤Ⅳ级。动态磁敏感对比增强灌注加权成像测量相对脑血流量及脑血容量,能准确评估脑胶质瘤病理分级。
图4
女,42岁,左侧额叶胶质瘤Ⅱ级,三维动脉自旋标记技术测量相对脑血流量分析微循环灌注,能准确评估脑胶质瘤病理分级。
图5
DSC-PWI、3D-ASL参数诊断BG病理Ⅳ级的ROC曲线。
点击查看大图
图3
男,60岁,左侧颞叶胶质瘤Ⅳ级。动态磁敏感对比增强灌注加权成像测量相对脑血流量及脑血容量,能准确评估脑胶质瘤病理分级。
图4
女,42岁,左侧额叶胶质瘤Ⅱ级,三维动脉自旋标记技术测量相对脑血流量分析微循环灌注,能准确评估脑胶质瘤病理分级。
图5
DSC-PWI、3D-ASL参数诊断BG病理Ⅳ级的ROC曲线。
2.4 DSC-PWI、3D-ASL参数对BG病理Ⅳ级的诊断价值分析

ROC曲线分析显示,DSC-PWI与3D-ASL测量的rCBF均对BG病理Ⅳ级具有较高诊断价值(P<0.05),见表4、图5。

点击查看表格
表4

DSC-PWI、3D-ASL参数对脑胶质瘤病理Ⅳ级的诊断价值分析

表4

DSC-PWI、3D-ASL参数对脑胶质瘤病理Ⅳ级的诊断价值分析

指标截断值AUC95% CIP
对侧半球DSC-PWI rCBF3.1270.8760.819~0.933<0.001
对侧灰质DSC-PWI rCBF2.5070.6110.524~0.7210.027
对侧白质DSC-PWI rCBF3.8920.9510.915~0.988<0.001
对侧半球3D-ASL rCBF3.2040.9020.850~0.954<0.001
对侧灰质3D-ASL rCBF2.6110.6030.508~0.6980.037
对侧白质3D-ASL rCBF4.1930.9800.912~0.998<0.001

注:DSC-PWI:动态磁敏感对比增强灌注加权成像;3D-ASL:三维动脉自旋标记;rCBF:相对脑血流量;AUC:曲线下面积。

2.5 DSC-PWI参数rCBF与3D-ASL参数rCBF比较

DSC-PWI与3D-ASL测量的rCBF差异无统计学意义(P>0.05),见表5

点击查看表格
表5

DSC-PWI参数rCBF与3D-ASL参数rCBF比较(x¯±s)

表5

DSC-PWI参数rCBF与3D-ASL参数rCBF比较(x¯±s)

检查方法n对侧半球对侧灰质对侧白质
DSC-PWI rCBF342.627±0.4452.156±0.4303.224±0.622
3D-ASL rCBF342.580±0.4232.154±0.4193.404±0.639
t0.4460.0191.177
P0.6570.9850.243

注:DSC-PWI:动态磁敏感对比增强灌注加权成像;3D-ASL:三维动脉自旋标记;rCBF:相对脑血流量。

3 讨论

DCE-MRI的定量参数Ktrans、Ve是评估血管通透性的重要参数,正常血脑屏障完整时,对比剂不能由血管渗透至血管外,Ktrans、Ve值近乎为0[6, 7]。在出现恶性肿瘤时,新生血管基底膜不完整,通透性升高,对比剂可渗透至血管外,Ktrans、Ve值随之增加[8, 9]。本研究中,BG病理分级Ⅱ级者Ktrans及Ve明显低于Ⅲ级、Ⅳ级者,BG病理分级与Ktrans、Ve也呈显著正相关,提示Ktrans及Ve值可随BG病理分级的升高而增加,能辅助术前诊断,与既往报道一致[10]。然而,近年有研究发现[11, 12],Ⅲ级与Ⅳ级BG的肿瘤新生血管基底膜均不完整,血管通透性相近,对比剂渗透至血管外情况相同,DCE-MRI参数难以鉴别Ⅲ级与Ⅳ级BG。本研究结果显示,Ktrans、Ve虽然对BG病理Ⅳ级具有一定诊断价值,但BG Ⅲ级与Ⅳ级者间Ktrans、Ve比较,差异无统计学意义。这也说明,DCE-MRI参数在术前评估BG病理分级方面存在一定缺陷,只能初步分辨低级别与高级别BG,难以进一步鉴别高级别BG的具体分级[13, 14]

与DCE-MRI不同,DSC-PWI是测量CBF及脑血容量的标准方法,可评估肿瘤组织血管密度,能反映BG血流动力学及新生血管具体数量,与血脑屏障破坏程度、血管通透性变化无相关性[15, 16]。本研究中,DSC-PWI测量的rCBF在Ⅲ级与Ⅳ级BG间差异有统计学意义,且对BG病理Ⅳ级具有较高诊断价值,提示DSC-PWI参数能准确评估BG病理分级。考虑该结果与随着BG病理分级的升高,肿瘤体积增大、新生血管增生,使rCBF逐渐增加有关[17, 18]

3D-ASL则是一种无创灌注技术,可利用自身循环动脉血中水质子,行射频脉冲磁化标记,具有安全无创、可重复等优点[19]。近年国外研究还发现[20],3D-ASL技术能利用rCBF参数分析肿瘤微循环灌注情况,对BG病理分级诊断有利。本研究中,BG病理分级随3D-ASL对侧半球rCBF、对侧灰质rCBF、对侧白质rCBF的升高而升高,且3D-ASL测量的rCBF均对BG病理Ⅳ级具有较高诊断价值,提示3D-ASL也能准确评估BG病理分级,与上述国外报道相似。本研究还发现,3D-ASL与DSC-PWI测量的rCBF数值相近,均能用于术前BG分级评估。然而,两种技术具有各自特点,3D-ASL虽然具有安全无创的优点,但仅能获得rCBF一种参数,还易受脑脊液污染,影响诊断[21];DSC-PWI需要使用对比剂,肾功能不全、对比剂过敏等患者限制应用,但图像分辨率较3D-ASL高,还能测量血流通过的时间特点,通过多种参数综合判断BG分级[22]。因此,DSC-PWI、3D-ASL均能辅助判断BG病理分级,但各具优势,临床可结合实际情况选择合适的灌注技术。另外,DCE-MRI作为临床广泛应用的灌注技术,应用范围广,可辅助鉴别低级与高级BG,若临床要进一步明确高级BG的分级,则需联合DSC-PWI或3D-ASL技术观察,具体联合方案应结合二者优缺点选择个性化的灌注方案。此外,本研究作为回顾性分析,样本量较小,结果可能存在一定偏倚,为保证本结论的科学性与严谨性,还需后续大样本量前瞻性研究的论证。

综上所述,DCE-MRI及DSC-PWI、3D-ASL均能通过参数判断BG病理分级,但DCE-MRI在鉴别BG Ⅲ级与Ⅳ级时存在欠缺,DSC-PWI能测量多种参数准确判断BG分级,3D-ASL能无创、准确判断BG分级,各有其优劣性。

利益冲突

作者利益冲突声明:全体作者均声明无利益冲突。

参考文献References
[1]
刘臣, 李根华, 李想, . 脑胶质瘤综合治疗的研究进展[J]. 中国微侵袭神经外科杂志, 2019, 24(4): 182-185. DOI:10.11850/j.issn.1009-122X.2019.04.013.
LiuC, LiGH, LiX, et al. Research progress in the comprehensive treatment of brain glioma[J]. Chin J Minima Invasive Neurosurg, 2019, 24(4): 182-185. DOI:10.11850/j.issn.1009-122X.2019.04.013.
[2]
栗战营, 刘白鹭, 刘宝军, . 三氧化二砷联合颅脑肿瘤切除术对脑胶质瘤的短期疗效观察[J]. 实用癌症杂志, 2019, 34(2): 231-234. DOI:10.3760/cma.j.issn.1001-2346.2020.02.023.
LiZY, LiuBL, LiuBJ, et al. Short term effect of arsenic trioxide combined with brain tumor resection on brain glioma[J]. Pract J Cancer, 2019, 34(2): 231-234. DOI:10.3760/cma.j.issn.1001-2346.2020.02.023.
[3]
孔令伟, 李守巍. 磁敏感加权成像在脑胶质瘤诊断和治疗中的应用进展[J]. 中华神经外科杂志, 2020, 36(2): 214-216. DOI:10.3760/cma.j.issn.1001-2346.2020.02.023.
KongLW, LiSW. Application of susceptibility weighted imaging in the diagnosis and treatment of brain glioma[J]. Chin J Neurosurg, 2020, 36(2): 214-216. DOI:10.3760/cma.j.issn.1001-2346.2020.02.023.
[4]
许超, 俞茜, 王鸿. 多参数磁共振成像在脑胶质瘤中的应用研究[J]. 实用医院临床杂志, 2019, 16(4): 22-25. DOI:10.3969/j.issn.1672-6170.2019.04.007.
XuC, YuQ, WangH. Application of multi-parameter magnetic resonance imaging in brain glioma[J]. Pract J Clin Med, 2019,16(4): 22-25. DOI:10.3969/j.issn.1672-6170.2019.04.007.
[5]
BratDJ, ScheithauerBW, FullerGN, et al. Newly Codified Glial Neoplasms of the 2007 WHO Classification of Tumours of the Central Nervous System: Angiocentric Glioma, Pilomyxoid Astrocytoma and Pituicytoma[J]. Brain Pathol, 2010, 17(3): 319-324. DOI:10.1111/j.1750-3639.2007.00082.x.
[6]
王大堃, 朱建忠, 刘辉, . DCE-MRI测量Ktrans值,Ve值联合ADC值与脑胶质瘤患者MVD及病理分期的相关性[J]. 中国临床医学影像杂志,2020,31(11):12-15. DOI:10.12117/jccmi.2020.11.002.
WangDK, ZhuJZ, LiuH, et al. The correlation between Ktrans,Ve value measured by DCE-MRI combined with ADC value and MVD, pathological stage in glioma patients[J]. J Chin Clin Med Imag, 2020, 31(11): 12-15. DOI:10.12117/jccmi.2020.11.002.
[7]
IngleseM, OrdidgeKL, HoneyfieldL, et al. Reliability of dynamic contrast-enhanced magnetic resonance imaging data in primary brain tumours: a comparison of Tofts and shutter speed models[J]. Neuroradiology, 2019, 61(12): 1375-1386. DOI:10.1007/s00234-019-02265-2.
[8]
白顺军, 秦丽娟, 潘慧丽, . 磁共振成像定量影像学特征用于脑胶质瘤术前分级诊断的价值研究[J]. 中国医学装备, 2019, 16(9): 75-79. DOI:10.3969/J.ISSN.1672-8270.2019.09.020.
BaiSJ, QinLJ, PanHL, et al. Research on the value of quantitative imaging characteristics of MRI in diagnosing preoperative grading of brain glioma[J]. Chin Med Equip, 2019, 16(9): 75-79. DOI:10.3969/J.ISSN.1672-8270.2019.09.020.
[9]
ConteGM, AltabellaL, CastellanoA, et al. Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomas[J]. Eur Radiol, 2019, 29(7): 3467-3479. DOI:10.1007/s00330-019-06122-x.
[10]
王宁, 印弘, 康晓伟, . DCE-MRI定量参数与脑胶质瘤Ki-67标记指数的相关性分析[J]. 放射学实践, 2019, 34(4): 417-421. DOI:10.13609/j.cnki.1000-0313.2019.04.010.
WangN, YinH, KangXW, et al. Correlation of Ki-67 labeling index with quantitative dynamic contrast-enhanced MRI in glioma[J]. Radiol Prac, 2019, 34(4): 417-421. DOI:10.13609/j.cnki.1000-0313.2019.04.010.
[11]
于丽波, 徐广玲. 3D-ASL与DCE-MRI在脑胶质瘤术前分级诊断中的应用研究[J]. 神经损伤与功能重建, 2020, 15(1): 62-64. DOI:10.16780/j.cnki.sjssgncj.2020.01.018.
YuLB, XuGL. Application of 3D-ASL and DCE-MRI in preoperative grading diagnosis of glioma[J]. Neural Injury and Functional Reconstruction, 2020, 15(1): 62-64. DOI:10.16780/j.cnki.sjssgncj.2020.01.018.
[12]
ZhangS, ChiangCY, MaggeRS, et al. Texture analysis on conventional MRI images accurately predicts early malignant transformation of low-grade gliomas[J]. Eur Radiol, 2019, 29(6): 2751-2759. DOI:10.1007/s00330-018-5921-1.
[13]
WangQ, LeiD, YuanY, et al. Accuracy of magnetic resonance imaging texture analysis in differentiating low-grade from high-grade gliomas: Systematic review and meta-analysis[J]. BMJ Open, 2019, 9(9): e027144. DOI:10.1136/bmjopen-2018-027144.
[14]
KarlbergA, BerntsenEM, JohansenH, et al. 18F-FACBC PET/MRI in diagnostic assessment and neurosurgery of gliomas[J]. Clin Nucl Med, 2019, 44(7): 550-559. DOI:10.1097/RLU.0000000000002610.
[15]
HwzA, GwlA, WjhA, et al. DSC and DCE Histogram Analyses of Glioma Biomarkers, Including IDH, MGMT, and TERT, on Differentiation and Survival[J]. Acad Radiol, 2020, 27(12): 263-271. DOI:10.1016/j.acra.2019.12.010.
[16]
SmitsM, BendszusM, ColletteS, et al. Repeatability and reproducibility of relative cerebral blood volume measurement of recurrent glioma in a multicentre trial setting[J]. Eur J Cancer, 2019, 114(6): 89-96. DOI:10.1016/j.ejca.2019.03.007.
[17]
TangF, LiangS, ZhongT, et al. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs[J]. Eur Radiol, 2019, 30(12): 823-832. DOI:10.1007/s00330-019-06441-z.
[18]
YangY, YangY, WuX, et al. Adding DSC PWI and DWI to BT-RADS can help identify postoperative recurrence in patients with high-grade gliomas[J]. J Neurooncol, 2020, 146(2): 363-371. DOI:10.1007/s11060-019-03387-6.
[19]
PangH, DangX, RenY, et al. 3D-ASL perfusion correlates with VEGF expression and overall survival in glioma patients: Comparison of quantitative perfusion and pathology on accurate spatial location-matched basis[J]. J Magn Reson Imaging, 2019, 50(1): 209-220. DOI:10.1002/jmri.26562.
[20]
AlsaediA, DoniselliF, JgerHR, et al. The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysis[J]. Oncotarget, 2019, 10(16): 1589-1601. DOI:10.18632/oncotarget.26674.
[21]
XiYB, KangXW, WangN, et al. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastasis using arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging[J]. Eur J Radiol, 2019, 112(3): 59-64. DOI:10.1016/j.ejrad.2019.01.008.
[22]
BellLC, StokesAM, QuarlesCC. Analysis of postprocessing steps for residue function dependent dynamic susceptibility contrast (DSC)-MRI biomarkers and their clinical impact on glioma grading for both 1.5 and 3T[J]. J Magn Reson Imaging, 2020, 51(2): 547-553. DOI:10.1002/jmri.26837.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词