综述
母乳中微小RNA与新生儿免疫研究进展
中华新生儿科杂志, 2021,36(4) : 65-68. DOI: 10.3760/cma.j.issn.2096-2932.2021.04.018
摘要

微小核糖核酸(micro ribonucleic acid,miRNA)是一组细胞内源性小分子非编码RNA,通过与信使RNA(messenger RNA,mRNA)的特定序列互补或不完全互补结合,诱导靶mRNA剪切或阻止其翻译,从而进行基因调控。目前母乳中已发现多种与免疫发育及免疫调节相关的miRNA,为预防和治疗新生儿感染性疾病提供了新的研究方向,本文对母乳中miRNA与新生儿免疫间相互作用的研究进展进行综述,进一步探讨母乳的免疫成分及功能。

引用本文: 赵蒙天, 曹晓梅, 梅花. 母乳中微小RNA与新生儿免疫研究进展 [J] . 中华新生儿科杂志, 2021, 36(4) : 65-68. DOI: 10.3760/cma.j.issn.2096-2932.2021.04.018.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。

新生儿免疫系统发育不完善,不能有效抵御病原体,容易感染,母乳在帮助新生儿抵御感染、促进免疫系统发育方面的作用是公认的,但是对母乳的免疫成分及功能认识仍十分有限。近年来对母乳研究发现,母乳中的微小核糖核酸(micro ribonucleic acid,miRNA)可以调节T细胞和B细胞分化,从而影响新生儿免疫功能1,这为母乳在预防和治疗新生儿感染性疾病中的作用提供了新的证据,也为减少新生儿感染的发生提供了新的研究方向。本文就母乳中miRNA与新生儿免疫间相互作用的研究进展进行综述,进一步探索母乳的免疫成分及功能。

一、母乳中miRNA的生物学功能

miRNA是一类长度为18~24个核苷酸的单链非编码小分子RNA,通过和相关蛋白结合形成沉默诱导复合物,可与靶基因mRNA特异性结合,介导转录或直接降解mRNA,从而调节基因表达2, 3, 4。一些miRNA可参与免疫调节,在感染控制方面发挥着重要作用,并有望成为新的感染性疾病的诊断标志物5。母乳中含有多种miRNA,部分miRNA具有多种生物学功能,可以参与糖代谢、脂肪合成及免疫调节,也被认为是母乳营养丰富的重要原因6, 7, 8。先前有研究认为母乳中的miRNA易在胃肠道中被消化,从而失去作用9;但新近研究证实,母乳中的miRNA可被人体摄取,然后介导转录,进而发挥调节效应10, 11。有研究发现母乳中有一类特殊的miRNA,由非人类基因组编码,被称为外源性miRNA12 ,可能参与了跨物种间的相互作用,在调节婴儿免疫系统、对抗传染病和炎症性疾病方面可能起到一定作用,但目前尚缺乏有效的实验证据13, 14, 15

二、母乳中miRNA的变化及其向新生儿体内传递的方式

研究表明母乳中的miRNA分泌存在昼夜节律,日间含量与种类高于夜间16。初乳中含量最为丰富,母乳miRNA分泌的增加可能与新生儿吸吮有关,同时受母亲饮食影响17, 18。动物研究表明,miRNA在泌乳过程中发生了显著的变化,初乳中与免疫反应相关的miRNA的含量比成熟乳中更多,这与幼崽的发育需求一致19, 20

母乳中大部分miRNA被保护在外泌体内。外泌体是一种细胞外囊泡,直径30~120 nm,具有生物学活性,参与细胞间的通讯。乳腺上皮细胞分泌直径100 nm左右的外泌体,母乳中外泌体可抵抗新生儿肠道内不利环境,使miRNA免受RNA酶的分解,通过内吞作用被肠道细胞摄取,并进入新生儿体循环,在miRNA的运输和吸收中起着十分重要的作用21, 22, 23。婴儿配方奶粉中缺乏受外泌体保护的miRNA,可能对儿童健康造成长期不良影响24

三、母乳中miRNA参与新生儿免疫调节的机制

目前研究表明可以参与免疫调节、并可能影响新生儿感染性疾病的miRNA主要有miR-17、miR-92a、miR-150、miR-146a、miR-146b、miR-181a、miR-21等25, 26,其主要通过影响T细胞及B细胞进而改变人体对感染的免疫应答。在调节病原体入侵所引发的免疫反应中,CD4+辅助性T(T helper,Th)细胞起着极为重要的作用,具体表现在初始T细胞在抗原刺激下,活化增殖并分化成Th效应细胞,包括Th1细胞、Th2细胞、Th17细胞、调节性T(regulatory T,Treg)细胞以及滤泡辅助性T细胞等,从而形成特定的适应性免疫应答,并清除病原27,而miRNA可调控上述过程。

miR-17与miR-92a是miR-17-92基因簇中的两个因子,它们与细胞免疫密切相关28。目前研究表明miR-17-92基因簇所产生的miR-17与miR-92a可以影响Th1细胞发育,对胸腺衍生的Treg细胞防御抗原尤为重要,并可以促进滤泡辅助性T细胞增殖和分化29, 30。Arntz等31研究发现,含有miR-92a的外泌体可被小鼠脾细胞和肠道细胞摄取,给小鼠口服牛乳来源的外泌体可降低脾细胞产生白细胞介素(interleukin,IL)6的能力,并可延缓类风湿性关节炎小鼠关节炎症的发生。

miR-155是较早发现的与免疫系统相关的miRNA,能够通过胎盘直接传递给胎儿,也可以通过乳汁传递给新生儿,其在Treg细胞中大量表达,miR-155缺陷会导致Treg细胞数量减少;另外miR-155可通过靶作用确保Treg细胞的自稳态32, 33,这对T细胞所介导的细胞免疫十分重要。

有研究发现miR-146a普遍表达于Treg细胞中,也可以调控Th1细胞功能,miR-146a缺失会导致Treg细胞数量增加,但其功能将受到损害34。新近的一项研究显示miR-146a对小儿脓毒症有重要的诊断和预后价值,该研究发现脓毒症组血清miR-146a水平明显低于对照组,且与脓毒症严重程度相关,在脓毒症休克组中其表达水平最低,其次为严重脓毒症组和轻度脓毒症组;研究提示血清miR-146a的表达与C反应蛋白、降钙素原、IL-6、肿瘤坏死因子α成负相关,血清miR-146a水平明显偏低的患儿死亡率将增加35。Nahand等36的研究显示miR-146a在病毒感染患者中的表达水平显著增高于健康人,这提示miR-146a在将来可能成为一种诊断性生物标志物。以上研究均提示miR-146a可能在新生儿感染性疾病的预防和诊断中有较高价值,而同为miR-146家族中的miR-146b被证实可以抑制促炎性细胞因子,并影响相应的内皮细胞因子激活的强度和持续时间37。miR-146b可直接靶向影响多种物质,包括IL-1受体相关激酶1和肿瘤坏死因子受体相关因子6,miR-146b受IL-10的影响,具有抗炎活性,可作为IL-10抗炎反应的分子效应物,并被IL-10诱导在单核细胞中表达38, 39

存在于初乳中的miR-181a能够调节T细胞对抗原的敏感性,还可以改变多种磷酸酶活性,并影响T细胞和B细胞的发育,从而参与婴儿适应性免疫反应的发育1540。miR-150主要在淋巴结和脾脏中表达,在B细胞成熟阶段miR-150的表达显著增加,并可影响B细胞的活化,进而影响体液免疫应答41。miR-21在未成熟胸腺细胞中的表达水平明显高于成熟胸腺细胞,但研究表明miR-21的表达不是生理T细胞发育或内源性再生所必需的,其对胸腺细胞的影响仍需进一步研究42

母乳对新生儿肠道黏膜免疫起着至关重要的作用43,研究发现坏死性小肠结肠炎早产儿肠上皮区存在明显的氧化应激,而母乳来源的外泌体中的miR-125b能够通过靶向调节p53基因,降低细胞毒性及减少氧化应激44。一项动物实验显示猪乳外泌体中的miRNA可能在保护小鼠肠道免受相关肠道毒素损伤的过程中发挥作用,在饲料或食物中添加富含miRNA的外泌体可作为一种预防坏死性小肠结肠炎发生的措施45

综上所述,部分母乳中的miRNA可介导和调节新生儿免疫,尽管目前一些关于母乳中miRNA与新生儿免疫的直接相关性临床研究已经开展,但相关临床实验及动物研究仍显不足,miRNA之间的相互作用及其参与感染引发的诸多免疫反应的机制仍需进一步研究明确。

四、展望

母乳中的miRNA可以参与新生儿的免疫调节,具有免疫保护作用,对新生儿免疫系统的发育具有重要意义,对其功能的研究丰富了新生儿营养医学的内涵,对配方奶粉的生产研发有积极的推动作用,同时也为预防和诊治新生儿感染性疾病提供了新的思路,并可能在免疫性疾病的预防中发挥重要作用。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
1
ZhouQ, LiM, WangX, et al. Immune-related microRNAs are abundant in breast milk exosomes[J]. Int J Biol Sci, 2012,8(1):118-123. DOI: 10.7150/ijbs.8.118.
2
VienbergS, GeigerJ, MadsenS, et al. MicroRNAs in metabolism[J]. Acta Physiol (Oxf), 2017,219(2):346-361. DOI: 10.1111/apha.12681.
3
LiN, LongB, HanW, et al. MicroRNAs: important regulators of stem cells[J]. Stem Cell Res Ther, 2017,8(1):110. DOI: 10.1186/s13287-017-0551-0.
4
胡瑞,孙建华,须丽清,.母乳微小RNA与新生儿母乳性黄疸的相关性研究[J].中华新生儿科杂志,2018,33(3):170-174. DOI:10.3760/cma.j.issn.2096-2932.2018.03.003.
5
CorreiaCN, NalpasNC, McLoughlinKE ,et al. Circulating microRNAs as potential biomarkers of infectious disease[J]. Front Immunol, 2017, 8: 118. DOI: 10.3389/fimmu.2017.00118.
6
HenrickBM, YaoXD, NasserL ,et al. Breastfeeding behaviors and the innate immune system of human milk: working together to protect infants against inflammation, HIV-1, and other infections[J]. Front Immunol, 2017, 8: 1631.DOI:10.3389/fimmu.2017.01631.
7
YangM, SongDH, CaoXY , et al. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS[J]. Food Res. Int., 2017, 92: 17-25.DOI:10.1016/j.foodres.2016.11.041.
8
MunchEM, HarrisRA, MohammadM, et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk[J]. PLoS One, 2013,8(2):e50564. DOI: 10.1371/journal.pone.0050564.
9
TitleAC, DenzlerR, StoffelM. Uptake and function studies of maternal milk-derived microRNAs[J]. J Biol Chem, 2015,290(39):23680-23691. DOI: 10.1074/jbc.M115.676734.
10
BenmoussaA, LeeCH, LaffontB, et al. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions[J]. J Nutr, 2016,146(11):2206-2215. DOI: 10.3945/jn.116.237651.
11
LiaoY, DuX, LiJ, et al. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells[J]. Mol Nutr Food Res, 2017,61(11).DOI: 10.1002/mnfr.201700082.
12
ZhangL, HouD, ChenX, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA[J]. Cell Res, 2012,22(1):107-126. DOI: 10.1038/cr.2011.158.
13
StephenBJ, PareekN, SaeedM , et al. Xeno-miRNA in maternal-infant immune crosstalk: an aid to disease alleviation[J]. Front Immunol, 2020, 11: 404.DOI:10.3389/fimmu.2020.00404.
14
FanY, HabibM, XiaJG. Xeno-miRNet: a comprehensive database and analytics platform to explore xeno-miRNAs and their potential targets[J]. PeerJ, 2018, 6: e5650.DOI:10.7717/peerj.5650.
15
LinD, ChenT, XieM, et al. Oral administration of bovine and porcine milk exosome alter miRNAs profiles in piglet serum[J]. Sci Rep, 2020,10(1):6983. DOI: 10.1038/s41598-020-63485-8.
16
FlorisI, BillardH, BoquienCY, et al. MiRNA analysis by quantitative PCR in preterm human breast milk reveals daily fluctuations of hsa-miR-16-5p[J]. PLoS One, 2015,10(10):e0140488. DOI: 10.1371/journal.pone.0140488.
17
AlsaweedM, LaiCT, HartmannPE, et al. Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes[J]. Int J Mol Sci, 2016,17(6):956. DOI: 10.3390/ijms17060956.
18
KosakaN, IzumiH, SekineK, et al. MicroRNA as a new immune-regulatory agent in breast milk[J]. Silence, 2010,1(1):7. DOI: 10.1186/1758-907X-1-7.
19
ModepalliV, KumarA, HindsLA, et al. Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii)[J]. BMC Genomics, 2014,15(1):1012. DOI: 10.1186/1471-2164-15-1012.
20
IzumiH, KosakaN, ShimizuT, et al. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey[J]. PLoS One, 2014,9(2):e88843. DOI: 10.1371/journal.pone.0088843.
21
JanAT, RahmanS, KhanS, et al. Biology, pathophysiological role, and clinical implications of exosomes: a critical appraisal[J]. Cells, 2019,8(2):99. DOI: 10.3390/cells8020099.
22
Tomé-CarneiroJ, Fernández-AlonsoN, Tomás-ZapicoC, et al. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help[J]. Pharmacol Res, 2018,132:21-32. DOI: 10.1016/j.phrs.2018.04.003.
23
AlsaweedM ,LaiCT, HartmannPE ,et al. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk[J]. Sci Rep, 2016, 6: 20680.DOI: 10.1038/srep20680.
24
MelnikBC, SchmitzG. MicroRNAs: milk's epigenetic regulators[J]. Best Pract Res Clin Endocrinol Metab, 2017,31(4):427-442. DOI: 10.1016/j.beem.2017.10.003.
25
NewburgDS, KoJS, LeoneS, et al. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3'-, 4-, and 6'-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo[J]. J Nutr, 2016,146(2):358-367. DOI: 10.3945/jn.115.220749.
26
KosakaN, IzumiH, SekineK, et al. MicroRNA as a new immune-regulatory agent in breast milk[J]. Silence, 2010,1(1):7. DOI: 10.1186/1758-907X-1-7.
27
SaraviaJ, ChapmanNM, ChiH. Helper T cell differentiation[J]. Cell Mol Immunol, 2019,16(7):634-643. DOI: 10.1038/s41423-019-0220-6.
28
VenturaA, YoungAG, WinslowMM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters[J]. Cell, 2008,132(5):875-886. DOI: 10.1016/j.cell.2008.02.019.
29
JiangS , LiC , OliveV , et al. Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation[J]. Blood, 2011, 118(20):5487-5497.DOI:10.1182/blood-2011-05-355644.
30
BaumjohannD, KageyamaR, ClinganJM, et al. The microRNA cluster miR-17~92 promotes TFH cell differentiation and represses subset-inappropriate gene expression[J]. Nat Immunol, 2013,14(8):840-848. DOI: 10.1038/ni.2642.
31
ArntzOJ, PietersBC, OliveiraMC, et al. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models[J]. Mol Nutr Food Res, 2015,59(9):1701-1712. DOI: 10.1002/mnfr.201500222.
32
ShanJ, FengL, SunG, et al. Interplay between mTOR and STAT5 signaling modulates the balance between regulatory and effective T cells[J]. Immunobiology, 2015,220(4):510-517. DOI: 10.1016/j.imbio.2014.10.020.
33
CioneE , LucenteM , GallelliL , et al. Innate immunity and human milk microRNAs content: a new perspective for premature newborns[J]. 2017.DOI: 10.5812/compreped.43359.
34
HuffakerTB, HuR, RuntschMC, et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity[J]. Cell Rep, 2012,2(6):1697-1709. DOI: 10.1016/j.celrep.2012.10.025.
35
KaramRA, ZidanHE, KaramNA, et al. Diagnostic and prognostic significance of serum miRNA-146-a expression in Egyptian children with sepsis in a pediatric intensive care unit[J]. J Gene Med, 2019,21(11):e3128. DOI: 10.1002/jgm.3128.
36
NahandJS, KarimzadehMR, NezamniaM, et al. The role of miR-146a in viral infection[J]. IUBMB Life, 2020,72(3):343-360. DOI: 10.1002/iub.2222.
37
FiorilloAA, HeierCR, NovakJS, et al. TNF-α-induced microRNAs control dystrophin expression in Becker muscular dystrophy[J]. Cell Rep, 2015,12(10):1678-1690. DOI: 10.1016/j.celrep.2015.07.066.
38
PengL, ZhangH, HaoYY ,et al. Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5[J]. EBioMedicine, 2016, 14: 83-96.DOI:10.1016/j.ebiom.2016.10.041.
39
LiuY, ChenQ, SongY, et al. MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation[J]. FEBS Lett, 2011,585(12):1963-1968. DOI: 10.1016/j.febslet.2011.05.029.
40
PerriM, LucenteM, CannataroR, et al. Variation in immune-related microRNAs profile in human milk amongst lactating women[J]. MicroRNA, 2018,7(2):107-114. DOI: 10.2174/2211536607666180206150503.
41
ZhouB, WangS, MayrC, et al. MiR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely[J]. Proc Natl Acad Sci USA, 2007,104(17):7080-7085. DOI: 10.1073/pnas.0702409104.
42
Kunze-SchumacherH,WinterSJ,ImelmannE ,et al. MiRNA miR-21 is largely dispensable for intrathymic T-cell development[J]. Front Immunol, 2018, 9: 2497.DOI: 10.3389/fimmu.2018.02497.
43
MirzaAH, KaurS, NielsenLB ,et al. Breast milk-derived extracellular vesicles enriched in exosomes from mothers with type 1 diabetes contain aberrant levels of microRNAs[J]. Front Immunol, 2019, 10: 2543.DOI: 10.3389/fimmu.2019.02543.
44
MartinC, PatelM, WilliamsS, et al. Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells[J]. Innate Immun, 2018,24(5):278-284. DOI: 10.1177/1753425918785715.
45
XieMY, ChenT, XiQY , et al. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage[J]. Biochem.Pharmacol,2020, 175: 113898.DOI:10.1016/j.bcp.2020.113898.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词