参考文献1
ZhouQ, LiM, WangX, et al. Immune-related microRNAs are abundant in breast milk exosomes[J]. Int J Biol Sci, 2012,8(1):118-123. .
2
VienbergS, GeigerJ, MadsenS, et al. MicroRNAs in metabolism[J]. Acta Physiol (Oxf), 2017,219(2):346-361. .
3
LiN, LongB, HanW, et al. MicroRNAs: important regulators of stem cells[J]. Stem Cell Res Ther, 2017,8(1):110. .
4
胡瑞,孙建华,须丽清,等.母乳微小RNA与新生儿母乳性黄疸的相关性研究[J].中华新生儿科杂志,2018,33(3):170-174. .
5
CorreiaCN, NalpasNC, McLoughlinKE ,et al. Circulating microRNAs as potential biomarkers of infectious disease[J]. Front Immunol, 2017, 8: 118. .
6
HenrickBM, YaoXD, NasserL ,et al. Breastfeeding behaviors and the innate immune system of human milk: working together to protect infants against inflammation, HIV-1, and other infections[J]. Front Immunol, 2017, 8: 1631..
7
YangM, SongDH, CaoXY , et al. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS[J]. Food Res. Int., 2017, 92: 17-25..
8
MunchEM, HarrisRA, MohammadM, et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk[J]. PLoS One, 2013,8(2):e50564. .
9
TitleAC, DenzlerR, StoffelM. Uptake and function studies of maternal milk-derived microRNAs[J]. J Biol Chem, 2015,290(39):23680-23691. .
10
BenmoussaA, LeeCH, LaffontB, et al. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions[J]. J Nutr, 2016,146(11):2206-2215. .
11
LiaoY, DuX, LiJ, et al. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells[J]. Mol Nutr Food Res, 2017,61(11)..
12
ZhangL, HouD, ChenX, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA[J]. Cell Res, 2012,22(1):107-126. .
13
StephenBJ, PareekN, SaeedM , et al. Xeno-miRNA in maternal-infant immune crosstalk: an aid to disease alleviation[J]. Front Immunol, 2020, 11: 404..
14
FanY, HabibM, XiaJG. Xeno-miRNet: a comprehensive database and analytics platform to explore xeno-miRNAs and their potential targets[J]. PeerJ, 2018, 6: e5650..
15
LinD, ChenT, XieM, et al. Oral administration of bovine and porcine milk exosome alter miRNAs profiles in piglet serum[J]. Sci Rep, 2020,10(1):6983. .
16
FlorisI, BillardH, BoquienCY, et al. MiRNA analysis by quantitative PCR in preterm human breast milk reveals daily fluctuations of hsa-miR-16-5p[J]. PLoS One, 2015,10(10):e0140488. .
17
AlsaweedM, LaiCT, HartmannPE, et al. Human milk cells contain numerous miRNAs that may change with milk removal and regulate multiple physiological processes[J]. Int J Mol Sci, 2016,17(6):956. .
18
KosakaN, IzumiH, SekineK, et al. MicroRNA as a new immune-regulatory agent in breast milk[J]. Silence, 2010,1(1):7. .
19
ModepalliV, KumarA, HindsLA, et al. Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii)[J]. BMC Genomics, 2014,15(1):1012. .
20
IzumiH, KosakaN, ShimizuT, et al. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey[J]. PLoS One, 2014,9(2):e88843. .
21
JanAT, RahmanS, KhanS, et al. Biology, pathophysiological role, and clinical implications of exosomes: a critical appraisal[J]. Cells, 2019,8(2):99. .
22
Tomé-CarneiroJ, Fernández-AlonsoN, Tomás-ZapicoC, et al. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help[J]. Pharmacol Res, 2018,132:21-32. .
23
AlsaweedM ,LaiCT, HartmannPE ,et al. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk[J]. Sci Rep, 2016, 6: 20680..
24
MelnikBC, SchmitzG. MicroRNAs: milk's epigenetic regulators[J]. Best Pract Res Clin Endocrinol Metab, 2017,31(4):427-442. .
25
NewburgDS, KoJS, LeoneS, et al. Human milk oligosaccharides and synthetic galactosyloligosaccharides contain 3'-, 4-, and 6'-galactosyllactose and attenuate inflammation in human T84, NCM-460, and H4 cells and intestinal tissue ex vivo[J]. J Nutr, 2016,146(2):358-367. .
26
KosakaN, IzumiH, SekineK, et al. MicroRNA as a new immune-regulatory agent in breast milk[J]. Silence, 2010,1(1):7. .
27
SaraviaJ, ChapmanNM, ChiH. Helper T cell differentiation[J]. Cell Mol Immunol, 2019,16(7):634-643. .
28
VenturaA, YoungAG, WinslowMM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters[J]. Cell, 2008,132(5):875-886. .
29
JiangS , LiC , OliveV , et al. Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation[J]. Blood, 2011, 118(20):5487-5497..
30
BaumjohannD, KageyamaR, ClinganJM, et al. The microRNA cluster miR-17~92 promotes TFH cell differentiation and represses subset-inappropriate gene expression[J]. Nat Immunol, 2013,14(8):840-848. .
31
ArntzOJ, PietersBC, OliveiraMC, et al. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models[J]. Mol Nutr Food Res, 2015,59(9):1701-1712. .
32
ShanJ, FengL, SunG, et al. Interplay between mTOR and STAT5 signaling modulates the balance between regulatory and effective T cells[J]. Immunobiology, 2015,220(4):510-517. .
33
CioneE , LucenteM , GallelliL , et al. Innate immunity and human milk microRNAs content: a new perspective for premature newborns[J]. 2017..
34
HuffakerTB, HuR, RuntschMC, et al. Epistasis between microRNAs 155 and 146a during T cell-mediated antitumor immunity[J]. Cell Rep, 2012,2(6):1697-1709. .
35
KaramRA, ZidanHE, KaramNA, et al. Diagnostic and prognostic significance of serum miRNA-146-a expression in Egyptian children with sepsis in a pediatric intensive care unit[J]. J Gene Med, 2019,21(11):e3128. .
36
NahandJS, KarimzadehMR, NezamniaM, et al. The role of miR-146a in viral infection[J]. IUBMB Life, 2020,72(3):343-360. .
37
FiorilloAA, HeierCR, NovakJS, et al. TNF-α-induced microRNAs control dystrophin expression in Becker muscular dystrophy[J]. Cell Rep, 2015,12(10):1678-1690. .
38
PengL, ZhangH, HaoYY ,et al. Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5[J]. EBioMedicine, 2016, 14: 83-96..
39
LiuY, ChenQ, SongY, et al. MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation[J]. FEBS Lett, 2011,585(12):1963-1968. .
40
PerriM, LucenteM, CannataroR, et al. Variation in immune-related microRNAs profile in human milk amongst lactating women[J]. MicroRNA, 2018,7(2):107-114. .
41
ZhouB, WangS, MayrC, et al. MiR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely[J]. Proc Natl Acad Sci USA, 2007,104(17):7080-7085. .
42
Kunze-SchumacherH,WinterSJ,ImelmannE ,et al. MiRNA miR-21 is largely dispensable for intrathymic T-cell development[J]. Front Immunol, 2018, 9: 2497..
43
MirzaAH, KaurS, NielsenLB ,et al. Breast milk-derived extracellular vesicles enriched in exosomes from mothers with type 1 diabetes contain aberrant levels of microRNAs[J]. Front Immunol, 2019, 10: 2543..
44
MartinC, PatelM, WilliamsS, et al. Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells[J]. Innate Immun, 2018,24(5):278-284. .
45
XieMY, ChenT, XiQY , et al. Porcine milk exosome miRNAs protect intestinal epithelial cells against deoxynivalenol-induced damage[J]. Biochem.Pharmacol,2020, 175: 113898..