综述
肠道菌群与心力衰竭关系的研究进展
中华心力衰竭和心肌病杂志, 2023,07(1) : 69-74. DOI: 10.3760/cma.j.cn101460-20220210-00006
摘要

心力衰竭(心衰)是多种心血管疾病的终末阶段,心肌重构是心衰发生的关键步骤。新近,肠道菌群及其代谢产物对心肌重构和心衰的作用及机制的相关研究已成为研究热点。本文将从心衰与心肌重构、肠道菌群及其代谢产物、肠道菌群及其代谢产物对心肌重构的影响及其机制及通过调节肠道菌群干预心肌重构等方面,介绍肠道菌群与心衰关系的研究进展。

引用本文: 文江艳, 滕藤, 胡敏, 等.  肠道菌群与心力衰竭关系的研究进展 [J] . 中华心力衰竭和心肌病杂志, 2023, 07(1) : 69-74. DOI: 10.3760/cma.j.cn101460-20220210-00006.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

在各种刺激造成的心脏损伤并最终发展为心力衰竭(心衰)的过程中,心脏早期或晚期心肌重构与其发生发展密切相关1。心肌重构是多种心血管疾病如慢性心脏超负荷、慢性缺血性心脏病、心肌梗死等发生发展过程中重要的心脏病理性变化,是心血管疾病发展为心衰的基本通路。迄今为止,可用于遏制并改善心肌重构的治疗方法有限。近年来越来越多研究表明,人类肠道菌群及其代谢产物协助维持机体稳态并通过多条代谢通路影响心肌重构的发生发展。肠道菌群代谢物包括氧化三甲胺(trimethylamine oxide,TMAO)、短链脂肪酸(short-chain fatty acid,SCFA)、氨基酸代谢物和胆汁酸等都与心肌重构的发病机制有关2。同时肠道菌群也可以引起免疫反应,与心肌重构的发展相关并影响心衰患者的预后3。肠道菌群及其代谢产物对心肌重构和心衰的作用及机制的相关研究已成为研究热点,本文将对肠道菌群及其代谢产物与心衰的研究进展做一综述。

一、心衰与心肌重构

心肌重构是心脏在多种生理、病理刺激下发生的基本病理生理变化,是多种心血管疾病发展到心衰的关键性步骤4。心肌重构临床上表现为心脏损伤或血流动力学异常时引起的心脏大小、形状和功能的改变,最终导致心衰。心肌重构涉及心肌细胞生长和凋亡、炎症细胞浸润、心肌间质及血管周围纤维化和电生理重构等多方面5。从基因、分子、细胞、组织的改变,最终引起功能的改变是心肌重构的重要表现。在基因水平表现为,胚胎型基因重新激活及成年型基因的抑制;在分子水平上,β-肌球蛋白、肌管ATP酶等调节心脏收缩舒张功能蛋白表达发生改变;在细胞水平上,肌节解体、细胞骨架破坏;在组织水平表现为,纤维增生,胶原合成增加;功能上就会导致心室顺应性降低、心脏收缩和舒张功能障碍以及电传导异常6, 7。早期发现及早干预心肌重构的发生发展是防治心衰的重要措施,但是目前用于干预心肌重构的方法仍有限。

二、肠道菌群及其代谢产物

人类肠道菌群与宿主相互协调,参与维持机体稳态8。肠道菌群种类多数量大,可分为三类:(1)共生细菌,如双歧杆菌。(2)条件致病菌,如大肠杆菌。(3)致病菌,如沙门氏菌9。肠道菌群是免疫系统的重要“调节器”,两者可相互影响对方的构成和数量10。此外,肠道也是一种内分泌器官,肠道菌群可以通过其产生和释放的代谢产物干预心血管疾病的多条信号通路11。肠道菌群可以利用食物分解、吸收并产生一些对机体有利或者有害的代谢产物,如TMAO、胆汁酸和SCFA等在心肌重构中的作用得到了大量研究的支持11

三、肠道菌群及其代谢产物对心肌重构的影响及其机制
(一)肠道菌群易位介导的炎症反应与心肌重构

肠道菌群可以通过影响肠道屏障协助维持机体稳态。正常状态下,肠道上皮紧密连接处于闭合状态以发挥肠道屏障功能。当肠道菌群受到刺激引起失衡时会破坏紧密连接引起肠道屏障的破坏12,导致肠道通透性增加,细菌和内毒素(如脂多糖)易位进入体循环激活免疫系统引起肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleuin-6,IL-6)和白细胞介素-1(IL-1)等炎症因子的释放,导致心肌细胞凋亡增加,加重心肌重构13。研究证明,抗生素治疗可以延缓心肌重构的进程,说明抗生素可通过抑制肠道细菌易位从而起到保护心脏的作用14

(二)肠道菌群代谢产物与心肌重构

1. TMAO:有研究证明,摄入的膳食胆碱和其他含有三甲胺(trimethylamine,TMA)TMA的营养素含量与心血管疾病风险高度相关15。膳食胆碱和肉碱等物质在肠道被肠道菌群分解代谢为TMA,TMA可被静脉吸收入血后于肝脏在黄素单加氧酶家族的酶作用下转化合成TMAO,后经肾脏尿液排出。TMAO可激活转化生长因子-β(transforming growth factor-β,TGF-β)受体1/Smad 3通路16及TGF-β受体1/Smad2通路,加速成纤维细胞向肌成纤维细胞转化、心肌细胞坏死、心肌细胞凋亡以及巨噬细胞浸润17。同时TMAO水平升高会增加IL-8的分泌18。一项研究显示注射胆碱的结构类似物3,3-二甲基-1-丁醇(3,3-dimethyl-1-butanol,DMB)的小鼠,较对照鼠血浆TMAO水平下降,抑制了p65 NF-κB信号通路从而抑制心肌纤维化19。TMAO加重心肌重构可能是与促进成纤维细胞向肌成纤维细胞转化、促进炎症反应及心肌凋亡有关,更多信号机制需要更多实验去明确。

2. SCFA:大肠菌群将小肠未能消化吸收的复杂碳水化合物进一步转化为SCFA,主要包括乙酸、丙酸、丁酸等。近年来越来越多研究表明,SCFA不仅是人体重要的能量供应来源,还是饮食、肠道菌群以及机体之间重要的信号分子,可作用于心肌重构过程20。SCFA不仅可作为能量分子给结肠上皮细胞供应能量;还可通过激活游离脂肪酸受体-3(free fatty acid receptor-3,FFAR-3)和FFAR-2参与葡萄糖和脂质代谢的调节21。SCFA可以协助维持肠道上皮屏障完整,增强肠道上皮屏障保护功能,可以激活 AP-1 和肠道上皮杯状细胞特异性黏蛋白-2(mucin-2,MUC2)表达和分泌22;丁酸钠可以激活单磷酸腺苷活化的蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)通道,促进紧密连接的重新组装23,还可以稳定缺氧诱导因子(hypoxia-inducible factor,HIF)24。此外,SCFA还可以增加CD4+细胞,促进 IL-22 的产生和抑制组蛋白脱乙酰酶(histone deacetylase,HDAC)25,诱导产生调节性T细胞(regulatory cells,Tregs)26。一项研究显示,在大鼠心肌梗死后给予丁酸盐治疗,其M2 巨噬细胞极化增加、炎症反应减轻,可以改善大鼠心肌重构27。SCFA主要通过增强肠道屏障及抗炎作用来减轻心肌重构,增加SCFA的产生有望成为干预心肌重构的重要靶点。

3. 肠源性尿毒症毒素分子:对甲酚硫酸酯(P-cresol sulfate,PCS)和硫酸吲哚酚(indoxyl-sulfate,IS)是原型蛋白结合类尿毒症毒素分子。一项观察性研究显示,总的及游离血清IS 和PCS升高是心血管疾病的独立影响因素28。高水平的总或游离PCS都会增加心血管疾病患病率,同时影响患者预后29。肠源性尿毒症分子可以促进内皮功能障碍和炎症发展从而加重心肌重构。IS、PCS和吲哚-3-乙酸(indole-3-acetic acid,IAA)升高会引起单核细胞趋化蛋白-1(monocyte chemotactic protein-1,MCP-1)、可溶性血管粘附分子-1(soluble vascular adhesion molecule-1,sVCAM-1)及IL-6 分泌增多30;同时,IS升高引起促炎因子,TNFα、IL-6、IL-1的分泌增加和M1巨噬细胞极化,增强了脂多糖攻击期间的炎症反应31。但是,HEMO试验结果不能证实总IS和PCS与透析患者心血管结局之间的关联32。肠源性尿毒症毒素分子加重心肌重构可能与其增加炎症反应、促进内皮功能障碍有关,但是肠源性尿毒症毒素分子的研究主要聚焦于其与肾脏相关疾病之间的联系,关于其对于心肌重构是否有影响及其机制需要更多实验去探索。

4. 胆汁酸:胆汁酸是胆汁的重要组成部分,主要存在于肠肝循环系统,胆汁酸的产生、组成和肠道菌群两者之间可相互作用33。一项观察性研究发现,心衰患者中胆汁酸比率增加是心肌重构的重要影响因素34。胆汁酸可通过其功能性受体干预心肌重构,如法尼醇 X 受体(farnesoid X receptor,FXR)和G蛋白偶联胆汁酸受体 1(G protein-coupled bile acid receptor 1,GPBAR1),后者又称为Takeda G蛋白偶联受体-5(Takeda G protein-coupled receptor 5(TGR5)。激活FXR可以加速心肌细胞凋亡35及心肌纤维化36;激活TGR5可上调 AKT-GSK-3β通路的表达,减轻心肌炎症反应和改善心肌细胞凋亡37;TGR5也可激活Akt-FOXO-1 通路,下调PDK4的表达来增强心脏对压力的适应性反应38。胆汁酸是一种信号分子,并且主要通过FXR和TGR5两种功能性受体调节心肌细胞凋亡和炎症反应从而影响心肌重构的进展,相关研究较少,是否有其他更多影响途径需进一步探究。

点击查看大图
图1
肠道菌群与心力衰竭的机制
点击查看大图

(注:BAS为胆汁酸受体;FXR为法尼醇X受体;TGR5为IS为硫酸吲哚酚;LPS为脂多糖;PCS为对甲酚硫酸酯;SCFAS为短链脂肪酸受体;TGR5为Takeda G蛋白偶联受体-5;TJ为紧密连接;TMA为三甲胺;TMAO为氧化三甲胺)

图1
肠道菌群与心力衰竭的机制
四、通过调节肠道菌群干预心肌重构

1.饮食干预:饮食调节可以明显影响肠道菌群的组成。有研究表明,DASH(Dietary Approaches to Stop Hypertension,防治高血压饮食方法)饮食可以减轻心肌重构和降低心衰的发生率39。DASH饮食强调低脂饮食同时摄入充足水果、蔬菜、谷物保证机体所需钙、纤维等保持平衡。主要包括蔬菜、水果、鱼、海鲜、豆类、坚果、谷物、橄榄油类食物的地中海饮食也已经被证明可以预防心血管疾病并降低心血管疾病的死亡率40。高纤维饮食对于减轻心肌重构具有明显的作用,有实验研究显示,当饮食缺乏复合植物纤维时,肠道菌群会协同表达 CAZymes、硫酸酯酶和蛋白酶来攻击黏液多糖破坏肠道屏障41;,高纤维饮食和醋酸盐补充剂均可下调心脏和肾脏Egr1,减缓小鼠心肌重构42

2.微生物酶抑制疗法:DMB是一种天然的化合物,与胆碱结构类似,可以竞争性抑制胆碱-TMA裂解酶(CutC),减少肠道TMA的形成,机体内血浆TMAO的水平相应下降43, 44。有团队研究出新型苯并恶唑配体(benzoxazole ligand,BO-I)作为 CutC 抑制剂,可非竞争性抑制减少TMA的产生45。但DMB以及BO-I作为CutC抑制剂能否在临床达到相应效果仍需探究。

3.抗生素与粪便微生物群移植(fecal microbiota transplantation,FMT):有研究显示,心肌梗死小鼠抗生素处理后,小鼠全身炎症反应和心肌细胞损伤均得到改善,心肌重构相较减轻46。但是,抗生素选择和使用不当会产生负面影响,如破坏肠道的有益菌群、增加机会致病菌的感染几率、产生耐药性等。FMT是指将健康菌群移植到患者肠道,以恢复功能菌群治疗疾病的方法。研究显示,FMT治疗可以引起肠道微生物群组成的明显变化47。现阶段FMT治疗主要聚焦于治疗艰难梭菌感染和炎症性肠病等方面,在心血管疾病方面研究尚少,是否可以通过移植肠道菌群达到减轻心肌重构的目的,仍然需要更多的基础和临床实验来验证,是治疗心肌重构的新方向。

4.益生菌与益生元疗法:益生菌是一类活性菌群,能协助机体维持微生态平衡,对宿主有益,主要包括枯草杆菌、酵母菌、地衣芽孢杆菌等;益生元是指无活力的膳食物质,例如果聚糖(如菊粉)、低聚糖或低聚果糖(fructooligosaccharide,FOS),可选择性地刺激有益菌的生长而发挥有益作用48。口服益生菌可通过抑制TGF-MMP2-MMP9、ERK5-uPA-ANP、beclin-1-LC3B-Atg7通路显著减弱心肌纤维化、心肌细胞肥大和自噬49。同时,补充益生菌可以降低循环TMAO水平和炎症指标50、激活Tregs群体和增加M2型巨噬细胞的转变51,从而减轻心肌重构。有研究显示,缺乏益生元纤维会显著提高小鼠病理性心脏重构的发生率52。其中,FOS可以减少大鼠炎症细胞的浸润53;白藜芦醇(resveratrol,RSV)可以显著促进拟杆菌、乳杆菌和双歧杆菌的生长,从而减少TMAO的产生54;没食子酸可以降低TGF-β蛋白表达从而减少心肌成纤维细胞向肌成纤维细胞的转化55;抗性淀粉(resistant starch,RS)在肠道菌群作用下转化为SCFA,影响心肌重构56。但是临床对于益生菌与益生元的安全性、有益性相关分析统计较少,能否有足够的药用价值需要更多的研究试验去证明。

五、小结与展望

近年来越来越多研究表明,肠道菌群可以通过多条信号通路影响心肌重构。肠道菌群失衡,肠道屏障破坏,导致免疫反应,引起多种免疫因子释放加重心肌凋亡和心肌重构;肠道菌群代谢产物如TMAO、SCFA、IS、PCS、胆汁酸等均可以通过影响机体多条代谢通路调节心肌重构的发生发展。但是,肠道菌群与免疫系统之间具体作用机制仍需要进一步探索;代谢产物以TMAO、SCFA研究较多,其他产物的具体作用机制了解尚浅,同时是否有更多的代谢产物可影响心肌重构发生发展也需进一步挖掘。

通过了解肠道菌群调节心肌重构的机制,可以不断发现更多更新的心肌重构治疗靶点。通过饮食调节、微生物酶抑制剂、抗生素和FMT、益生菌和益生元疗法调节肠道菌群的丰度,减缓心肌重构及其进展。更加全面了解肠道菌群与心肌重构的联系可以为心肌重构治疗提供更丰富有利的方法,提供更多新的干预途径。

引用本文:

文江艳, 滕藤, 胡敏, 等. 肠道菌群与心力衰竭关系的研究进展[J]. 中华心力衰竭和心肌病杂志, 2023, 7(1): 69-74. DOI: 10.3760/cma.j.cn101460-20220210-00006.

利益冲突
利益冲突:

所有作者均声明不存在利益冲突

参考文献
[1]
O′MearaE, AllenBG. Cardiac remodelling patterns and proteomics: the keys to move beyond ejection fraction in heart failure? [J] Eur J Heart Fail, 2020, 22 (7): 1156-1159. DOI: 10.1002/ejhf.1691.
[2]
MamicP, ChaikijurajaiT, TangWHW. Gut microbiome-A potential mediator of pathogenesis in heart failure and its comorbidities: State-of-the-art review [J]. J Mol Cell Cardiol, 2021, 152: 105-117. DOI: 10.1016/j.yjmcc.2020.12.001.
[3]
TangTWH, ChenHC, ChenCY, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair [J]. Circulation, 2019, 139 (5): 647-659. DOI: 10.1161/CIRCULATIONAHA.118.035235.
[4]
WangY, ZhangX, WenY, et al. Endoplasmic reticulum-mitochondria contacts: a potential therapy target for cardiovascular remodeling-associated diseases [J]. Front Cell Dev Biol, 2021, 9: 774989. DOI: 10.3389/fcell.2021.774989.
[5]
WuQQ, XiaoY, YuanY, et al. Mechanisms contributing to cardiac remodelling [J]. Clin Sci (Lond), 2017, 131 (18): 2319-2345. DOI: 10.1042/CS20171167.
[6]
NakamuraM, SadoshimaJ. Mechanisms of physiological and pathological cardiac hypertrophy [J]. Nat Rev Cardiol, 2018, 15 (7): 387-407. DOI: 10.1038/s41569-018-0007-y.
[7]
LiL, ZhaoQ, KongW. Extracellular matrix remodeling and cardiac fibrosis [J]. Matrix Biol, 2018, 68-69: 490-506. DOI: 10.1016/j.matbio.2018.01.013.
[8]
ChenY, ZhouJ, WangL. Role and mechanism of gut microbiota in human disease [J]. Front Cell Infect Microbiol, 2021, 11: 625913. DOI: 10.3389/fcimb.2021.625913.
[9]
JiaQ, XieY, LuC, et al. Endocrine organs of cardiovascular diseases: Gut microbiota [J]. J Cell Mol Med, 2019, 23 (4): 2314-2323. DOI: 10.1111/jcmm.14164.
[10]
SchluterJ, PeledJU, TaylorBP, et al. The gut microbiota is associated with immune cell dynamics in humans [J]. Nature, 2020, 588 (7837): 303-307. DOI: 10.1038/s41586-020-2971-8.
[11]
McMillanA, HazenSL. Gut microbiota involvement in ventricular remodeling post-myocardial infarction [J]. Circulation, 2019, 139 (5): 660-662. DOI: 10.1161/CIRCULATIONAHA.118.037384.
[12]
Allam-NdoulB, Castonguay-ParadisS, VeilleuxA. Gut microbiota and intestinal trans-epithelial permeability [J]. Int J Mol Sci, 2020, 21 (17): 6402. DOI: 10.3390/ijms21176402.
[13]
HannaA, FrangogiannisNG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure [J]. Cardiovasc Drugs Ther, 2020, 34 (6): 849-863. DOI: 10.1007/s10557-020-07071-0.
[14]
ZhouX, LiJ, GuoJ, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction [J]. Microbiome, 2018, 6 (1): 66. DOI: 10.1186/s40168-018-0441-4.
[15]
YangT, QuH, SongX, et al. Luhong granules prevent ventricular remodelling after myocardial infarction by reducing the metabolites TMAO and LPS of the intestinal flora [J]. Evid Based Complement Alternat Med, 2019, 2019: 8937427. DOI: 10.1155/2019/8937427.
[16]
LiZ, WuZ, YanJ, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis [J]. Lab Invest, 2019, 99 (3): 346-357. DOI: 10.1038/s41374-018-0091-y.
[17]
YangW, ZhangS, ZhuJ, et al. Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis [J]. J Mol Cell Cardiol, 2019, 134: 119-130. DOI: 10.1016/j.yjmcc.2019.07.004.
[18]
LiX, SunY, ZhangX, et al. Reductions in gut microbiota-derived metabolite trimethylamine N-oxide in the circulation may ameliorate myocardial infarction-induced heart failure in rats, possibly by inhibiting interleukin-8 secretion [J]. Mol Med Rep, 2019, 20 (1): 779-786. DOI: 10.3892/mmr.2019.10297.
[19]
WangG, KongB, ShuaiW, et al. 3, 3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice [J]. J Nutr Biochem, 2020, 78: 108341. DOI: 10.1016/j.jnutbio.2020.108341.
[20]
van der HeeB, WellsJM. Microbial regulation of host physiology by short-chain fatty acids [J]. Trends Microbiol, 2021, 29 (8): 700-712. DOI: 10.1016/j.tim.2021.02.001.
[21]
BoetsE, GomandSV, DerooverL, et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study [J]. J Physiol, 2017, 595 (2): 541-555. DOI: 10.1113/JP272613.
[22]
Burger-van PaassenN, VincentA, PuimanPJ, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection [J]. Biochem J, 2009, 420 (2): 211-219. DOI: 10.1042/BJ20082222.
[23]
MiaoW, WuX, WangK, et al. Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2 [J]. Int J Mol Sci, 2016, 17 (10): 1696. DOI: 10.3390/ijms17101696.
[24]
ZhouC, LiL, LiT, et al. SCFAs induce autophagy in intestinal epithelial cells and relieve colitis by stabilizing HIF-1α [J]. J Mol Med (Berl), 2020, 98 (8): 1189-1202. DOI: 10.1007/s00109-020-01947-2.
[25]
ChangPV, HaoL, OffermannsS, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition [J]. Proc Natl Acad Sci U S A, 2014, 111 (6): 2247-2252. DOI: 10.1073/pnas.1322269111.
[26]
TakahashiD, HoshinaN, KabumotoY, et al. Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells [J]. EBioMedicine, 2020, 58: 102913. DOI: 10.1016/j.ebiom.2020.102913.
[27]
JiangX, HuangX, TongY, et al. Butyrate improves cardiac function and sympathetic neural remodeling following myocardial infarction in rats [J]. Can J Physiol Pharmacol, 2020, 98 (6): 391-399. DOI: 10.1139/cjpp-2019-0531.
[28]
RossiM, CampbellK, JohnsonD, et al. Uraemic toxins and cardiovascular disease across the chronic kidney disease spectrum: an observational study [J]. Nutr Metab Cardiovasc Dis, 2014, 24 (9): 1035-1042. DOI: 10.1016/j.numecd.2014.04.006.
[29]
LinCJ, ChuangCK, JayakumarT, et al. Serum p-cresyl sulfate predicts cardiovascular disease and mortality in elderly hemodialysis patients [J]. Arch Med Sci, 2013, 9 (4): 662-668. DOI: 10.5114/aoms.2013.36901.
[30]
ClaroLM, Moreno-AmaralAN, GadottiAC, et al. The impact of uremic toxicity induced inflammatory response on the cardiovascular burden in chronic kidney disease [J]. Toxins (Basel), 2018, 10 (10): 384. DOI: 10.3390/toxins10100384.
[31]
LiY, YanJ, WangM, et al. Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation by regulation of β-catenin and YAP pathways [J]. J Mol Histol, 2021, 52 (2): 197-205. DOI: 10.1007/s10735-020-09936-y.
[32]
EvenepoelP, GlorieuxG, MeijersB. p-cresol sulfate and indoxyl sulfate: some clouds are gathering in the uremic toxin sky [J]. Kidney Int, 2017, 92 (6): 1323-1324. DOI: 10.1016/j.kint.2017.06.029.
[33]
SinghJ, MetraniR, ShivanagoudraSR, et al. Review on bile acids: effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds [J]. J Agric Food Chem, 2019, 67 (33): 9124-9138. DOI: 10.1021/acs.jafc.8b07306.
[34]
MayerhoferCCK, UelandT, BrochK, et al. Increased secondary/primary bile acid ratio in chronic heart failure [J]. J Card Fail, 2017, 23 (9): 666-671. DOI: 10.1016/j.cardfail.2017.06.007.
[35]
PuJ, YuanA, ShanP, et al. Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury [J]. Eur Heart J, 2013, 34 (24): 1834-1845. DOI: 10.1093/eurheartj/ehs011.
[36]
LiC, YangJ, WangY, et al. Farnesoid X receptor agonists as therapeutic target for cardiometabolic diseases [J]. Front Pharmacol, 2020, 11: 1247. DOI: 10.3389/fphar.2020.01247.
[37]
LiJ, ChengR, WanH. Overexpression of TGR5 alleviates myocardial ischemia/reperfusion injury via AKT/GSK-3 β mediated inflammation and mitochondrial pathway [J]. Biosci Rep, 2020, 40 (1): BSR20193482. DOI: 10.1042/BSR20193482.
[38]
EblimitZ, ThevanantherS, KarpenSJ, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice [J]. Cardiovasc Ther, 2018, 36 (5): e12462. DOI: 10.1111/1755-5922.12462.
[39]
Salehi-AbargoueiA, MaghsoudiZ, ShiraniF, et al. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases--incidence: a systematic review and meta-analysis on observational prospective studies [J]. Nutrition, 2013, 29 (4): 611-618. DOI: 10.1016/j.nut.2012.12.018.
[40]
Lopez-GarciaE, Rodriguez-ArtalejoF, LiTY, et al. The Mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease [J]. Am J Clin Nutr, 2014, 99 (1): 172-180. DOI: 10.3945/ajcn.113.068106.
[41]
WangDD, NguyenLH, LiY, et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk [J]. Nat Med, 2021, 27 (2): 333-343. DOI: 10.1038/s41591-020-01223-3.
[42]
MarquesFZ, NelsonE, ChuPY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice [J]. Circulation, 2017, 135 (10): 964-977. DOI: 10.1161/CIRCULATIONAHA.116.024545.
[43]
WangG, KongB, ShuaiW, et al. 3, 3-Dimethyl-1-butanol attenuates cardiac remodeling in pressure-overload-induced heart failure mice [J]. J Nutr Biochem, 2020, 78: 108341. DOI: 10.1016/j.jnutbio.2020.108341.
[44]
RobertsAB, GuX, BuffaJA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential [J]. Nat Med, 2018, 24 (9): 1407-1417. DOI: 10.1038/s41591-018-0128-1.
[45]
GabrMT, MachalzD, PachS, et al. A benzoxazole derivative as an inhibitor of anaerobic choline metabolism by human gut microbiota [J]. RSC Med Chem, 2020, 11 (12): 1402-1412. DOI: 10.1039/d0md00218f.
[46]
ZhouX, LiJ, GuoJ, et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction [J]. Microbiome, 2018, 6 (1): 66. DOI: 10.1186/s40168-018-0441-4.
[47]
SmitsLP, KootteRS, LevinE, et al. Effect of vegan fecal microbiota transplantation on carnitine-and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome [J]. J Am Heart Assoc, 2018, 7 (7): e008342. DOI: 10.1161/JAHA.117.008342.
[48]
GibsonGR, HutkinsR, SandersME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics [J]. Nat Rev Gastroenterol Hepatol, 2017, 14 (8): 491-502. DOI: 10.1038/nrgastro.2017.75.
[49]
LaiCH, TsaiCC, KuoWW, et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats [J]. Int J Med Sci, 2016, 13 (4): 277-285. DOI: 10.7150/ijms.14769.
[50]
MoludiJ, SaiediS, EbrahimiB, et al. Probiotics supplementation on cardiac remodeling following myocardial infarction: a single-center double-blind clinical study [J]. J Cardiovasc Transl Res, 2021, 14 (2): 299-307. DOI: 10.1007/s12265-020-10052-1.
[51]
DaniloCA, ConstantopoulosE, McKeeLA, et al. Bifidobacterium animalis subsp. lactis 420 mitigates the pathological impact of myocardial infarction in the mouse [J]. Benef Microbes, 2017, 8 (2): 257-269. DOI: 10.3920/BM2016.0119.
[52]
KayeDM, ShihataWA, JamaHA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease [J]. Circulation, 2020, 141 (17): 1393-1403. DOI: 10.1161/CIRCULATIONAHA.119.043081.
[53]
KumarSA, WardLC, BrownL. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats [J]. Br J Nutr, 2016, 116 (9): 1502-1511. DOI: 10.1017/S0007114516003627.
[54]
ChenML, YiL, ZhangY, et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota [J]. mBio, 2016, 7 (2): e02210-e02215. DOI: 10.1128/mBio.02210-15.
[55]
NajjarRS, TurnerCG, WongBJ, et al. Berry-derived polyphenols in cardiovascular pathologies: mechanisms of disease and the role of diet and sex [J]. Nutrients, 2021, 13 (2): 387. DOI: 10.3390/nu13020387.
[56]
KoayYC, WaliJA, LukAWS, et al. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites [J]. FASEB J, 2019, 33 (7): 8033-8042. DOI: 10.1096/fj.201900177R.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词