专家论坛
成人Still病:风湿免疫科医生的新视角
中华医学杂志, 2021,101(25) : 1949-1952. DOI: 10.3760/cma.j.cn112137-20210415-00908
摘要

成人Still病(AOSD)是一种少见多因素自身炎症性疾病,以发热、皮疹、关节炎/痛、淋巴结肿大、白细胞升高等为主要表现。AOSD还可出现严重并发症如巨噬细胞活化综合征,危及患者生命。最近一年,随着对AOSD发病机制的深入研究以及生物制剂和小分子靶向药物的广泛应用,人们对AOSD有了更多新的认识。本文将对近一年来在AOSD发病机制、临床表现和治疗等方面的进展进行述评,并对未来研究方向提出希望。

引用本文: 沈敏, 曾小峰. 成人Still病:风湿免疫科医生的新视角 [J] . 中华医学杂志, 2021, 101(25) : 1949-1952. DOI: 10.3760/cma.j.cn112137-20210415-00908.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。

成人Still病(adult onset Still′s disease,AOSD)是一种多基因多因素自身炎症性疾病,发病率为0.2/10万~0.4/10万,女性多见1。AOSD发病机制不明,临床表现具有较大异质性,轻者可治愈,重者可能危及生命,部分患者出现重要脏器受累,还可发展为结缔组织病或血液系统肿瘤2。无论采取日本Yamaguchi标准或美国Cush标准,AOSD都是除外性诊断2,因此常被误诊。最近1年,随着人们对AOSD发病机制的深入研究以及生物制剂和小分子靶向药物的广泛应用,业界对AOSD有了更多新的认识。

一、研究进展

1. 发病机制:遗传学方面,研究发现AOSD与人类白细胞抗原(HLA)-Bw35、-B17、-B18、-B35、-DR4、 -DRw6、-DQα1和-DRβ1等基因多态性存在关联。其中,HLA-DQα1_34和HLA-DRβ1_37是中国人AOSD患病的独立危险因素13。HLA基因单核苷酸位点rs3115628、rs9268832、rs9268791及HLA受体家族的白细胞免疫球蛋白样受体A3(LILRA3)基因功能丧失性突变也与中国人AOSD易感性密切相关。

研究发现,固有免疫系统激活和促炎细胞因子增加是AOSD发病的关键4。病原相关分子模式或损伤相关分子模式通过Toll样受体诱导炎性小体形成,激活巨噬细胞和中性粒细胞,将触发细胞因子风暴。AOSD患者NOD样受体蛋白3(NLRP3)表达增加,激活caspase-1产生促炎因子白细胞介素1β(IL-1β)和IL-18,诱导IL-6、IL-8、IL-17和肿瘤坏死因子(TNF)-α等炎性细胞因子表达失调5。AOSD患者的中性粒细胞形成胞外陷阱(NETs),进一步激活NLRP3炎性小体并产生细胞因子,诱导巨噬细胞活化6。此外,AOSD患者低密度粒细胞(LDGs)水平升高并产生IL-6,也参与疾病发生7

2. 临床表现:关于AOSD罕见临床表现有新的报道。10%~20%的AOSD患者合并巨噬细胞活化综合征(MAS)8,主要表现为持续高热、肝脾肿大、组织噬血证据(尤其是骨髓)以及严重的难以控制的炎症风暴,血清铁蛋白水平显著升高是AOSD继发MAS的独立预测因素9。我国学者报道神经系统受累可见于7%左右的AOSD患者,其中无菌性脑膜炎最常见,而MAS是神经系统受累的独立危险因素10。约12%的AOSD患者合并肺实质受累,与年龄和全身疾病活动性显著相关11。此外还有AOSD合并心肌炎12、肺动脉高压13、IgA肾病及淀粉样变14等报道。

3. 生物标记物:许多新的可能的AOSD生物标记物被发现,如细胞间黏附分子1、巨噬细胞迁移抑制因子、晚期糖基化终产物和可溶性晚期糖基化终产物受体、IL-37、趋化因子(CXCL)9/10/11/13、LDGs、单核细胞CD64、可溶性CD163、醛缩酶、尿α-1-酸性糖蛋白1、尿α酸性糖蛋白1/2等2715, 16, 17, 18。但由于技术手段复杂、检测成本高昂、证据等级较低等因素,上述生物标记物尚未开始临床应用。

研究发现,NETs、可溶性髓系细胞触发受体1(sTREM-1)、淋巴细胞表达受体相互作用丝氨酸/苏氨酸激酶(RIPKs)、中性粒细胞来源的脂质运载蛋白2(LCN2)等水平与AOSD疾病活动度呈正相关1619, 20, 21。其中,NETs水平不仅能够用于评估AOSD心、肺、肝受累,而且能够预测糖皮质激素(泼尼松≤1 mg·kg-1·d-1)的耐药性19。我国学者研究发现sTREM-1水平可能是预测AOSD发展为慢性病程的指标16。另一项回顾性研究发现,AOSD患者RIPKs水平可作为AOSD疾病活动及预测肝损伤的指标22

如何早期识别和诊断AOSD合并MAS是临床医生面临的难题,以往有学者参考幼年特发性关节炎全身型(sJIA)合并MAS的诊断评分——MAS/sJIA(MS)评分,将其用于AOSD合并MAS23。最近,我国学者将常用于诊断血液系统肿瘤和感染继发噬血细胞综合征的评分——反应性噬血细胞综合征评分(HScore)应用于AOSD合并MAS,发现与MS评分相比,HScore更有助于早期识别AOSD合并MAS24

4. 治疗:目前公认的一线治疗方案是非甾类抗炎药(NSAIDs)及糖皮质激素,对激素治疗无效或激素依赖者,则需加用改善病情抗风湿药(DMARDs)25。研究证明,以促炎细胞因子为靶点可以有效控制病情。因此,靶向治疗的应用不仅能够帮助减停激素,还能帮助患者更早达到临床缓解26, 27。在不同研究中,不同种类生物制剂甚至同种生物制剂在不同人群中的有效率都存在差异。其中,IL-1拮抗剂(阿纳白滞素、卡纳单抗和雷那西普)治疗AOSD的有效率为50%~100%;IL-6拮抗剂(托珠单抗)临床有效率为64%~100%26, 27, 28。TNF-α拮抗剂(英夫利昔单抗、依那西普和阿达木单抗)的临床缓解率仅11.81%29,但对于伴有关节症状的AOSD患者,TNF-α抑制剂可能更具有优势30。我国一项关于小分子靶向药物JAK抑制剂托法替布(5 mg每日1次或5 mg每日2次)治疗难治性AOSD的研究结果表明,完全缓解率达到50%,部分缓解率为43%,仅7%患者在激素减量过程中出现病情复发31

AOSD合并MAS需要个体化治疗。一线治疗方案涵盖激素、环孢素A及IL-1拮抗剂阿纳白滞素(超适应证用药)32。其中大剂量激素冲击(1 g/d,连用3~5 d)常作为首选治疗方案,疗效不佳者可尝试环孢素A 2~7 mg·kg-1·d-1,或阿纳白滞素(2~6 mg·kg-1·d-1,最大剂量可加至10 mg·kg-1·d-1)治疗,对于病情高度活动或出现中枢神经系统受累者,可在有经验的医师指导下,联合激素与环孢素或阿纳白滞素(50~100 mg/m2,每周1次)32。VP16常作为二线治疗方案或用于MAS合并中枢神经系统受累患者32。也可尝试IL-6拮抗剂托珠单抗治疗MAS,但治疗效果不确切32

5. 预后:至少有五分之一的患者在治疗过程中会出现病情复发。合并MAS或初始需应用强化治疗(激素≥80 mg/d,联合两种传统的DMARDs或一种传统DMARDs加一种生物制剂/靶向药物或依托泊苷)者复发风险增加33。关节炎和淋巴结肿大也可能与复发相关34

二、展望

自从1971年Bywaters35首次对AOSD进行了描述,在过去的50年间,不论对于AOSD临床表现、诊断和预后,还是对于发病机制和有效治疗的探究,均取得了巨大的进步,尤其在最近1年,涌现出大量AOSD相关的研究结果。但也必须看到不足,这也是未来的研究方向。

在疾病诊断和活动度评估方面,AOSD缺乏专门的疾病活动度评分工具、特异性的诊断指标和标准化的预后指标。尽管已经发现许多与AOSD疾病活动度相关的实验室指标,但考虑到时间和成本要求,并非所有指标均转化为临床评估工具。此外,一些潜在的可能应用的评分及临床指标还需要前瞻性多中心研究进一步确证。

随着生物制剂和小分子靶向药物临床应用的蓬勃发展,AOSD的治疗有了新的武器。除前述已在临床应用的生物制剂和小分子靶向药物外,新的靶向治疗还在探索中。国外Ⅱ期临床试验和个例报道已证实IL-18拮抗剂(IL-18结合蛋白Tadekinig alfa)在AOSD治疗中的安全性和有效性36, 37。同时生物仿制药的出现,也将会大大降低生物制剂治疗的费用36。但应注意,目前国内已上市的生物制剂和小分子靶向药物都没有获批AOSD适应证。如果确需应用,医生必须对患者履行充分告知义务,并签署知情同意书。此外,尽管生物制剂和小分子靶向药物具有良好的安全性,但长期治疗风险可能会大于获益。未来我们将面临的另外一个挑战就是对长期处于病情缓解的患者停用生物制剂和小分子靶向药物的时机和方法。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
1
LiS, ZhengS, TangS, et al. Autoinflammatory pathogenesis and targeted therapy for adult-onset Still′s disease[J]. Clin Rev Allergy Immunol, 2020, 58(1):71-81. DOI: 10.1007/s12016-019-08747-8.
2
FeistE, MitrovicS, FautrelB. Mechanisms, biomarkers and targets for adult-onset Still′s disease[J]. Nat Rev Rheumatol, 2018, 14(10):603-618. DOI: 10.1038/s41584-018-0081-x.
3
TengJL, ChenX, ChenJ, et al. The amino acid variants in HLA Ⅱ molecules explain the major association with adult-onset Still′s disease in the Han Chinese population[J]. J Autoimmun, 2021, 116:102562. DOI: 10.1016/j.jaut.2020.102562.
4
WangM, LiuM, JiaJ, et al. Association of the leukocyte immunoglobulin-like receptor A3 gene with neutrophil activation and disease susceptibility in adult-onset Still′s disease[J]. Arthritis Rheumatol, 2020 [2021-04-01]. [published ahead of print December 31, 2020].https://onlinelibrary.wiley.com/doi/10.1002/art.41635. DOI: 10.1002/art.41635.
5
LiZ, LiuHL, ChenJ, et al. Both HLA class Ⅰ and Ⅱ regions identified as genome-wide significant susceptibility loci for adult-onset Still′s disease in Chinese individuals[J]. Ann Rheum Dis, 2020, 79(1):161-163. DOI: 10.1136/annrheumdis-2019-215239.
6
HuQ, ShiH, ZengT, et al. Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still′s disease[J]. Arthritis Res Ther, 2019, 21(1):9. DOI: 10.1186/s13075-018-1800-z.
7
LiuY, XiaC, ChenJ, et al. Elevated circulating pro-inflammatory low-density granulocytes in adult-onset Still′s disease[J]. Rheumatology (Oxford), 2021, 60(1):297-303. DOI: 10.1093/rheumatology/keaa324.
8
EfthimiouP, KadavathS, MehtaB. Life-threatening complications of adult-onset Still′s disease[J]. Clin Rheumatol, 2014, 33(3):305-314. DOI: 10.1007/s10067-014-2487-4.
9
RuscittiP, RagoC, BredaL, et al. Macrophage activation syndrome in Still′s disease: analysis of clinical characteristics and survival in paediatric and adult patients[J]. Clin Rheumatol, 2017, 36(12):2839-2845. DOI: 10.1007/s10067-017-3830-3.
10
ZhaoM, WuD, ShenM. Adult onset Still′s disease with neurological involvement:a single center report[J]. Rheumatology (Oxford), 2020: keaa899. DOI: 10.1093/rheumatology/keaa899.
11
RuscittiP, BerardicurtiO, IaconoD, et al. Parenchymal lung disease in adult onset Still′s disease: an emergent marker of disease severity-characterisation and predictive factors from Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort of patients[J]. Arthritis Res Ther, 2020, 22(1):151. DOI: 10.1186/s13075-020-02245-5.
12
Gracia-RamosAE, Contreras-OrtízJA. Myocarditis in adult-onset Still′s disease: case-based review[J]. Clin Rheumatol, 2020, 39(3):933-947. DOI: 10.1007/s10067-019-04814-9.
13
NarváezJ, Mora-LimiñanaM, RosI, et al. Pulmonary arterial hypertension in adult-onset Still′s disease: a case series and systematic review of the literature[J]. Semin Arthritis Rheum, 2019, 49(1):162-170. DOI: 10.1016/j.semarthrit.2018.11.007.
14
王秀茹, 王炎焱. 第512例 发热—蛋白尿—多关节肿痛—皮肤色素沉着[J]. 中华医学杂志, 2020, 100 (30): 2388-2390. DOI: 10.3760/cma.j.cn112137-20200424-01301.
15
KimJW, JungJY, SuhCH, et al. Systemic immune-inflammation index combined with ferritin can serve as a reliable assessment score for adult-onset Still′s disease[J]. Clin Rheumatol, 2021, 40(2):661-668. DOI: 10.1007/s10067-020-05266-2.
16
WangZ, ChiH, SunY, et al. Serum sTREM-1 in adult-onset Still′s disease: a novel biomarker of disease activity and a potential predictor of the chronic course[J]. Rheumatology (Oxford), 2020, 59(11):3293-3302. DOI: 10.1093/rheumatology/keaa135.
17
SunY, WangF, ZhouZ, et al. Urinary proteomics identifying novel biomarkers for the diagnosis of adult-onset Still′s disease[J]. Front Immunol, 2020, 11:2112. DOI: 10.3389/fimmu.2020.02112.
18
LiuY, ZhangS, XiaCS, et al. Elevated granulocyte colony-stimulating factor levels in patients with active phase of adult-onset still disease[J]. J Rheumatol, 2021, 48(5):664-668. DOI: 10.3899/jrheum.200617.
19
JiaJ, WangM, MaY, et al. Circulating neutrophil extracellular traps signature for identifying organ involvement and response to glucocorticoid in adult-onset Still′s disease: a machine learning study[J]. Front Immunol, 2020, 11:563335. DOI: 10.3389/fimmu.2020.563335.
20
KogaT, SumiyoshiR, FurukawaK, et al. Interleukin-18 and fibroblast growth factor 2 in combination is a useful diagnostic biomarker to distinguish adult-onset Still′s disease from sepsis[J]. Arthritis Res Ther, 2020, 22(1):108. DOI: 10.1186/s13075-020-02200-4.
21
HuQ, GongW, GuJ, et al. Plasma microRNA profiles as a potential biomarker in differentiating adult-onset Still′s disease from sepsis[J]. Front Immunol, 2018, 9:3099. DOI: 10.3389/fimmu.2018.03099.
22
LiuX, GuoR, MengX, et al. The role of RIPK1/3 in adult onset Still′s disease patients with liver damage: a preliminary study[J]. Front Immunol, 2020, 11:560744. DOI: 10.3389/fimmu.2020.560744.
23
WangR, LiT, YeS, et al. Application of MS score in macrophage activation syndrome patients associated with adult onset Still′s disease[J]. Ann Rheum Dis, 2019:216286. DOI: 10.1136/annrheumdis-2019-216286.
24
ZhangL, YangX, LiTF, et al. Comparison of MS score and HScore for the diagnosis of adult-onset Still′s disease-associated macrophage activation syndrome[J]. Ann Rheum Dis, 2020:217917. DOI: 10.1136/annrheumdis-2020-217917.
25
Gerfaud-ValentinM, JamillouxY, IwazJ, et al. Adult-onset Still′s disease[J]. Autoimmun Rev, 2014, 13(7):708-722. DOI: 10.1016/j.autrev.2014.01.058.
26
VitaleA, CavalliG, RuscittiP, et al. Comparison of Early vs. Delayed Anakinra treatment in patients with adult onset Still′s disease and effect on clinical and laboratory outcomes[J]. Front Med (Lausanne), 2020, 7:42. DOI: 10.3389/fmed.2020.00042.
27
RuscittiP, UrsiniF, SotaJ, et al. The reduction of concomitant glucocorticoids dosage following treatment with IL-1 receptor antagonist in adult onset Still′s disease. A systematic review and meta-analysis of observational studies[J]. Ther Adv Musculoskelet Dis, 2020, 12:1759720X20933133. DOI: 10.1177/1759720X20933133.
28
KedorC, ListingJ, ZernickeJ, et al. Canakinumab for Treatment of Adult-Onset Still′s Disease to Achieve Reduction of Arthritic Manifestation (CONSIDER): phase Ⅱ, randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial[J]. Ann Rheum Dis, 2020, 79(8):1090-1097. DOI: 10.1136/annrheumdis-2020-217155.
29
ZhouS, QiaoJ, BaiJ, et al. Biological therapy of traditional therapy-resistant adult-onset Still′s disease: an evidence-based review[J]. Ther Clin Risk Manag, 2018, 14:167-171. DOI: 10.2147/TCRM.S155488.
30
CavalliG, FarinaN, CampochiaroC, et al. Current treatment options and safety considerations when treating adult-onset Still′s disease[J]. Expert Opin Drug Saf, 2020, 19(12):1549-1558. DOI: 10.1080/14740338.2020.1839411.
31
HuQ, WangM, JiaJ, et al. Tofacitinib in refractory adult-onset Still′s disease: 14 cases from a single centre in China[J]. Ann Rheum Dis, 2020, 79(6):842-844. DOI: 10.1136/annrheumdis-2019-216699.
32
La RoséeP, HorneA, HinesM, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults[J]. Blood, 2019, 133(23):2465-2477. DOI: 10.1182/blood.2018894618.
33
MengJ, ChiH, WangZ, et al. Characteristics and risk factors of relapses in patients with adult-onset Still′s disease: a long-term cohort study[J]. Rheumatology (Oxford), 2021: keab023. DOI: 10.1093/rheumatology/keab023.
34
KangJH. Risk factors associated with relapse of adult-onset Still disease in Korean patients[J]. Medicine (Baltimore), 2020, 99(50):e23579. DOI: 10.1097/MD.0000000000023579.
35
BywatersEG. Still′s disease in the adult[J]. Ann Rheum Dis, 1971, 30(2):121-133. DOI: 10.1136/ard.30.2.121.
36
GabayC, FautrelB, RechJ, et al. Open-label, multicentre, dose-escalating phase Ⅱ clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still′s disease[J]. Ann Rheum Dis, 2018, 77(6):840-847. DOI: 10.1136/annrheumdis-2017-212608.
37
KiltzU, KieferD, BraunJ, et al. Prolonged treatment with Tadekinig alfa in adult-onset Still′s disease[J]. Ann Rheum Dis, 2020, 79(1):e10. DOI: 10.1136/annrheumdis-2018-214496.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词