综述
肠道菌群及其代谢产物短链脂肪酸对肾结石形成的影响
中华医学杂志, 2021,101(38) : 3176-3180. DOI: 10.3760/cma.j.cn112137-20210208-00384
摘要

肾结石发病率和复发率高,危害严重。草酸钙结石是肾结石的主要类型,成因尚未完全明确,因而目前并无很好的针对性预防策略。随着16S rRNA、宏基因及代谢组学等方法学的发展,肠道菌群及其代谢产物对疾病的影响已成为多个研究领域的热点。目前,越来越多的研究也指示肠道菌群及其代谢产物短链脂肪酸可能和肾结石的发生、发展存在密切关系。一方面,肠道菌群可影响草酸的稳态;另一方面,短链脂肪酸经肠道吸收循环到达肾脏后可参与一系列的生理病理过程,并调节相关免疫和炎症反应。本文将系统地阐述肠道菌群及其代谢产物短链脂肪酸影响肾结石形成的研究进展,并展望今后的研究方向。

引用本文: 简钟宇, 金熙, 李虹, 等.  肠道菌群及其代谢产物短链脂肪酸对肾结石形成的影响 [J] . 中华医学杂志, 2021, 101(38) : 3176-3180. DOI: 10.3760/cma.j.cn112137-20210208-00384.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。
一、概述

肾结石是泌尿外科最常见的疾病之一1。以美国为例,其患病率约为9%2,和糖尿病相当(9.7%)3。据统计,肾结石的年发病率从2005年的0.6%增长到2015年的0.9%4。美国在2005年用于肾结石防治的费用就已超过了50亿美元5,且随着肾结石及其相关危险因素(肥胖、糖尿病)发病率的增长,预计到2030年,年花费将增加12.4亿美元6。我国肾结石患病率约为6.06%7,无疑也同样面临因肾结石防治所带来的巨大医疗开支。

肾结石还是其他疾病的诱因,如进行性的肾功能的损害8和心血管疾病9。目前,肾结石微创治疗手段取得了飞速发展,效果也越来越令人满意。但是,药物治疗在过去的30年里基本处于停滞状态。此外,肾结石易复发。初次发病的患者中约1/3会复发10,而复发的患者中再次复发的风险更大11。结石术后前5年复发率达到11.8%,而10年复发率高达60%12。因此,研究肾结石发生的病理生理学机制有助于找到新的药物治疗方式13

草酸钙是肾结石最常见的成分14。其他成分,如尿酸、胱氨酸、磷酸镁铵结石等的成因清楚,预防和治疗方式均较明确。因此,肾结石的研究重点和难点在于草酸钙结石。既往对于肾结石发病机制的研究主要集中在结晶形成的物理化学过程和结晶留滞的生物学等方面。得益于16S rRNA微生物分析和鸟枪法宏基因组学等方法学的快速发展,越来越多的研究开始关注肠道菌群对肾结石的影响。

二、肠道菌群

微生物存在于所有防御屏障表面。仅就胃肠道而言,其细菌的数量就和宿主的细胞数量相似15。而共生微生物所编码的基因是人类编码基因的100倍16。毫无疑问,这些微生物在宿主生理学的各个方面均起着深远的作用。

(一)产甲酸草酸杆菌、双歧杆菌和乳酸菌

产甲酸草酸杆菌(Oxalobacter formigenes)又称草酸杆菌,是目前和草酸代谢研究相关的最多的单一细菌,是肠道菌群中可直接降解食物中草酸的代表菌。草酸杆菌定居于肠道,以草酸作为唯一碳源,于1980年从哺乳动物瘤胃中分离得到17。其高效的降解草酸的能力来自于两个酶:草酰辅酶A脱羧酶和甲酰辅酶A转移酶18。种族、居住地、年龄、教育水平、抗生素暴露、体重、饮酒以及水果蔬菜摄入等均是影响草酸杆菌在肠道定植的重要因素19

草酸杆菌不仅能直接降解草酸,还能通过调节肠道草酸转运体的表达,促进草酸分泌到肠腔20。动物研究显示将草酸杆菌移植到小鼠肠道会促进草酸分泌,尿液草酸水平也会下降50%-70%21, 22, 23。体外研究发现草酸杆菌的培养液能刺激人类肠道细胞转移草酸,上述现象会在敲除草酸转运体SLC26A6后消失20。然而临床补充草酸杆菌制剂的研究结果却存在差异,有研究发现补充草酸杆菌制剂并不能显著降低高草酸尿症患者血液和尿液中的草酸水平24, 25

双歧杆菌和乳酸杆菌也被报道具有降低尿液草酸水平的能力。动物实验中,单独或联合补充双歧杆菌和乳酸杆菌,能降低尿液草酸水平,并减少肾结晶26, 27, 28, 29, 30, 31, 32。然而部分临床研究却报道口服乳酸杆菌制剂并没有降低尿液草酸水平的效果24- 25。另有研究发现,将高草酸饮食大鼠的粪便整体移植给其他大鼠,尿液草酸排泄量下降将近50%,效果优于补充益生菌制剂或者粪便中分离的细菌33。这些研究结果提示肠道菌群对草酸代谢的影响是靠大量细菌类群整体发挥作用,而其之间又可能互相影响形成庞大的网络。

(二)肾结石患者的肠道菌群高通量测序

随着16S rRNA和宏基因组学等方法学的发展,众多疾病已被证实和肠道菌群相关34, 35, 36。早在2016年,Stern等37就进行了1项初步研究,他们发现肾结石患者中拟杆菌属(Bacteroides)是对照组的3.4倍,而对照组的普氏菌属(Prevotella)是肾结石患者的2.8倍。但是,该研究的不足之处在于缺少结石成分分析、低检验效能、病例未配对(23例肾结石和6例对照)以及未考虑饮食因素对肠道菌群的影响。同期,另一篇研究同样报道了肾结石患者肠道菌群中Bacteroides丰度更高,而Prevotella、粪杆菌属(Faecalibacterium)和小杆菌属(Dialister)等则减少38。2018年,Ticinesi等39发现肾结石患者肠道菌群的多样性降低(Chao1指数,P=0.02),其中包括前面提到的PrevotellaFaecalibacterium,以及肠杆菌属(Enterobacter)。此外,通过宏基因组测序,尽管研究并未发现草酸杆菌在对照和结石患者之间有显著差别,但是却发现草酸降解的基因在对照组中表达更高,并和草酸排泄呈负相关。其他研究也发现草酸杆菌的定植状态和一系列的细菌网络相关,这些细菌网络往往在肾结石患者中更少40, 41。这些证据支持上述关于肠道菌群对草酸代谢的影响是靠大量细菌类群整体发挥作用的假设。

有研究发现肾结石患者中一些促炎细菌显著增多,如巨单胞菌属(Megamonas)、考拉杆菌属(Phascolarctobacterium)、大肠埃希菌-志贺菌属(Escherichia-Shigella)等42,提示炎症可能在肠道菌群影响肾结石形成中发挥重要作用。此外,也有研究报道儿童草酸钙结石患者中具有产丁酸能力和草酸降解能力的细菌显著减少43。本团队通过分析69例肾草酸钙结石患者和84例非肾结石对照人群的肠道菌群的构成和功能,发现一些产短链脂肪酸(short-chain fatty acid,SCFAs)的细菌,如布劳特氏菌属(Blautia)、丁酸弧菌属(Anaerostipes)、粪球菌属(Coprococcus)等,在草酸钙结石人群中显著减少。在此基础上,通过动物实验进一步发现外源性补充SCFAs可以显著减少大鼠肾草酸钙结晶的形成44。尽管其机制还有待探索,但是SCFAs有望成为肾结石防治的新型生物制剂。

三、SCFAs

肠道菌群通过代谢食物可以产生SCFAs,包括甲酸、乙酸、丙酸、丁酸等45。SCFAs可通过转运和扩散的方式迅速被肠上皮细胞吸收,大部分将充当宿主能量来源。剩余的SCFAs一部分在肝脏消耗,一部分进入到各个器官发挥重要的生物学功能。目前已发现SCFAs和肠黏膜的通透性46、葡萄糖和脂质代谢47、控制能量消耗48以及调节免疫炎症反应49等密切相关。

(一)SCFAs与肾结石

目前关于SCFAs和肾结石的研究较少。如上所述,研究已发现肾结石患者产SCFAs的菌群显著少于对照人群42, 43, 44。最近,一项研究报道了饮茶可以通过影响肠道菌群和粪便SCFAs水平,进而降低肾结石的发病风险50。食醋是一种含乙酸的调味品(4%~8%)51,一项超过9 000名中国人的流行病学调查发现每天饮用食醋是肾结石的保护因素(OR=0.36,P<0.001)7。进一步的机制研究发现食醋和乙酸可以通过调节表观遗传的方式影响尿液枸橼酸和钙的排泄,进而减少肾脏结晶的形成52。此外,有研究通过使用1%体积比的乙二醇构建大鼠模型研究了食醋对肠道菌群和血尿代谢物的影响53,发现在乙二醇的作用下,模型组大鼠的拟杆菌门/厚壁菌门(Bacteroidetes/Firmicutes)比例显著降低, Prevotella、瘤胃梭菌属(Ruminiclostridium)、别样杆菌属(Alistipes)等细菌显著减少,补充食醋后可以逆转这些菌在肠道的丰度。本团队也在该方面做了相关探索(尚未发表):以乙二醇诱导的肾结石大鼠为模型,使用乙酸、丙酸和丁酸干预后,大鼠尿液草酸排泄和肾脏草酸钙结晶明显减少。进一步的研究发现SCFAs可通过增加肠道草酸转运体SLC26A6表达,减少转运体SLC26A3表达,以促进肠道分泌草酸,减少草酸吸收。同时,SCFAs也能显著增加大鼠肠道菌群多样性。鉴于SCFAs的多重生物学功能,其影响肾结石形成的机制可能远不止于此。

(二)SCFAs参与肾脏的病理生理学过程

现有研究发现SCFAs参与了血压调节、急性肾损伤和慢性肾脏病(chronic kidney disease,CKD)的病理生理过程54,而这些过程又和肾结石的形成存在潜在的联系。研究者发现将卒中高血压大鼠的肠道菌群移植到正常大鼠会诱导大鼠血压升高,进一步的靶向代谢发现血清的乙酸和庚酸的水平明显变化,这提示SCFAs可能参与了血压调节55, 56。SCFAs调节血压的机制可能涉及其能激活G蛋白偶联受体(G protein-coupled receptors,GPCRs)、也能激活入球小动脉嗅觉受体78(olfactory receptor 78,Olfr78)从而释放肾素、以及和GPR41、GPR43等受体的结合调节血管的收缩和舒张等57, 58。除了血压调节外,SCFAs还参与了急性肾损伤这一过程。有报道称SCFAs可以减轻氧化应激所致的肾脏损伤54。此外,在肾缺血再灌注损伤的小鼠模型中,发现用SCFAs进行的治疗能够通过调节炎症、氧化应激以及免疫功能从而减轻肾脏损伤,而且用产乙酸盐的菌群处理小鼠也能看到类似的效果59。摄入富含SCFAs的高纤维饮食可以通过减少CKD过程中产生的毒素保护肾脏60, 61

(三)SCFAs影响肾结石的其他潜在机制

代谢综合征是肾结石的危险因素之一,而SCFAs可以调节代谢紊乱。在代谢紊乱的人群和小鼠模型中均观察到了SCFAs水平的下降62, 63。对啮齿类动物补充SCFAs则能改善异常代谢指标64。人补充SCFAs可以促进胃肠道肽类激素、肠促胰岛素-1、瘦素等的分泌,从而达到控制体重的目的65。虽然SCFAs能作为原料被细胞利用合成脂肪,但是SCFAs还能通过激活腺苷酸激活蛋白激酶及其下游信号通路,影响游离脂肪酸的合成和氧化66。目前的理论认为肾结石形成过程中,炎症和免疫扮演重要角色67。SCFAs能通过激活GPCRs和其他受体68, 69,或者抑制组蛋白去乙酰化酶,以调节炎症因子的表达(TNF-α,IL-6、IL-10等)70,从而调节组织的炎症反应71。SCFAs也能调节免疫,例如减少巨噬细胞、中性粒细胞等细胞的招募与聚集,以及调节T淋巴细胞和B淋巴细胞的分化68

四、总结与展望

综上,草酸稳态和肾草酸钙结石形成相关,而肠道菌群不仅能直接影响草酸的代谢,还能影响草酸的排泄。值得指出的是,肠道菌群对草酸稳态的影响更多的是靠大量细菌类群整体发挥作用,而其间又可能互相影响形成庞大的网络。目前,除了影响草酸代谢外,肠道菌群还存在着其他影响肾草酸钙结石形成的途径,如依靠其代谢产物SCFAs发挥作用,但其机制尚未完全明确。因此,SCFAs影响肾结石形成的机制将是后续研究的重点,特别是在炎症和免疫方向。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
SorokinI, MamoulakisC, MiyazawaK, et al. Epidemiology of stone disease across the world[J]. World J Urol, 2017, 35(9):1301-1320. DOI: 10.1007/s00345-017-2008-6.
[2]
ScalesCD, SmithAC, HanleyJM, et al. Prevalence of kidney stones in the United States[J]. Eur Urol, 2012, 62(1):160-165. DOI: 10.1016/j.eururo.2012.03.052.
[3]
XuG, LiuB, SunY, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study[J]. BMJ, 2018, 362:k1497. DOI: 10.1136/bmj.k1497.
[4]
TundoG, VollstedtA, MeeksW, et al. Beyond prevalence: annual cumulative incidence of kidney stones in the United States[J]. J Urol, 2021, 205(6):1704-1709. DOI: 10.1097/JU.0000000000001629.
[5]
HyamsES, MatlagaBR. Economic impact of urinary stones[J]. Transl Androl Urol, 2014, 3(3):278-283. DOI: 10.3978/j.issn.2223-4683.2014.07.02.
[6]
AntonelliJA, MaaloufNM, PearleMS, et al. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030[J]. Eur Urol, 2014, 66(4):724-729. DOI: 10.1016/j.eururo.2014.06.036.
[7]
ZengG, MaiZ, XiaS, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study[J]. BJU Int, 2017, 120(1):109-116. DOI: 10.1111/bju.13828.
[8]
ZheM, HangZ. Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4, 770, 691 participants[J]. Urolithiasis, 2017, 45(5):441-448. DOI: 10.1007/s00240-016-0938-x.
[9]
FerraroPM, TaylorEN, EisnerBH, et al. History of kidney stones and the risk of coronary heart disease[J]. JAMA, 2013, 310(4):408-415. DOI: 10.1001/jama.2013.8780.
[10]
RuleAD, LieskeJC, LiX, et al. The ROKS nomogram for predicting a second symptomatic stone episode[J]. J Am Soc Nephrol, 2014, 25(12):2878-2886. DOI: 10.1681/ASN.2013091011.
[11]
FerraroPM, CurhanGC, D′AddessiA, et al. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature[J]. J Nephrol, 2017, 30(2):227-233. DOI: 10.1007/s40620-016-0283-8.
[12]
YasuiT, OkadaA, HamamotoS, et al. Pathophysiology-based treatment of urolithiasis[J]. Int J Urol, 2017, 24(1):32-38. DOI: 10.1111/iju.13187.
[13]
MoeOW, PearleMS, SakhaeeK. Pharmacotherapy of urolithiasis: evidence from clinical trials[J]. Kidney Int, 2011, 79(4):385-392. DOI: 10.1038/ki.2010.389.
[14]
XuL, Adams-HuetB, PoindexterJR, et al. Temporal changes in kidney stone composition and in risk factors predisposing to stone formation[J]. J Urol, 2017, 197(6):1465-1471. DOI: 10.1016/j.juro.2017.01.057.
[15]
SenderR, FuchsS, MiloR. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8):e1002533. DOI: 10.1371/journal.pbio.1002533.
[16]
GillSR, PopM, DeboyRT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359. DOI: 10.1126/science.1124234.
[17]
DawsonKA, AllisonMJ, HartmanPA. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen[J]. Appl Environ Microbiol, 1980, 40(4):833-839. DOI: 10.1128/aem.40.4.833-839.1980.
[18]
MillerAW, DearingD. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut[J]. Pathogens, 2013, 2(4):636-652. DOI: 10.3390/pathogens2040636.
[19]
LiuM, KohH, KurtzZD, et al. Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project[J]. Microbiome, 2017, 5(1):108. DOI: 10.1186/s40168-017-0316-0.
[20]
ArvansD, JungYC, AntonopoulosD, et al. Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells[J]. J Am Soc Nephrol, 2017, 28(3):876-887. DOI: 10.1681/ASN.2016020132.
[21]
HatchM, FreelRW. A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion[J]. Urolithiasis, 2013, 41(5):379-384. DOI: 10.1007/s00240-013-0601-8.
[22]
HatchM, GjymishkaA, SalidoEC, et al. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(3):G461-G469. DOI: 10.1152/ajpgi.00434.2010.
[23]
HatchM, CorneliusJ, AllisonM, et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion[J]. Kidney Int, 2006, 69(4):691-698. DOI: 10.1038/sj.ki.5000162.
[24]
GoldfarbDS, ModersitzkiF, AsplinJR. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria[J]. Clin J Am Soc Nephrol, 2007, 2(4):745-749. DOI: 10.2215/CJN.00600207.
[25]
SienerR, BadeDJ, HesseA, et al. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria[J]. J Transl Med, 2013, 11:306. DOI: 10.1186/1479-5876-11-306.
[26]
ZhaoC, YangH, ZhuX, et al. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria[J]. Urology, 2018, 113:253.e1-253.e7. DOI: 10.1016/j.urology.2017.11.038.
[27]
PaulE, AlbertA, PonnusamyS, et al. Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group Ⅱ intron degrades intestinal oxalate in hyperoxaluric rats[J]. Microbiol Res, 2018, 215:65-75. DOI: 10.1016/j.micres.2018.06.009.
[28]
SasikumarP, GomathiS, AnbazhaganK, et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats[J]. J Biomed Sci, 2014, 21:86. DOI: 10.1186/s12929-014-0086-y.
[29]
KwakC, JeongBC, KuJH, et al. Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study[J]. Urol Res, 2006, 34(4):265-270. DOI: 10.1007/s00240-006-0054-4.
[30]
KlimesovaK, WhittamoreJM, HatchM. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria[J]. Urolithiasis, 2015, 43(2):107-117. DOI: 10.1007/s00240-014-0728-2.
[31]
MurphyC, MurphyS, O′BrienF, et al. Metabolic activity of probiotics-oxalate degradation[J]. Vet Microbiol, 2009, 136(1-2):100-107. DOI: 10.1016/j.vetmic.2008.10.005.
[32]
AfkariR, FeizabadiMM, Ansari-MoghadamA, et al. Simultaneous use of oxalate-degrading bacteria and herbal extract to reduce the urinary oxalate in a rat model: a new strategy[J]. Int Braz J Urol, 2019, 45(6):1249-1259. DOI: 10.1590/S1677-5538.IBJU.2019.0167.
[33]
MillerAW, DaleC, DearingMD. The induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species[J]. mSystems, 2017, 2(5):e00088-17. DOI: 10.1128/mSystems.00088-17.
[34]
李苏成, 茅於博, 孟斌. 肠道微生物群——治疗骨质疏松症的新方向[J].中华医学杂志, 2020, 100(41):3275-3277. DOI: 10.3760/cma.j.cn112137-20200418-01228.
[35]
曾雪涛, 马秀琴, 顾新南, . 慢性阻塞性肺疾病急性加重期发生肠道菌群失调的相关因素分析和预测模型构建[J].中华医学杂志, 2020, 100(40):3174-3178. DOI: 10.3760/cma.j.cn112137-20200612-01836.
[36]
季文, 伍学焱. 肠道菌群紊乱与男性不育:一个易被忽视的重要病因[J].中华医学杂志, 2020, 100(26):2006-2008. DOI: 10.3760/cma.j.cn112137-20200415-01192.
[37]
SternJM, MoazamiS, QiuY, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers[J]. Urolithiasis, 2016, 44(5):399-407. DOI: 10.1007/s00240-016-0882-9.
[38]
SuryavanshiMV, BhuteSS, JadhavSD, et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures[J]. Sci Rep, 2016, 6:34712. DOI: 10.1038/srep34712.
[39]
TicinesiA, MilaniC, GuerraA, et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers[J]. Gut, 2018, 67(12):2097-2106. DOI: 10.1136/gutjnl-2017-315734.
[40]
SuryavanshiMV, BhuteSS, GuneRP, et al. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease[J]. Sci Rep, 2018, 8(1):16598. DOI: 10.1038/s41598-018-33773-5.
[41]
MillerAW, ChoyD, PennistonKL, et al. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis[J]. Kidney Int, 2019, 96(1):180-188. DOI: 10.1016/j.kint.2019.02.012.
[42]
TangR, JiangY, TanA, et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones[J]. Urolithiasis, 2018, 46(6):503-514. DOI: 10.1007/s00240-018-1037-y.
[43]
DenburgMR, KoepsellK, LeeJJ, et al. Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease[J]. J Am Soc Nephrol, 2020, 31(6):1358-1369. DOI: 10.1681/ASN.2019101131.
[44]
LiuY, JinX, HongHG, et al. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease[J]. FASEB J, 2020, 34(8):11200-11214. DOI: 10.1096/fj.202000786R.
[45]
Ríos-CoviánD, Ruas-MadiedoP, MargollesA, et al. Intestinal short chain fatty acids and their link with diet and human health[J]. Front Microbiol, 2016, 7:185. DOI: 10.3389/fmicb.2016.00185.
[46]
MorrisonDJ, PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3):189-200. DOI: 10.1080/19490976.2015.1134082.
[47]
KimCH. Microbiota or short-chain fatty acids: which regulates diabetes?[J]. Cell Mol Immunol, 2018, 15(2):88-91. DOI: 10.1038/cmi.2017.57.
[48]
HuJ, LinS, ZhengB, et al. Short-chain fatty acids in control of energy metabolism[J]. Crit Rev Food Sci Nutr, 2018, 58(8):1243-1249. DOI: 10.1080/10408398.2016.1245650.
[49]
RatajczakW, RyłA, MizerskiA, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochim Pol, 2019, 66(1):1-12. DOI: 10.18388/abp.2018_2648.
[50]
ChenF, BaoX, LiuS, et al. Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption[J]. Appl Microbiol Biotechnol, 2021, 105(2):789-802. DOI: 10.1007/s00253-020-11086-w.
[51]
OgawaN, SatsuH, WatanabeH, et al. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells[J]. J Nutr, 2000, 130(3):507-513. DOI: 10.1093/jn/130.3.507.
[52]
ZhuW, LiuY, LanY, et al. Dietary vinegar prevents kidney stone recurrence via epigenetic regulations[J]. EBioMedicine, 2019, 45:231-250. DOI: 10.1016/j.ebiom.2019.06.004.
[53]
ZhuW, LiuY, DuanX, et al. Alteration of the gut microbiota by vinegar is associated with amelioration of hyperoxaluria-induced kidney injury[J]. Food Funct, 2020, 11(3):2639-2653. DOI: 10.1039/c9fo02172h.
[54]
PluznickJL. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors[J]. Kidney Int, 2016, 90(6):1191-1198. DOI: 10.1016/j.kint.2016.06.033.
[55]
AdnanS, NelsonJW, AjamiNJ, et al. Alterations in the gut microbiota can elicit hypertension in rats[J]. Physiol Genomics, 2017, 49(2):96-104. DOI: 10.1152/physiolgenomics.00081.2016.
[56]
MarquesFZ, NelsonE, ChuPY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135(10):964-977. DOI: 10.1161/CIRCULATIONAHA.116.024545.
[57]
PluznickJL, ProtzkoRJ, GevorgyanH, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proc Natl Acad Sci U S A, 2013, 110(11):4410-4415. DOI: 10.1073/pnas.1215927110.
[58]
NuttingCW, IslamS, YeMH, et al. The vasorelaxant effects of acetate: role of adenosine, glycolysis, lyotropism, and pHi and Cai2+[J]. Kidney Int, 1992, 41(1):166-174. DOI: 10.1038/ki.1992.23.
[59]
Andrade-OliveiraV, AmanoMT, Correa-CostaM, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion[J]. J Am Soc Nephrol, 2015, 26(8):1877-1888. DOI: 10.1681/ASN.2014030288.
[60]
ChiavaroliL, MirrahimiA, SievenpiperJL, et al. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials[J]. Eur J Clin Nutr, 2015, 69(7):761-768. DOI: 10.1038/ejcn.2014.237.
[61]
YangJ, LiQ, HenningSM, et al. Effects of prebiotic fiber xylooligosaccharide in adenine-induced nephropathy in mice[J]. Mol Nutr Food Res, 2018:e1800014. DOI: 10.1002/mnfr.201800014.
[62]
ZhaoL, ZhangF, DingX, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156. DOI: 10.1126/science.aao5774.
[63]
GoldsmithJR, SartorRB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications[J]. J Gastroenterol, 2014, 49(5):785-798. DOI: 10.1007/s00535-014-0953-z.
[64]
De VadderF, Kovatcheva-DatcharyP, GoncalvesD, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1-2):84-96. DOI: 10.1016/j.cell.2013.12.016.
[65]
FreelandKR, WoleverTM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha[J]. Br J Nutr, 2010, 103(3):460-466. DOI: 10.1017/S0007114509991863.
[66]
HeJ, ZhangP, ShenL, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21(17)6356.DOI: 10.3390/ijms21176356.
[67]
KhanSR, CanalesBK, Dominguez-GutierrezPR. Randall′s plaque and calcium oxalate stone formation: role for immunity and inflammation[J]. Nat Rev Nephrol, 2021, 17(6):417-433. DOI: 10.1038/s41581-020-00392-1.
[68]
YaoY, CaiX, FeiW, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Crit Rev Food Sci Nutr, 2020:1-12. DOI: 10.1080/10408398.2020.1854675.
[69]
AngZ, DingJL. GPR41 and GPR43 in obesity and inflammation-protective or causative?[J]. Front Immunol, 2016, 7:28. DOI: 10.3389/fimmu.2016.00028.
[70]
WangJ, FriedmanE. Downregulation of p53 by sustained JNK activation during apoptosis[J]. Mol Carcinog, 2000, 29(3):179-188. DOI: 3.0.co;2-k">10.1002/1098-2744(200011)29∶3<179::aid-mc7>3.0.co;2-k.
[71]
LiM, van EschB, WagenaarG, et al. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol, 2018, 831:52-59. DOI: 10.1016/j.ejphar.2018.05.003.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词