参考文献[1]
SorokinI, MamoulakisC, MiyazawaK, et al. Epidemiology of stone disease across the world[J]. World J Urol, 2017, 35(9):1301-1320. .
[2]
ScalesCD, SmithAC, HanleyJM, et al. Prevalence of kidney stones in the United States[J]. Eur Urol, 2012, 62(1):160-165. .
[3]
XuG, LiuB, SunY, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study[J]. BMJ, 2018, 362:k1497. .
[4]
TundoG, VollstedtA, MeeksW, et al. Beyond prevalence: annual cumulative incidence of kidney stones in the United States[J]. J Urol, 2021, 205(6):1704-1709. .
[5]
HyamsES, MatlagaBR. Economic impact of urinary stones[J]. Transl Androl Urol, 2014, 3(3):278-283. .
[6]
AntonelliJA, MaaloufNM, PearleMS, et al. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030[J]. Eur Urol, 2014, 66(4):724-729. .
[7]
ZengG, MaiZ, XiaS, et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study[J]. BJU Int, 2017, 120(1):109-116. .
[8]
ZheM, HangZ. Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4, 770, 691 participants[J]. Urolithiasis, 2017, 45(5):441-448. .
[9]
FerraroPM, TaylorEN, EisnerBH, et al. History of kidney stones and the risk of coronary heart disease[J]. JAMA, 2013, 310(4):408-415. .
[10]
RuleAD, LieskeJC, LiX, et al. The ROKS nomogram for predicting a second symptomatic stone episode[J]. J Am Soc Nephrol, 2014, 25(12):2878-2886. .
[11]
FerraroPM, CurhanGC, D′AddessiA, et al. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature[J]. J Nephrol, 2017, 30(2):227-233. .
[12]
YasuiT, OkadaA, HamamotoS, et al. Pathophysiology-based treatment of urolithiasis[J]. Int J Urol, 2017, 24(1):32-38. .
[13]
MoeOW, PearleMS, SakhaeeK. Pharmacotherapy of urolithiasis: evidence from clinical trials[J]. Kidney Int, 2011, 79(4):385-392. .
[14]
XuL, Adams-HuetB, PoindexterJR, et al. Temporal changes in kidney stone composition and in risk factors predisposing to stone formation[J]. J Urol, 2017, 197(6):1465-1471. .
[15]
SenderR, FuchsS, MiloR. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8):e1002533. .
[16]
GillSR, PopM, DeboyRT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359. .
[17]
DawsonKA, AllisonMJ, HartmanPA. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen[J]. Appl Environ Microbiol, 1980, 40(4):833-839. .
[18]
MillerAW, DearingD. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut[J]. Pathogens, 2013, 2(4):636-652. .
[19]
LiuM, KohH, KurtzZD, et al. Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project[J]. Microbiome, 2017, 5(1):108. .
[20]
ArvansD, JungYC, AntonopoulosD, et al. Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells[J]. J Am Soc Nephrol, 2017, 28(3):876-887. .
[21]
HatchM, FreelRW. A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion[J]. Urolithiasis, 2013, 41(5):379-384. .
[22]
HatchM, GjymishkaA, SalidoEC, et al. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(3):G461-G469. .
[23]
HatchM, CorneliusJ, AllisonM, et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion[J]. Kidney Int, 2006, 69(4):691-698. .
[24]
GoldfarbDS, ModersitzkiF, AsplinJR. A randomized, controlled trial of lactic acid bacteria for idiopathic hyperoxaluria[J]. Clin J Am Soc Nephrol, 2007, 2(4):745-749. .
[25]
SienerR, BadeDJ, HesseA, et al. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria[J]. J Transl Med, 2013, 11:306. .
[26]
ZhaoC, YangH, ZhuX, et al. Oxalate-degrading enzyme recombined lactic acid bacteria strains reduce hyperoxaluria[J]. Urology, 2018, 113:253.e1-253.e7. .
[27]
PaulE, AlbertA, PonnusamyS, et al. Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group Ⅱ intron degrades intestinal oxalate in hyperoxaluric rats[J]. Microbiol Res, 2018, 215:65-75. .
[28]
SasikumarP, GomathiS, AnbazhaganK, et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats[J]. J Biomed Sci, 2014, 21:86. .
[29]
KwakC, JeongBC, KuJH, et al. Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: a preliminary study[J]. Urol Res, 2006, 34(4):265-270. .
[30]
KlimesovaK, WhittamoreJM, HatchM. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria[J]. Urolithiasis, 2015, 43(2):107-117. .
[31]
MurphyC, MurphyS, O′BrienF, et al. Metabolic activity of probiotics-oxalate degradation[J]. Vet Microbiol, 2009, 136(1-2):100-107. .
[32]
AfkariR, FeizabadiMM, Ansari-MoghadamA, et al. Simultaneous use of oxalate-degrading bacteria and herbal extract to reduce the urinary oxalate in a rat model: a new strategy[J]. Int Braz J Urol, 2019, 45(6):1249-1259. .
[33]
MillerAW, DaleC, DearingMD. The induction of oxalate metabolism in vivo is more effective with functional microbial communities than with functional microbial species[J]. mSystems, 2017, 2(5):e00088-17. .
[34]
李苏成, 茅於博, 孟斌. 肠道微生物群——治疗骨质疏松症的新方向[J].中华医学杂志, 2020, 100(41):3275-3277. .
[35]
曾雪涛, 马秀琴, 顾新南, 等. 慢性阻塞性肺疾病急性加重期发生肠道菌群失调的相关因素分析和预测模型构建[J].中华医学杂志, 2020, 100(40):3174-3178. .
[36]
季文, 伍学焱. 肠道菌群紊乱与男性不育:一个易被忽视的重要病因[J].中华医学杂志, 2020, 100(26):2006-2008. .
[37]
SternJM, MoazamiS, QiuY, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers[J]. Urolithiasis, 2016, 44(5):399-407. .
[38]
SuryavanshiMV, BhuteSS, JadhavSD, et al. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures[J]. Sci Rep, 2016, 6:34712. .
[39]
TicinesiA, MilaniC, GuerraA, et al. Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers[J]. Gut, 2018, 67(12):2097-2106. .
[40]
SuryavanshiMV, BhuteSS, GuneRP, et al. Functional eubacteria species along with trans-domain gut inhabitants favour dysgenic diversity in oxalate stone disease[J]. Sci Rep, 2018, 8(1):16598. .
[41]
MillerAW, ChoyD, PennistonKL, et al. Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis[J]. Kidney Int, 2019, 96(1):180-188. .
[42]
TangR, JiangY, TanA, et al. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones[J]. Urolithiasis, 2018, 46(6):503-514. .
[43]
DenburgMR, KoepsellK, LeeJJ, et al. Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease[J]. J Am Soc Nephrol, 2020, 31(6):1358-1369. .
[44]
LiuY, JinX, HongHG, et al. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease[J]. FASEB J, 2020, 34(8):11200-11214. .
[45]
Ríos-CoviánD, Ruas-MadiedoP, MargollesA, et al. Intestinal short chain fatty acids and their link with diet and human health[J]. Front Microbiol, 2016, 7:185. .
[46]
MorrisonDJ, PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3):189-200. .
[47]
KimCH. Microbiota or short-chain fatty acids: which regulates diabetes?[J]. Cell Mol Immunol, 2018, 15(2):88-91. .
[48]
HuJ, LinS, ZhengB, et al. Short-chain fatty acids in control of energy metabolism[J]. Crit Rev Food Sci Nutr, 2018, 58(8):1243-1249. .
[49]
RatajczakW, RyłA, MizerskiA, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochim Pol, 2019, 66(1):1-12. .
[50]
ChenF, BaoX, LiuS, et al. Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption[J]. Appl Microbiol Biotechnol, 2021, 105(2):789-802. .
[51]
OgawaN, SatsuH, WatanabeH, et al. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of caco-2 cells[J]. J Nutr, 2000, 130(3):507-513. .
[52]
ZhuW, LiuY, LanY, et al. Dietary vinegar prevents kidney stone recurrence via epigenetic regulations[J]. EBioMedicine, 2019, 45:231-250. .
[53]
ZhuW, LiuY, DuanX, et al. Alteration of the gut microbiota by vinegar is associated with amelioration of hyperoxaluria-induced kidney injury[J]. Food Funct, 2020, 11(3):2639-2653. .
[54]
PluznickJL. Gut microbiota in renal physiology: focus on short-chain fatty acids and their receptors[J]. Kidney Int, 2016, 90(6):1191-1198. .
[55]
AdnanS, NelsonJW, AjamiNJ, et al. Alterations in the gut microbiota can elicit hypertension in rats[J]. Physiol Genomics, 2017, 49(2):96-104. .
[56]
MarquesFZ, NelsonE, ChuPY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135(10):964-977. .
[57]
PluznickJL, ProtzkoRJ, GevorgyanH, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proc Natl Acad Sci U S A, 2013, 110(11):4410-4415. .
[58]
NuttingCW, IslamS, YeMH, et al. The vasorelaxant effects of acetate: role of adenosine, glycolysis, lyotropism, and pHi and Cai2+[J]. Kidney Int, 1992, 41(1):166-174. .
[59]
Andrade-OliveiraV, AmanoMT, Correa-CostaM, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion[J]. J Am Soc Nephrol, 2015, 26(8):1877-1888. .
[60]
ChiavaroliL, MirrahimiA, SievenpiperJL, et al. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials[J]. Eur J Clin Nutr, 2015, 69(7):761-768. .
[61]
YangJ, LiQ, HenningSM, et al. Effects of prebiotic fiber xylooligosaccharide in adenine-induced nephropathy in mice[J]. Mol Nutr Food Res, 2018:e1800014. .
[62]
ZhaoL, ZhangF, DingX, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J]. Science, 2018, 359(6380):1151-1156. .
[63]
GoldsmithJR, SartorRB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications[J]. J Gastroenterol, 2014, 49(5):785-798. .
[64]
De VadderF, Kovatcheva-DatcharyP, GoncalvesD, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell, 2014, 156(1-2):84-96. .
[65]
FreelandKR, WoleverTM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha[J]. Br J Nutr, 2010, 103(3):460-466. .
[66]
HeJ, ZhangP, ShenL, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J]. Int J Mol Sci, 2020, 21(17)6356..
[67]
KhanSR, CanalesBK, Dominguez-GutierrezPR. Randall′s plaque and calcium oxalate stone formation: role for immunity and inflammation[J]. Nat Rev Nephrol, 2021, 17(6):417-433. .
[68]
YaoY, CaiX, FeiW, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Crit Rev Food Sci Nutr, 2020:1-12. .
[69]
AngZ, DingJL. GPR41 and GPR43 in obesity and inflammation-protective or causative?[J]. Front Immunol, 2016, 7:28. .
[70]
WangJ, FriedmanE. Downregulation of p53 by sustained JNK activation during apoptosis[J]. Mol Carcinog, 2000, 29(3):179-188. .
[71]
LiM, van EschB, WagenaarG, et al. Pro-and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells[J]. Eur J Pharmacol, 2018, 831:52-59. .