6-甲基腺嘌呤" />
继续教育园地
m6A甲基化修饰在消化道肿瘤中的研究进展及临床价值探讨
中华医学杂志, 2022,102(27) : 2128-2133. DOI: 10.3760/cma.j.cn112137-20220210-00276
摘要

N6-甲基腺嘌呤(m6A)甲基化修饰是真核信使RNA(mRNA)中最常见的内部转录修饰,为一种动态可逆的调控修饰,调控因子包括甲基转移酶、去甲基化转移酶和m6A识别蛋白。近年来相关研究发现,m6A甲基化修饰在肿瘤的发生发展过程中发挥着重要的作用。本文就m6A甲基化修饰及其调控因子的相关概念、在消化道肿瘤中的研究进展、对预后的评估价值及治疗耐药等方面进行综述。

引用本文: 王珑君, 阿祥仁. m6A甲基化修饰在消化道肿瘤中的研究进展及临床价值探讨 [J] . 中华医学杂志, 2022, 102(27) : 2128-2133. DOI: 10.3760/cma.j.cn112137-20220210-00276.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

编后

经全国继续医学教育委员会批准,本刊开设继教专栏,文后附5道单选题,读者阅读后可扫描标签二维码答题,每篇可免费获得Ⅱ类继教学分0.5分,全年最多可获5分

N6-甲基腺嘌呤(N6-methyladenosine,m6A)甲基化修饰是真核细胞中最丰富的表观转录组修饰,最早于20世纪70年代被发现,受当时的技术及研究方法限制,未能进一步研究其作用1, 2。目前,随着高特异性抗体的出现和高通量测序技术的普及,关于m6A在癌症发展中作用的研究逐渐增多。对于m6A甲基化修饰在一些肿瘤中的研究进展也有过相关综述3, 4,但本文从消化道肿瘤方面更全面地进行综述,还在预后价值、治疗耐药等方面的作用机制进行了总结。为进一步探索消化道肿瘤的发生发展机制、寻找肿瘤标志物和治疗靶点以及预测预后、克服耐药等方面提供理论基础。

一、概述

1.m6A甲基化修饰:m6A甲基化修饰作为一种表观遗传调节器,存在于大多数哺乳动物基因中,且在共有序列RRACH和3′非翻译区、终止密码子以及内部长外显子附近富集5, 6。m6A甲基化修饰主要受甲基转移酶、去甲基化转移酶和m6A 识别蛋白的调控。mRNA在甲基转移酶复合物的催化下发生甲基化;在去甲基化酶的作用下去掉甲基,逆转m6A甲基化修饰;m6A识别蛋白选择性识别结合mRNA上的m6A 修饰位点,从而调节 mRNA 的可变性剪接、出核转运、翻译和降解,最终调控转录后的基因表达7。最近的研究显示,m6A甲基化修饰可导致肿瘤进展和肿瘤抑制,调控因子的异常表达影响了m6A的丰度,从而导致肿瘤抑制基因和癌基因的表达失调,改变了细胞增殖、迁移和侵袭的生物学功能,最终导致肿瘤的发生发展8

2.m6A甲基转移酶:m6A甲基转移酶也叫“编码器”,包括甲基转移酶样蛋白3(METTL3)、甲基转移酶样蛋白14(METTL14)、Wilms肿瘤1相关蛋白(WTAP)、CCCH型锌指蛋白13(ZC3H13)、Cbl原癌基因样蛋白1(CBLL1)、病毒样m6A 转移酶相关蛋白(VIRMA)和RNA结合基序蛋白15(RBM15)。核心蛋白METTL3具有催化活性,METTL14能识别底物,二者可以形成稳定的异源二聚体,WTAP能够稳定异源二聚体并协助其靶向核斑点,此为甲基转移酶复合物的主要成分,ZC3H13、CBLL1、VIRMA、RBM15也参与组成甲基转移酶复合物,影响 RNA上的m6A沉积9

3.m6A去甲基化转移酶:m6A去甲基化转移酶也叫“橡皮擦”,是m6A甲基化修饰可逆过程的关键,包括AlkB同系物5(ALKBH5)、脂肪和肥胖相关蛋白(FTO)。通过酶动力学实验,ALKBH5与FTO去甲基化的活性相当,可在体外催化RNA的m6A修饰去甲基化,影响mRNA的输出和代谢及mRNA加工因子在核点的组装,而ALKBH5在单链RNA中去甲基化活性更强10,FTO则具有在单链DNA和RNA上m6A去甲基化的功能,且在脂肪、大脑和下丘脑中高度表达11

4.m6A结合蛋白:m6A结合蛋白也叫“阅读器”,包括含有YT521B 同源域的家族蛋白1/2/3(YTHDF1/2/3)、含有YTH域的蛋白1/2(YTHDC1/2)和胰岛素样生长因子的成员2(IGF2BP)家族、异质核核糖核蛋白(HNRNP)家族,YTHDF1与翻译和代谢相关12, 13, 14,而YTHDF2影响mRNA稳定性并加速mRNA降解15,YTHDF蛋白家族的功能主要依赖于YTHDF1/2。YTHDC1与mRNA剪接和核输出有关16, 17。YTHDC2可以通过与RNA解旋酶的相互作用,正向调节翻译延伸18。IGF2BP家族包括IGF2BP1/2/3,它们可以增强其靶mRNA的稳定性和翻译,以影响基因表达19。此外,HNRNP家族(HNRNPA2B1、HNRNPC和HNRNPG)、NF-κB相关蛋白(NKAP)和真核翻译起始因子3(eIF3)也属于m6A“阅读器”20

二、m6A甲基化修饰在消化道肿瘤中的研究

1.食管癌:根据中国国家癌症登记中心(NCCR)的统计,中国的食管癌患者占全球病例的70%21,是全球第六大最常见的癌症死亡原因,食管癌的两种主要亚型是食管鳞状细胞癌和腺癌22。METTL3的下调显著抑制了鳞状细胞癌细胞增殖,METTL3过表达则显著促进鳞状细胞癌细胞增殖,表明METTL3可促进鳞状细胞癌的发展23。METTL3通过调节NOTCH信号通路以及Akt 信号通路促进食管癌细胞的增殖和侵袭24, 25。研究表明,ALKBH5促进鳞状细胞癌增殖与不良预后26;相反,另一研究认为其在鳞状细胞癌细胞中低表达,并抑制肿瘤细胞的恶性增殖和侵袭27。出现两种不同的结论可能是由于m6A甲基化修饰在肝癌中的作用较为复杂。沉默FTO 抑制鳞状细胞癌细胞的增殖和迁移,过表达FTO则会促进鳞状细胞癌细胞增殖和迁移28。Yang等29通过研究发现,YTHDC2在鳞状细胞癌中发挥了抑癌因子的作用,YTHDC2在鳞状细胞癌中的表达下调,且在体外增殖实验中,发现敲低YTHDC2可促进鳞状细胞癌细胞的增殖。相关研究证明,HNRNPA2B1在食管癌中的表达显著升高,其与肿瘤分期和淋巴转移呈正相关,敲低HNRNPA2B1则会抑制食管癌的增殖、侵袭和迁移30。因此,METTL3、FTO、HNRNPA2B1可以促进癌细胞的增殖和侵袭,YTHDC2可以抑制癌细胞的增殖,而ALKBH5对鳞状细胞癌的进展有促进和抑制两种不同的作用。

2.胃癌:胃癌是东亚人群癌症相关死亡的常见原因之一,目前在全球癌症死亡率中居第四位,也是全球第五大流行癌症31。胃癌早期的症状并不典型,通常在进展期时被发现,虽然目前治疗技术和策略更加丰富,如胃癌出现肝转移后行治愈性手术32,但延长其生存时间仍有赖于找到新的治疗靶点。研究发现,m6A甲基化修饰与胃癌的发生、发展及预后有着密切的关系。METTL3在胃癌中表达上调,沉默METTL3抑制胃癌细胞的增殖、侵袭和迁移33,且METTL3被证明是胃癌潜在的预后标志34。METTL14在胃癌中作为抑癌因子,其过表达会通过使PI3K/AKT/mTOR通路和EMT通路失活而抑制胃癌细胞的增殖和侵袭35。YTHDF2在胃癌中低表达,通过调控FOXC2信号通路抑制胃癌细胞的生长36。YTHDC2与IGF2BP3在胃癌中作为促癌因子,敲除后显著抑制胃癌细胞的增殖和侵袭37, 38。因此,METTL3、YTHDC2、IGF2BP3可以促进肿瘤的增殖、侵袭和转移,而METTL14抑制肿瘤的增殖和侵袭,YTHDF2则抑制肿瘤进展。

3.结直肠癌:据相关数据统计,结直肠癌是全球第二大癌症死亡原因和第三大流行癌症31,尽管结直肠癌的筛查和治疗手段不断进步,但由于大多数患者诊断时已处于晚期,5年生存率仍然很低。深入探索m6A甲基化修饰与结直肠癌的作用机制,有助于早期诊断,提高其总生存率。有研究证明了METTL3/YTHDF2 m6A轴通过抑制YPEL5,促进了结直肠癌的增殖和迁移39。Chen等40研究发现,METTL3 通过激活 m6A-GLUT1-mTORC1轴促进结直肠癌进展,但在某些研究中,METTL3还作为抑癌基因,通过p38/ERK通路抑制结直肠癌的增殖和迁移41。同一种酶在结直肠癌中得出不同的结论,可能与不同的靶基因或信号通路有关。研究发现,METTL14 是一种抑癌基因,敲低METTL14 显著增强了结直肠癌细胞的增殖和侵袭能力42。ALKBH5通过调节FOXO3/miR-21/SPRY2轴在结直肠癌中发挥抑癌作用43,FTO高表达会促进结直肠癌细胞的增殖44。YTHDF2下调后会增加糖原合酶激酶3β的稳定性,从而抑制相关蛋白的表达,最终抑制结直肠癌细胞的增殖45。IGF2BP2的高表达促进了结直肠癌细胞的增殖、迁移和侵袭,减少凋亡46。IGF2BP3在结直肠癌中会抑制癌细胞的增殖47。HNRNPA2B1通过激活ERK/MAPK信号促进人结肠癌的细胞增殖,并调节细胞周期和凋亡48。综上可知,METTL14、ALKBH5、IGF2BP3、YTHDF2在结直肠癌中是抑癌因子,FTO、HNRNPA2B1则促进结直肠癌细胞的增殖,而METTL3在结直肠癌中被发现通过不同的信号通路发挥促进或抑制肿瘤进展的作用。

4.肝癌:肝癌是世界上第三大致命癌症,中国肝癌患者占全球病例的50%31,大多数肝癌患者出现术后复发和转移,导致5年总生存率较低。探索m6A甲基化修饰在肝癌中的生物学功能有助于发现潜在的诊断生物标志物。METTL3在肝癌中大多表达上调,从而显著促进肝癌的生长49。METTL14在肝癌中显著下调,并作为肿瘤抑制因子,抑制肝癌的转移50。WTAP在肝癌中高表达,能在体外和体内促进肝癌增殖51。ALKBH5在肝癌中作为抑癌因子,能够抑制肝癌的增殖和侵袭52,同样作为m6A去甲基化酶,FTO则促进肝癌的发生发展53。YTHDF1的缺失抑制肝癌的增殖、迁移、侵袭和细胞周期过程。YTHDF2 已被证明与肝癌的转移以及预后相关54。eIF3具有致癌作用,在肝癌组织中表达上调,与肝癌细胞增殖、预后相关55。因此,METTL3、METTL14、WTAP、ALKBH5、FTO、eIF3能够促进肝癌细胞的增殖、迁移和侵袭。

5.胰腺癌:胰腺癌是最具侵袭性和致命性的恶性肿瘤之一。由于早期缺乏症状,胰腺癌患者通常在晚期诊断,而晚期肿瘤的切除比较困难,因此,寻找胰腺癌新的治疗靶点具有重要意义。目前发现m6A甲基化在胰腺癌的发生发展中发挥着重要作用,包括增殖、迁移、侵袭及预后。研究表明,过表达METTL3、METTL14在体内和体外都显著促进了胰腺癌细胞的增殖和迁移56, 57。ALKBH5和FTO通过Wnt信号通路抑制胰腺癌增殖、侵袭和迁移58, 59。IGF2BP家族被证明在胰腺癌中发挥促癌作用,如上调IGF2BP1、IGF2BP2可通过激活AKT 信号通路促进胰腺癌细胞增殖60, 61。YTHDF2的表达水平在胰腺癌中的上调,促进胰腺癌细胞的增殖62。因此,METTL3、METTL14可促进胰腺癌细胞的增殖和迁移,IGF2BP1、IGF2BP2、YTHDF2促进胰腺癌细胞增殖,ALKBH5、FTO则抑制胰腺癌细胞的增殖、侵袭和迁移。

三、m6A甲基化修饰在消化道肿瘤中的临床价值

1.m6A甲基化修饰对消化道肿瘤预后的预测作用:肿瘤的预后是评价肿瘤治疗的重要因素,而m6A甲基化修饰对肿瘤的预后有较大的价值。研究证明,METTL3、ALKBH5和HNRNPA2B1的高表达与食管鳞状细胞癌患者的较差预后相关63, 64。HNRNPC在食管癌组织中高表达,且与患者的总生存期呈负相关65。在胃癌中,FTO、ALKBH1与胃癌进展、转移、预后相关66,YTHDF1在胃癌中高表达,促进胃癌发生和肺转移,是患者生存不良的独立预后因素67。YTHDC2 与IGF2BP3在胃癌中可以导致患者预后不良37, 38。研究发现,在结直肠癌中,有9个m6A相关mRNA生物标志物与临床病理和预后密切相关68。YTHDC2和IGF2BP3对结直肠癌患者的预后有较大的价值69。ALKBH5是结直肠癌患者总生存率和无病生存率的独立预后指标70。YTHDF171、METTL349、WTAP51、ALKBH552在肝癌中大多表达上调,与不良预后有关,是患者的潜在预后生物标志物。在胰腺癌患者中,FTO高表达是不良预后的分子生物标志物72。研究证明,YTHDF2 在晚期胰腺癌患者中的表达更高,对诊断和预后具有潜在的临床意义58。综上所述,m6A甲基化修饰对消化道肿瘤的预后起重要预测作用,为延长患者生存时间提供了新思路。

2.m6A甲基化修饰对消化道肿瘤耐药的影响:化疗是治疗肿瘤最有效的临床策略之一,一些恶性疾病能够通过化疗取得一定的疗效,然而耐药性仍然是取得有效化疗的障碍。随着m6A甲基化修饰在消化道肿瘤领域的深入研究,发现m6A甲基化调控因子在多种化疗药物类型中具有耐药性作用,包括铂类药物、抗代谢物等。如:铂类药物在治疗食管癌时,整体m6A水平被提高,SNHG3/miR-186-5p通过靶向METTL3调节m6A水平,即通过METTL3可以逆转m6A水平,因此调节m6A水平可能是一种提高铂类药物疗效的方法73。在胃癌中,METTL3被证明通过一些机制增强顺铂的耐药性74,因此靶向m6A甲基转移酶可能会增强铂类药物的疗效;还有研究发现,FTO可提高质子泵抑制剂奥美拉唑介导化疗敏感性75。不仅是化疗,m6A甲基化修饰也影响肿瘤放疗的效果,如在胰腺癌中,缺少METTL3的癌细胞对辐射的放射敏感性增强76。此外,IGF2BP3 可能是结直肠癌中预测多药耐药的潜在生物标志物77。因此,通过将各种化疗药物与靶向m6A甲基化调控因子相结合,能够为癌症治疗提供新的方法。

由于同一种m6A甲基化修饰调控因子在不同的肿瘤细胞中表达水平可能并不相同,因此其除了具有预测预后、影响治疗耐药的作用外,还有鉴别诊断的作用。例如,YTHDF2在胰腺癌中表达上调77,而在胃癌中表达下调36。因此,m6A甲基化修饰对于研究肿瘤之间的鉴别诊断是一个全新的突破口。

四、总结

综上所述,m6A甲基化修饰与肿瘤发生、迁移、侵袭、转移、预后密切相关。m6A甲基化修饰调控因子作为有前途的生物标志物,可能为肿瘤检测提供早期和非侵入性的方法,并为寻找消化道肿瘤诊断、治疗和预后的靶点提供新见解。m6A甲基化修饰水平的升高和降低都可能是促癌因素,确切机制尚不清楚。因此,将m6A甲基化修饰从基础研究应用到临床仍需进一步深入研究。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

单项选择题:

1.m6A甲基化修饰()

A.是一种动态可逆的调控修饰

B.是真核细胞中最丰富的表观转录组修饰

C.是在真核信使RNA腺嘌呤碱基的第6位N引入甲基或去除甲基

D.以上说法都对

2.m6A甲基化修饰调控因子有()

A.甲基转移酶

B.去甲基化转移酶

C.m6A识别蛋白

D.以上都是

3.下面说法中不正确的是()

A.mRNA在甲基转移酶催化下发生甲基化

B.mRNA在去甲基化酶的作用下去掉甲基

C.m6A识别蛋白选择性识别结合mRNA上的m6A 修饰位点

D.m6A甲基化修饰调控因子的异常表达一定会导致肿瘤发生

4.m6A甲基化修饰的生物学功能有()

A.促进肿瘤进展

B.抑制肿瘤进展

C.促进和抑制肿瘤进展

D.不改变癌基因的表达

5.下列不是m6A识别蛋白的是()

A.YTHDF1/2/3

B.YTHDC1/2

C.IGF2BP蛋白家族

D.ALKBH5

参考文献
[1]
YueY, LiuJ, HeC. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation[J]. Genes Dev, 2015, 29(13):1343-1355. DOI: 10.1101/gad.262766.115.
[2]
ZhaoBS, RoundtreeIA, HeC. Publisher correction: post-transcriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2018, 19(12):808. DOI: 10.1038/s41580-018-0075-1.
[3]
裴雨晴, 崔巍. m6A RNA甲基化在肿瘤中的研究进展[J]. 中华医学杂志, 2020, 100(7):556-560. DOI: 10.3760/cma.j.issn.0376-2491.2020.07.014.
[4]
刘培培, 杨梦雪, 严雪冰. m 6A甲基化修饰在消化系统肿瘤中的研究进展[J]. 国际肿瘤学杂志, 2021, 48(11):688-692. DOI: 10.3760/cma.j.cn371439-20210906-00136.
[5]
MeyerKD, SaletoreY, ZumboP, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons[J]. Cell, 2012, 149(7):1635-1646. DOI: 10.1016/j.cell.2012.05.003.
[6]
FuY, DominissiniD, RechaviG, et al. Gene expression regulation mediated through reversible m⁶A RNA methylation[J]. Nat Rev Genet, 2014, 15(5):293-306. DOI: 10.1038/nrg3724.
[7]
ZhangZ, LuoK, ZouZ, et al. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability[J]. Nat Genet, 2020, 52(9):939-949. DOI: 10.1038/s41588-020-0644-z.
[8]
PinelloN, SunS, WongJJ. Aberrant expression of enzymes regulating m6A mRNA methylation: implication in cancer[J]. Cancer Biol Med, 2018, 15(4):323-334. DOI: 10.20892/j.issn.2095-3941.2018.0365.
[9]
LiuJ, YueY, HanD, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2):93-95. DOI: 10.1038/nchembio.1432.
[10]
ZhengG, DahlJA, NiuY, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1):18-29. DOI: 10.1016/j.molcel.2012.10.015.
[11]
GerkenT, GirardCA, TungYC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007, 318(5855):1469-1472. DOI: 10.1126/science.1151710.
[12]
PiJ, WangW, JiM, et al. YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7[J]. Cancer Res, 2021, 81(10):2651-2665. DOI: 10.1158/0008-5472.CAN-20-0066.
[13]
HuL, WangJ, HuangH, et al. YTHDF1 regulates pulmonary hypertension through translational control of MAGED1[J]. Am J Respir Crit Care Med, 2021, 203(9):1158-1172. DOI: 10.1164/rccm.202009-3419OC.
[14]
YeJ, WangZ, ChenX, et al. YTHDF1-enhanced iron metabolism depends on TFRC m6A methylation[J]. Theranostics, 2020, 10(26):12072-12089. DOI: 10.7150/thno.51231.
[15]
ZhouJ, WanJ, GaoX, et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response[J]. Nature, 2015, 526(7574):591-594. DOI: 10.1038/nature15377.
[16]
RoundtreeIA, HeC. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing[J]. Trends Genet, 2016, 32(6):320-321. DOI: 10.1016/j.tig.2016.03.006.
[17]
RoundtreeIA, LuoGZ, ZhangZ, et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs[J]. Elife, 2017, 6:e31311.DOI: 10.7554/eLife.31311.
[18]
MaoY, DongL, LiuXM, et al. m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2[J]. Nat Commun, 2019, 10(1):5332. DOI: 10.1038/s41467-019-13317-9.
[19]
HuangH, WengH, SunW, et al. Publisher correction: recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2020, 22(10):1288. DOI: 10.1038/s41556-020-00580-y.
[20]
MeyerKD, PatilDP, ZhouJ, et al. 5′ UTR m(6)A promotes cap-independent translation[J]. Cell, 2015, 163(4):999-1010. DOI: 10.1016/j.cell.2015.10.012.
[21]
ChenW, ZhengR, BaadePD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132. DOI: 10.3322/caac.21338.
[22]
SmythEC, LagergrenJ, FitzgeraldRC, et al. Oesophageal cancer[J]. Nat Rev Dis Primers, 2017, 3:17048. DOI: 10.1038/nrdp.2017.48.
[23]
ZouJ, ZhongX, ZhouX, et al. The M6A methyltransferase METTL3 regulates proliferation in esophageal squamous cell carcinoma[J]. BiochemBiophys Res Commun, 2021, 580:48-55. DOI: 10.1016/j.bbrc.2021.05.048.
[24]
HanH, YangC, ZhangS, et al. METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via notch signaling pathway[J]. Mol Ther Nucleic Acids, 2021, 26:333-346. DOI: 10.1016/j.omtn.2021.07.007.
[25]
HouH, ZhaoH, YuX, et al. METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through AKT signaling pathway[J]. Pathol Res Pract, 2020, 216(9):153087. DOI: 10.1016/j.prp.2020.153087.
[26]
NagakiY, MotoyamaS, YamaguchiT, et al. m6A demethylase ALKBH5 promotes proliferation of esophageal squamous cell carcinoma associated with poor prognosis[J]. Genes Cells, 2020, 25(8):547-561. DOI: 10.1111/gtc.12792.
[27]
LiJ, LiuH, DongS, et al. ALKBH5 is lowly expressed in esophageal squamous cell carcinoma and inhibits the malignant proliferation and invasion of tumor cells[J]. Comput Math Methods Med, 2021, 2021:1001446. DOI: 10.1155/2021/1001446.
[28]
LiuS, HuangM, ChenZ, et al. FTO promotes cell proliferation and migration in esophageal squamous cell carcinoma through up-regulation of MMP13[J]. Exp Cell Res, 2020, 389(1):111894. DOI: 10.1016/j.yexcr.2020.111894.
[29]
YangN, YingP, TianJ, et al. Genetic variants in m6A modification genes are associated with esophageal squamous-cell carcinoma in the Chinese population[J]. Carcinogenesis, 2020, 41(6):761-768. DOI: 10.1093/carcin/bgaa012.
[30]
GuoH, WangB, XuK, et al. m6A Reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1[J]. Front Oncol, 2020, 10:553045. DOI: 10.3389/fonc.2020.553045.
[31]
SungH, FerlayJ, SiegelRL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660.
[32]
张珂诚, 陈凛. 胃癌肝转移外科治疗进展的共识与争议[J]. 中华医学杂志, 2021, 101(14):975-978. DOI: 10.3760/cma.j.cn112137-20201125-03192.
[33]
ZhouW, XianQ, WangQ, et al. m6A Methyltransferase 3 promotes the proliferation and migration of gastric cancer cells through the m6a modification of YAP1[J]. J Oncol, 2021, 2021:8875424. DOI: 10.1155/2021/8875424.
[34]
WangQ, ChenC, DingQ, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut, 2020, 69(7):1193-1205. DOI: 10.1136/gutjnl-2019-319639.
[35]
LiuX, XiaoM, ZhangL, et al. The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway[J]. J Clin Lab Anal, 2021, 35(3):e23655. DOI: 10.1002/jcla.23655.
[36]
ShenX, ZhaoK, XuL, et al. YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway[J]. Front Genet, 2020, 11:592042. DOI: 10.3389/fgene.2020.592042.
[37]
YuanW, ChenS, LiB, et al. The N6-methyladenosine reader protein YTHDC2 promotes gastric cancer progression via enhancing YAP mRNA translation[J]. Transl Oncol, 2022, 16:101308. DOI: 10.1016/j.tranon.2021.101308.
[38]
ZhouY, HuangT, SiuHL, et al. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis[J]. Mol Cancer, 2017, 16(1):77. DOI: 10.1186/s12943-017-0647-2.
[39]
ZhouD, TangW, XuY, et al. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5[J]. Mol Oncol, 2021, 15(8):2172-2184. DOI: 10.1002/1878-0261.12898.
[40]
ChenH, GaoS, LiuW, et al. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target[J]. Gastroenterology, 2021, 160(4):1284-1300.e16. DOI: 10.1053/j.gastro.2020.11.013.
[41]
DengR, ChengY, YeS, et al. m6A Methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways[J]. Onco Targets Ther, 2019, 12:4391-4402. DOI: 10.2147/OTT.S201052.
[42]
YangX, ZhangS, HeC, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020, 19(1):46. DOI: 10.1186/s12943-020-1146-4.
[43]
WuX, DaiM, LiJ, et al. m(6)A Demethylase ALKBH5 inhibits cell proliferation and the metastasis of colorectal cancer by regulating the FOXO3/miR-21/SPRY2 axis[J]. Am J Transl Res, 2021, 13(10):11209-11222.
[44]
YueC, ChenJ, LiZ, et al. MicroRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis[J]. J Exp Clin Cancer Res, 2020, 39(1):240. DOI: 10.1186/s13046-020-01731-7.
[45]
LiH, ZhangN, JiaoX, et al. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3β[J]. Clin Transl Med, 2021, 11(10):e602. DOI: 10.1002/ctm2.602.
[46]
CuiJ, TianJ, WangW, et al. IGF2BP2 promotes the progression of colorectal cancer through a YAP-dependent mechanism[J]. Cancer Sci, 2021, 112(10):4087-4099. DOI: 10.1111/cas.15083.
[47]
YangZ, WangT, WuD, et al. RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer[J]. J Exp Clin Cancer Res, 2020, 39(1):203. DOI: 10.1186/s13046-020-01714-8.
[48]
TangJ, ChenZ, WangQ, et al. hnRNPA2B1 Promotes colon cancer progression via the MAPK pathway[J]. Front Genet, 2021, 12:666451. DOI: 10.3389/fgene.2021.666451.
[49]
ChenM, WeiL, LawCT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6):2254-2270. DOI: 10.1002/hep.29683.
[50]
MaJZ, YangF, ZhouCC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing[J]. Hepatology, 2017, 65(2):529-543. DOI: 10.1002/hep.28885.
[51]
ChenY, PengC, ChenJ, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1):127. DOI: 10.1186/s12943-019-1053-8.
[52]
ChenY, ZhaoY, ChenJ, et al. ALKBH5 suppresses malignancy of hepatocellular carcinoma via m6A-guided epigenetic inhibition of LYPD1[J]. Mol Cancer, 2020, 19(1):123. DOI: 10.1186/s12943-020-01239-w.
[53]
LiJ, ZhuL, ShiY, et al. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation[J]. Am J Transl Res, 2019, 11(9):6084-6092.
[54]
ZhangC, HuangS, ZhuangH, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation[J]. Oncogene, 2020, 39(23):4507-4518. DOI: 10.1038/s41388-020-1303-7.
[55]
ZhuQ, QiaoGL, ZengXC, et al. Elevated expression of eukaryotic translation initiation factor 3H is associated with proliferation, invasion and tumorigenicity in human hepatocellular carcinoma[J]. Oncotarget, 2016, 7(31):49888-49901. DOI: 10.18632/oncotarget.10222.
[56]
XiaT, WuX, CaoM, et al. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion[J]. Pathol Res Pract, 2019, 215(11):152666. DOI: 10.1016/j.prp.2019.152666.
[57]
WangM, LiuJ, ZhaoY, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer[J]. Mol Cancer, 2020, 19(1):130. DOI: 10.1186/s12943-020-01249-8.
[58]
TangB, YangY, KangM, et al. m6A Demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling[J]. Mol Cancer, 2020, 19(1):3. DOI: 10.1186/s12943-019-1128-6.
[59]
ZengJ, ZhangH, TanY, et al. m6A Demethylase FTO suppresses pancreatic cancer tumorigenesis by demethylating PJA2 and inhibiting Wnt signaling[J]. Mol Ther Nucleic Acids, 2021, 25:277-292. DOI: 10.1016/j.omtn.2021.06.005.
[60]
WanBS, ChengM, ZhangL. Insulin-like growth factor 2 mRNA-binding protein 1 promotes cell proliferation via activation of AKT and is directly targeted by microRNA-494 in pancreatic cancer[J]. World J Gastroenterol, 2019, 25(40):6063-6076. DOI: 10.3748/wjg.v25.i40.6063.
[61]
XuX, YuY, ZongK, et al. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):497. DOI: 10.1186/s13046-019-1470-y.
[62]
ChenJ, SunY, XuX, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells[J]. Cell Cycle, 2017, 16(23):2259-2271. DOI: 10.1080/15384101.2017.1380125.
[63]
XiaTL, YanSM, YuanL, et al. Upregulation of METTL3 expression predicts poor prognosis in patients with esophageal squamous cell carcinoma[J]. Cancer Manag Res, 2020, 12:5729-5737. DOI: 10.2147/CMAR.S245019.
[64]
LiK, ChenJ, LouX, et al. HNRNPA2B1 affects the prognosis of esophageal cancer by regulating the mir-17-92 cluster[J]. Front Cell Dev Biol, 2021, 9:658642. DOI: 10.3389/fcell.2021.658642.
[65]
XuLC, PanJX, PanHD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer[J]. Cancer Manag Res, 2020, 12:5385-5394. DOI: 10.2147/CMAR.S254870.
[66]
LiY, ZhengD, WangF, et al. Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer[J]. Dig Dis Sci, 2019, 64(6):1503-1513. DOI: 10.1007/s10620-018-5452-2.
[67]
ChenXY, LiangR, YiYC, et al. The m6A reader YTHDF1 facilitates the tumorigenesis and metastasis of gastric cancer via USP14 translation in an m6a-dependent manner[J]. Front Cell Dev Biol, 2021, 9:647702. DOI: 10.3389/fcell.2021.647702.
[68]
ZhangZ, ZhangX. Identification of m6A-related biomarkers associated with prognosis of colorectal cancer[J]. Med Sci Monit, 2021, 27:e932370. DOI: 10.12659/MSM.932370.
[69]
ZhangJ, ChengX, WangJ, et al. Gene signature and prognostic merit of M6a regulators in colorectal cancer[J]. Exp Biol Med (Maywood), 2020, 245(15):1344-1354. DOI: 10.1177/1535370220936145.
[70]
YangP, WangQ, LiuA, et al. ALKBH5 holds prognostic values and inhibits the metastasis of colon cancer[J]. Pathol Oncol Res, 2020, 26(3):1615-1623. DOI: 10.1007/s12253-019-00737-7.
[71]
LiQ, NiY, ZhangL, et al. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation[J]. Signal Transduct Target Ther, 2021, 6(1):76. DOI: 10.1038/s41392-020-00453-8.
[72]
TangX, LiuS, ChenD, et al. The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells[J]. Oncol Lett, 2019, 17(2):2473-2478. DOI: 10.3892/ol.2018.9873.
[73]
ZhangM, BaiM, WangL, et al. Targeting SNHG3/miR-186-5p reverses the increased m6A level caused by platinum treatment through regulating METTL3 in esophageal cancer[J]. Cancer Cell Int, 2021, 21(1):114. DOI: 10.1186/s12935-021-01747-9.
[74]
ZhuL, ZhuY, HanS, et al. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer[J]. Cell Death Dis, 2019, 10(6):383. DOI: 10.1038/s41419-019-1585-2.
[75]
FengS, QiuG, YangL, et al. Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation[J]. Biosci Rep, 2021, 41(1):BSR20200842. DOI: 10.1042/BSR20200842.
[76]
TaketoK, KonnoM, AsaiA, et al. The epitranscriptome m6A writer METTL3 promotes chemo-and radioresistance in pancreatic cancer cells[J]. Int J Oncol, 2018, 52(2):621-629. DOI: 10.3892/ijo.2017.4219.
[77]
YangZ, ZhaoF, GuX, et al. Binding of RNA m6A by IGF2BP3 triggers chemoresistance of HCT8 cells via upregulation of ABCB1[J]. Am J Cancer Res, 2021, 11(4):1428-1445.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词