综述
阿奇霉素局部应用在睑板腺功能障碍治疗中的研究进展
中华医学杂志, 2023,103(2) : 143-148. DOI: 10.3760/cma.j.cn112137-20220910-01919
摘要

睑板腺功能障碍(MGD)是一种以睑板腺终末导管阻塞和(或)睑脂分泌的质或量异常为主要特征的慢性、弥漫性睑板腺病变。目前常规的MGD治疗方法具有一定局限性,阿奇霉素作为新型大环内酯类抗菌药物,具有半衰期长、眼内渗透性好、抗菌范围广等特点。目前已有多项临床试验证实了局部应用阿奇霉素治疗MGD的优势及有效性。本文对阿奇霉素的药物特性、作用机制及其局部应用于MGD的疗效及安全性进行综述,深入了解其在MGD治疗方面的新进展。

引用本文: 牛晴, 张为中, 刘昳. 阿奇霉素局部应用在睑板腺功能障碍治疗中的研究进展 [J] . 中华医学杂志, 2023, 103(2) : 143-148. DOI: 10.3760/cma.j.cn112137-20220910-01919.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

睑板腺功能障碍(meibomian gland dysfunction,MGD)是一种常见的眼表疾病,其患病率为3.5%~69.3%,其中亚洲地区的患病率可高达69.3%1。该病通常是由于睑板腺终末导管阻塞和(或)睑板腺分泌物质或量的改变所引起的泪膜异常、眼部刺激症状、眼表炎症反应,甚至严重干眼2。根据2007年国际干眼小组报告,MGD可能是造成干眼最常见的原因3。目前MGD常规的治疗方法包括物理治疗(睑缘清洁4, 5, 6、热敷7, 8, 9、睑板腺按摩10, 11)、药物治疗(人工泪液12、抗炎药物13, 14, 15等)、强脉冲光治疗16, 17, 18及手术治疗(睑板腺管探通术19)等,但大多数疗效欠佳20, 21, 22

阿奇霉素是一种大环内酯类抗菌药物,自20世纪80年代初合成后一直广泛用于治疗各类感染性疾病23, 24, 25, 26;1990年起,有学者报道口服阿奇霉素用于临床治疗沙眼能有效减少患者眼部炎症性滤泡27, 28;2007年,阿奇霉素点眼剂开始在临床上用于治疗细菌性结膜炎并获得了良好的细菌清除率及临床疗效29, 30。2010年起,有学者开始研究局部应用阿奇霉素在治疗MGD中的有效性,自此局部应用阿奇霉素治疗MGD受到越来越多的关注。本文检索了近10年阿奇霉素局部应用于治疗MGD的国内外文献,针对其药物特性、作用机制及临床应用现状进行综述。

一、MGD的发病机制

MGD的发病机制尚不完全清楚,目前主要认为是睑板腺腺管上皮角化过度、睑脂淤积引起睑板腺开口阻塞,从而导致睑缘细菌群落生长增加以及炎症反应的发生31。睑板腺位于上下眼睑,其分泌的脂质通过覆盖眼表的水层来保持泪膜稳定,同时也能保护眼睛免受微生物侵犯,是眼表抗菌系统的重要组成部分32。MGD的发生导致睑脂分泌异常,睑板腺分泌过多的脂肪分解酶(如脂肪酸酯酶、胆固醇酯酶)会刺激金黄色葡萄球菌生长,导致眼表菌群紊乱,同时这些脂肪分解酶会产生高度刺激性的游离脂肪酸,刺激眼表上皮细胞产生炎性因子,诱发眼部炎症33。随着游离脂肪酸的释放,睑脂成分及黏度的改变将会进一步加重睑板腺淤滞,最终导致炎症及角化过度的恶性循环34, 35。一项关于慢性睑缘炎患者眼表细菌培养的研究显示,包括凝固酶阴性葡萄球菌(主要是表皮葡萄球菌)、痤疮丙酸杆菌、棒状杆菌以及金黄色葡萄球菌等在内的多种菌株均具有显著的潜在致病作用36。可以看出,细菌定殖和炎症反应的发生可能是MGD发生发展的重要因素,这为局部应用阿奇霉素治疗MGD提供了理论基础。

二、阿奇霉素的药物特性

阿奇霉素衍生自红霉素,是氮杂内酯类抗生素的第1个药物,它将甲基取代的氮原子结合到内酯环中,有效提高了药物在酸性环境中的稳定性,同时也增强了药物在碱性环境下的抗菌活性37。与早期的大环内酯类相比,阿奇霉素的半衰期更长、组织渗透性更好、生物利用度更高。有研究表明局部应用阿奇霉素的半衰期与口服给药相当(约65.7 h)38。其生物利用度在健康个体中可达35%~42%,在组织中的浓度明显高于血药浓度(比平均血清浓度高10~100倍)39。阿奇霉素分子是亲脂性的,可以轻易渗透到结膜细胞中,局部应用阿奇霉素在点眼后的几分钟内即可穿透结膜和角膜。Torkildsen和O′Brien40研究发现在单次局部应用阿奇霉素30 min后结膜组织中药物达到最高浓度(131 μg/g),且能维持高浓度和治疗性水平长达1周;而单剂量局部应用莫西沙星在2 h后达到峰值浓度,24 h后在结膜中已经无法检测出。一项临床试验结果显示,局部应用或口服阿奇霉素均可获得长期较高水平的眼表组织浓度,且停药后结膜中仍可保持较高的药物浓度41。阿奇霉素滴眼液对眼睑组织的良好渗透性有利于其在MGD治疗方面的应用。Sakai等42在兔眼表的药代动力学研究结果显示,在单次应用1%阿奇霉素滴眼液24 h后,兔眼睑内的药物浓度为其峰值浓度的50.6%,显著高于局部应用1.5%左氧氟沙星滴眼液(5.0%)以及0.3%氧氟沙星眼膏(16.6%)。一项药代动力学研究表明,局部应用阿奇霉素后眼睑等眼表组织的药物平均浓度能保持在最小抑菌浓度(MIC)以上24 h43,而房水和玻璃体液中的药物浓度通常低于MIC,这使得阿奇霉素可能无法成为前房或后房等眼内感染的可行性治疗选择44, 45, 46

此外,基于DuraSite®眼用释药系统的阿奇霉素滴眼液采用了一种创新的生物黏附性给药系统,该系统能形成一种稳定与结膜相连的黏附基质,以增加活性药物在眼表的滞留时间,促进有效成分的吸收47。阿奇霉素眼用制剂在眼表停留的时间较其他滴眼液更长,克服了频繁点药的缺点,有助于药物充分作用于病变部位从而有效改善患者症状体征。

三、阿奇霉素对MGD的作用机制

1. 抗菌作用:有研究表明,正常人群睑板腺和眼表的菌群主要包括金黄色葡萄球菌、表皮葡萄球菌、棒状杆菌等,当MGD发生时,眼表菌群紊乱,多种细菌异常增殖48。作为广谱大环内酯类抗生素,阿奇霉素对许多革兰阳性和阴性菌均具有抑菌活性49。研究表明,该药物能通过与70S细菌核糖体的50S亚单位结合阻碍细菌转肽过程,从而抑制细菌蛋白质的合成38。MGD发生后,吞噬细胞能将阿奇霉素转运至感染部位,使感染组织中保持长时间、高浓度的药物状态从而抑制细菌生长或直接导致细菌死亡50。一项多中心、开放性的临床试验采用1%阿奇霉素眼用制剂治疗睑缘炎,治疗后患者的睑缘细菌培养结果显示凝固酶阴性葡萄球菌、棒状杆菌均显著减少51。阿奇霉素能够抑制睑缘细菌增殖,具有较高的细菌清除率,这对MGD引发的细菌定殖具有重要意义。

2. 抗炎及免疫调节作用:阿奇霉素不仅具有抗菌活性,还显示出抗炎及免疫调节作用。2010年,Li等52通过研究阿奇霉素对酵母聚糖刺激人体角膜上皮细胞产生促炎介质的作用,证实了阿奇霉素可以通过阻断角膜上皮细胞中核因子κB(nuclear factor kappa-B,NF-κB)的激活从而有效抑制相关促炎介质,如肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin,IL)1β、IL-6、IL-8、基质金属蛋白酶(matrix metalloproteinase,MMP)1、MMP-3和MMP-9的产生。Fernandez-Robredo等53发现局部应用阿奇霉素治疗脂多糖诱导的急性结膜炎大鼠能减少病变组织中的巨噬细胞浸润以及结膜黏液面积,有效减少促炎因子如IL-6、MMP-2及NF-κB活性的基因和蛋白质表达,该研究进一步证实了阿奇霉素的抗炎作用。2015年,一项研究首次评估了局部应用阿奇霉素对MGD患者眼睑及结膜中炎症介质表达的影响,该研究纳入了16例MGD相关性后睑缘炎及结膜炎患者,采用1%阿奇霉素滴眼液治疗4周,治疗期间患者泪液中IL-1β、IL-8、MMP-9及转化生长因子β(transforming growth factor-β,TGF-β)在结膜细胞和睑缘中的表达模式均逐渐趋于正常水平54。4周内,TGF-β1的表达增强,并且在停药后仍保持与健康对照组相似的水平,这可能有助于解释阿奇霉素在MGD治疗中的抗炎活性54

3. 诱导睑板腺细胞分化及脂质产生:人体睑板腺常常产生丰富的脂质(如胆固醇和磷脂),这些脂质在溶酶体中积累,以全分泌的方式分泌到侧管中,并最终释放到眼表以增强泪膜稳定性55,MGD引发的脂质缺乏会加速泪液蒸发、高渗以及炎性反应的发生。Liu等56, 57的研究结果显示局部应用阿奇霉素可以直接作用于人睑板腺上皮细胞(HMGECs),诱导胆固醇、磷脂和溶酶体积累,从而改善MGD的病理学特征。阿奇霉素能够促进HMGECs的终末分化,这有助于治疗MGD及其造成的蒸发性干眼,这种独特的能力是四环素所不具备的58

四、阿奇霉素治疗MGD的应用现状

据报道,口服阿奇霉素或局部用药均能有效减少MGD患者的症状和体征。一项前瞻性的临床研究表明,口服阿奇霉素联合人工泪液滴眼治疗中重度MGD能有效降低患者眼表疾病指数(ocular surface disease index,OSDI)评分,缓解患者眼部症状并改善睑板腺功能59。最新的研究表明口服阿奇霉素联合睑板腺按摩治疗MGD在改善患者OSDI评分、泪膜破裂时间(tear film break up time,TFBUT)、泪液分泌试验(Schirmer test,SIT)及角膜荧光素染色(corneal flourescence stain,CFS)方面均优于单纯睑板腺按摩治疗组60

2010年起,有学者逐渐开始应用阿奇霉素滴眼液治疗MGD并且均取得了良好的临床效果。一项前瞻性、开放性临床试验结果显示,局部应用阿奇霉素(每天1次,持续4周),可有效改善患者睑板腺脂质的光谱特征,并缓解患者结膜充血及睑板腺堵塞61。Balci和Gulkilik62的研究显示,1.5%阿奇霉素滴眼液治疗MGD患者1个月,患者的总症状评分、睑板腺分级、TFBUT、SIT及CFS较基线均有明显改善。

随后一些临床研究比较了局部应用阿奇霉素和口服给药的有效性。一项研究纳入了85例MGD患者,试验组采用1.5%阿奇霉素滴眼液点眼,对照组不接受局部治疗,同时两组均给予人工泪液点眼及口服阿奇霉素治疗,结果显示治疗1个月后,局部给药组的OSDI评分、TFBUT、CFS以及睑板腺评分均有显著改善,而对照组中仅OSDI评分和睑板腺质量较前好转63。Yildiz等64发现局部应用阿奇霉素治疗后睑缘炎较口服治疗在长期改善患者TFBUT、CFS方面效果更佳。

多项研究比较了阿奇霉素与多西环素的疗效及安全性。Kashkouli等65的研究显示,短时间内口服阿奇霉素在改善MGD患者总体临床反应方面效果明显优于口服多西环素,且不良反应更少;这与一项较新的临床随机对照试验结果一致66,该研究对口服阿奇霉素(5 d)或多西环素(30 d)的MGD患者进行了长达9个月的随访及评估,最终发现两种药物对改善患者临床症状均有效且安全,但阿奇霉素见效更快,不良反应更少。一项随机、双盲的开放性临床试验显示局部应用阿奇霉素(5 d)与口服多西环素(30 d)均能改善患者临床症状,但阿奇霉素组在改善结膜充血和角膜染色方面效果更佳,疗程更短,且两组之间轻度胃肠道不良反应无明显差异,但第2次就诊后多西环素组患者的不良反应较前明显增加67。Zandian等68认为外用阿奇霉素与口服多西环素在改善患者主观症状方面疗效相似,但多西环素比阿奇霉素更能减少客观体征,如CFS和睑板腺堵塞。近年一项前瞻性临床研究表明,1.5%阿奇霉素滴眼液和口服多西环素在改善MGD的体征和症状及导致停药的药物不良反应方面均无差异69

睑缘炎为一种慢性睑缘炎症,常常会引发睑板腺阻塞,导致MGD的发生,反之亦然。2011年,国际MGD工作组在MGD特刊中强调了MGD与后睑缘炎的关系70。研究表明,局部应用阿奇霉素治疗睑缘炎患者能显著改善患者眼睑和结膜充血及睑板腺阻塞情况5171。Igami等72的研究表明,口服阿奇霉素能显著改善后睑缘炎患者的TFBUT,而SIT、CFS及玫瑰红染色评分未见明显改善。Opitz和Tyler73通过局部应用阿奇霉素治疗33例后睑缘炎患者,30 d后与基线相比所有受试者的SIT、TFBUT、CFS以及OSDI评分均有所好转。最近,一项临床随机对照试验应用1%阿奇霉素滴眼液治疗MGD相关后睑缘炎患者,2周后患者干眼症状评分、泪膜脂质层厚度(lipid layer thickness,LLT)、TFBUT、睑板腺分级、泪液渗透压及患者睑缘堵塞、充血体征均有明显改善74。还有研究评估了阿奇霉素眼用制剂治疗慢性混合性前睑缘炎的疗效,结果表明,阿奇霉素在改善前睑缘炎患者临床表现方面较红霉素眼药膏效果更佳,且治疗持续时间更短75

五、阿奇霉素眼部局部应用的安全性

第1代大环内酯类药物的严重不良反应限制了其临床应用41,阿奇霉素属于第2代半合成大环内酯类抗生素,耐受性良好,局部应用阿奇霉素最常见的不良反应为眼部刺激症状,如灼热、瘙痒和刺痛等。大部分研究的不良事件发生率<2%,当治疗超过14 d时,不良事件的发生率增加,包括眼痛(15%)、视力模糊(5%~15%)、眼部刺激感(2%~5%)、瘙痒感(4%~8%)、灼痛感(4%)以及眼部分泌物增多(4%)38。Granet等76评估了单剂量局部应用DuraSite®1.0%阿奇霉素滴眼液、Tears Natural Ⅱ®1.0%阿奇霉素滴眼剂和0.5%莫西沙星的耐受性,结果显示阿奇霉素组的不良事件发生率(17.3%)远高于莫西沙星组(1%),该研究认为DuraSite®载体系统增加了阿奇霉素和防腐剂苯扎氯铵(BAK)的接触时间。Protzko等77的研究比较了DuraSite®1.0%阿奇霉素滴眼液与0.3%妥布霉素滴眼液的安全性,发现阿奇霉素组比妥布霉素组安全性更高,不良事件主要包括眼部刺激感(1.9%)、结膜充血(1.1%)和细菌性结膜炎恶化(1.1%)。有学者报道局部应用阿奇霉素引发了罕见不可预测的1型超敏反应,从而导致患者的焦虑和不满78。因此在使用阿奇霉素之前,必须告知患者该药可能的不良反应以及对其他大环内酯类抗生素产生过敏反应的可能性。

综上所述,基于阿奇霉素良好的抗菌谱、独特的抗炎机制,对MGD表现出良好的治疗效果,且短疗程内该药的安全性较高,未见眼部及全身严重不良反应的发生,可考虑作为治疗MGD的有效手段,将来亦有望成为缓解干眼的辅助药物疗法。阿奇霉素具有良好的眼内组织渗透性和较长的半衰期,这些优点使得它在眼表相关疾病治疗方面具有广阔前景。目前阿奇霉素滴眼液尚未在国内上市,局部应用阿奇霉素的作用机制在国内尚未见广泛报道,阿奇霉素在眼部的潜在抗炎机制还需要进一步研究。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
SchaumbergDA, NicholsJJ, PapasEB, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on the epidemiology of, and associated risk factors for, MGD[J]. Invest Ophthalmol Vis Sci, 2011, 52(4):1994-2005. DOI: 10.1167/iovs.10-6997e.
[2]
胡皎月, 廖怿, 黄彩虹, . 中国成人睑板腺功能障碍与体质指数的相关性[J]. 中华医学杂志, 2021, 101(32):2514-2518. DOI: 10.3760/cma.j.cn112137-20210223-00466.
[3]
The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007)[J]. Ocul Surf, 2007, 5(2):75-92. DOI: 10.1016/s1542-0124(12)70081-2.
[4]
XieWJ, JiangLJ, ZhangX, et al. Eyelid margin cleaning using deep cleaning device for the treatment of meibomian gland dysfunction-associated dry eye: a preliminary investigation[J]. J Zhejiang Univ Sci B, 2019, 20(8):679-686. DOI: 10.1631/jzus.B1900091.
[5]
KaidoM, IbrahimOM, KawashimaM, et al. Eyelid cleansing with ointment for obstructive meibomian gland dysfunction[J]. Jpn J Ophthalmol, 2017, 61(1):124-130. DOI: 10.1007/s10384-016-0477-6.
[6]
LeeH, KimM, ParkSY, et al. Mechanical meibomian gland squeezing combined with eyelid scrubs and warm compresses for the treatment of meibomian gland dysfunction[J]. Clin Exp Optom, 2017, 100(6):598-602. DOI: 10.1111/cxo.12532.
[7]
BorchmanD. The optimum temperature for the heat therapy for meibomian gland dysfunction[J]. Ocul Surf, 2019, 17(2):360-364. DOI: 10.1016/j.jtos.2019.02.005.
[8]
MurphyO, O′ DwyerV, Lloyd-MckernanA. The efficacy of warm compresses in the treatment of meibomian gland dysfunction and Demodex folliculorum blepharitis[J]. Curr Eye Res, 2020, 45(5):563-575. DOI: 10.1080/02713683.2019.1686153.
[9]
NgoW, SrinivasanS, JonesL. An eyelid warming device for the management of meibomian gland dysfunction[J]. J Optom, 2019, 12(2):120-130. DOI: 10.1016/j.optom.2018.07.002.
[10]
WangM, FengJ, WongJ, et al. Randomised trial of the clinical utility of an eyelid massage device for the management of meibomian gland dysfunction[J]. Cont Lens Anterior Eye, 2019, 42(6):620-624. DOI: 10.1016/j.clae.2019.07.008.
[11]
HanD, KimH, KimS, et al. Comparative study on the effect of hyperthermic massage and mechanical squeezing in the patients with mild and severe meibomian gland dysfunction: an interventional case series[J]. PLoS One, 2021, 16(3):e0247365. DOI: 10.1371/journal.pone.0247365.
[12]
RomeroJM, BiserSA, PerryHD, et al. Conservative treatment of meibomian gland dysfunction[J]. Eye Contact Lens, 2004, 30(1):14-19. DOI: 10.1097/01.ICL.0000095229.01957.89.
[13]
陈琦. 抗炎治疗轻度睑板腺功能障碍的临床研究[J]. 健康之路, 2017, 16(7):52. DOI: 10.3969/j.issn.1671-8801.2017.07.065.
[14]
陈永明. 抗炎治疗睑板腺功能障碍120例临床疗效分析[J]. 湘南学院学报(医学版), 2016, 18(3):22-24. DOI: 10.16500/j.cnki.1673-498x.2016.03.007.
[15]
LeeH, ChungB, KimKS, et al. Effects of topical loteprednol etabonate on tear cytokines and clinical outcomes in moderate and severe meibomian gland dysfunction: randomized clinical trial[J]. Am J Ophthalmol, 2014, 158(6):1172-1183.e1. DOI: 10.1016/j.ajo.2014.08.015.
[16]
AritaR, FukuokaS, MorishigeN. Therapeutic efficacy of intense pulsed light in patients with refractory meibomian gland dysfunction[J]. Ocul Surf, 2019, 17(1):104-110. DOI: 10.1016/j.jtos.2018.11.004.
[17]
TashbayevB, YazdaniM, AritaR, et al. Intense pulsed light treatment in meibomian gland dysfunction: a concise review[J]. Ocul Surf, 2020, 18(4):583-594. DOI: 10.1016/j.jtos.2020.06.002.
[18]
CoteS, ZhangAC, AhmadzaiV, et al. Intense pulsed light (IPL) therapy for the treatment of meibomian gland dysfunction[J]. Cochrane Database Syst Rev, 2020, 3(3):CD013559. DOI: 10.1002/14651858.CD013559.
[19]
MagnoM, MoschowitsE, AritaR, et al. Intraductal meibomian gland probing and its efficacy in the treatment of meibomian gland dysfunction[J]. Surv Ophthalmol, 2021, 66(4):612-622. DOI: 10.1016/j.survophthal.2020.11.005.
[20]
ThodeAR, LatkanyRA. Current and emerging therapeutic strategies for the treatment of meibomian gland dysfunction (MGD)[J]. Drugs, 2015, 75(11):1177-1185. DOI: 10.1007/s40265-015-0432-8.
[21]
JiangX, LvH, SongH, et al. Evaluation of the safety and effectiveness of intense pulsed light in the treatment of meibomian gland dysfunction[J]. J Ophthalmol, 2016, 2016:1910694. DOI: 10.1155/2016/1910694.
[22]
彭霞, 李雅嘉, 陈佑祺, . 膳食补充剂Licofor治疗睑板腺功能障碍相关干眼的临床效果观察[J]. 中华医学杂志, 2021, 101(32):2508-2513. DOI: 10.3760/cma.j.cn112137-20210228-00508.
[23]
MorimotoS, TakahashiY, WatanabeY, et al. Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A[J]. J Antibiot (Tokyo), 1984, 37(2):187-189. DOI: 10.7164/antibiotics.37.187.
[24]
BrightGM, NagelAA, BordnerJ, et al. Synthesis, in vitro and in vivo activity of novel 9-deoxo-9a-AZA-9a-homoerythromycin A derivatives; a new class of macrolide antibiotics, the azalides[J]. J Antibiot (Tokyo), 1988, 41(8):1029-1047. DOI: 10.7164/antibiotics.41.1029.
[25]
JuurlinkDN. The cardiovascular safety of azithromycin[J]. CMAJ, 2014, 186(15):1127-1128. DOI: 10.1503/cmaj.140572.
[26]
KrugerD, PrathapanP. Azithromycin: the first broad-spectrum therapeutic[J]. J Transl Autoimmun, 2020: 100062. DOI: 10.1016/j.jtauto.2020.100062.
[27]
BaileyRL, ArullendranP, WhittleHC, et al. Randomised controlled trial of single-dose azithromycin in treatment of trachoma[J]. Lancet, 1993, 342(8869):453-456. DOI: 10.1016/0140-6736(93)91591-9.
[28]
TabbaraKF, Abu-el-AsrarA, al-OmarO, et al. Single-dose azithromycin in the treatment of trachoma. A randomized, controlled study[J]. Ophthalmology, 1996, 103(5):842-846. DOI: 10.1016/s0161-6420(96)30605-2.
[29]
AbelsonM, ProtzkoE, ShapiroA, et al. A randomized trial assessing the clinical efficacy and microbial eradication of 1% azithromycin ophthalmic solution vs tobramycin in adult and pediatric subjects with bacterial conjunctivitis[J]. Clin Ophthalmol, 2007, 1(2):177-182.
[30]
CochereauI, Meddeb-OuertaniA, KhairallahM, et al. 3-day treatment with azithromycin 1.5% eye drops versus 7-day treatment with tobramycin 0.3% for purulent bacterial conjunctivitis: multicentre, randomised and controlled trial in adults and children[J]. Br J Ophthalmol, 2007, 91(4):465-469. DOI: 10.1136/bjo.2006.103556.
[31]
于春红, 王云松. 睑板腺功能障碍的治疗及研究进展[J]. 海南医学, 2018, 29(4):531-534. DOI: 10.3969/j.issn.1003-6350.2018.04.026.
[32]
ZhaoF, ZhangD, GeC, et al. Metagenomic profiling of ocular surface microbiome changes in meibomian gland dysfunction[J]. Invest Ophthalmol Vis Sci, 2020, 61(8):22. DOI: 10.1167/iovs.61.8.22.
[33]
DoughertyJM, McCulleyJP. Bacterial lipases and chronic blepharitis[J]. Invest Ophthalmol Vis Sci, 1986, 27(4):486-491.
[34]
KnopE, KnopN, MillarT, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland[J]. Invest Ophthalmol Vis Sci, 2011, 52(4):1938-1978. DOI: 10.1167/iovs.10-6997c.
[35]
NelsonJD, ShimazakiJ, Benitez-del-CastilloJM, et al. The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee[J]. Invest Ophthalmol Vis Sci, 2011, 52(4):1930-1937. DOI: 10.1167/iovs.10-6997b.
[36]
DoughertyJM, McCulleyJP. Comparative bacteriology of chronic blepharitis[J]. Br J Ophthalmol, 1984, 68(8):524-528. DOI: 10.1136/bjo.68.8.524.
[37]
RetsemaJ, GirardA, SchelklyW, et al. Spectrum and mode of action of azithromycin (CP-62, 993), a new 15-membered-ring macrolide with improved potency against gram-negative organisms[J]. Antimicrob Agents Chemother, 1987, 31(12):1939-1947. DOI: 10.1128/AAC.31.12.1939.
[38]
KagkelarisKA, MakriOE, GeorgakopoulosCD, et al. An eye for azithromycin: review of the literature[J]. Ther Adv Ophthalmol, 2018, 10:2515841418783622. DOI: 10.1177/2515841418783622.
[39]
McMullanBJ, MostaghimM. Prescribing azithromycin[J]. Aust Prescr, 2015, 38(3):87-89. DOI: 10.18773/austprescr.2015.030.
[40]
TorkildsenG, O′BrienTP. Conjunctival tissue pharmacokinetic properties of topical azithromycin 1% and moxifloxacin 0.5% ophthalmic solutions: a single-dose, randomized, open-label, active-controlled trial in healthy adult volunteers[J]. Clin Ther, 2008, 30(11):2005-2014. DOI: 10.1016/j.clinthera.2008.10.020.
[41]
Al-HityA, LockingtonD. Oral azithromycin as the systemic treatment of choice in the treatment of meibomian gland disease[J]. Clin Exp Ophthalmol, 2016, 44(3):199-201. DOI: 10.1111/ceo.12666.
[42]
SakaiT, ShinnoK, KurataM, et al. Pharmacokinetics of azithromycin, levofloxacin, and ofloxacin in rabbit extraocular tissues after ophthalmic administration[J]. Ophthalmol Ther, 2019, 8(4):511-517. DOI: 10.1007/s40123-019-00205-0.
[43]
ChiambarettaF, GarraffoR, ElenaPP, et al. Tear concentrations of azithromycin following topical administration of a single dose of azithromycin 0.5%, 1.0%, and 1.5% eyedrops (T1225) in healthy volunteers[J]. Eur J Ophthalmol, 2008, 18(1):13-20. DOI: 10.1177/112067210801800103.
[44]
KarciogluZA, AhmedWS, RainesD, et al. Pharmacokinetics of azithromycinin rabbit lacrimal glands and conjunctiva[J]. Ophthalmic Res, 1999, 31(1):47-52. DOI: 10.1159/000055512.
[45]
O′DayDM, HeadWS, FouldsG, et al. Ocular pharmacokinetics of orally administered azithromycin in rabbits[J]. J Ocul Pharmacol, 1994, 10(4):633-641. DOI: 10.1089/jop.1994.10.633.
[46]
TabbaraKF, al-KharashiSA, al-MansouriSM, et al. Ocular levels of azithromycin[J]. Arch Ophthalmol, 1998, 116(12):1625-1628. DOI: 10.1001/archopht.116.12.1625.
[47]
FriedlaenderMH, ProtzkoE. Clinical development of 1% azithromycin in DuraSite, a topical azalide anti-infective for ocular surface therapy[J]. Clin Ophthalmol, 2007, 1(1):3-10.
[48]
孙圣书, 黄悦. 抗生素治疗睑板腺功能障碍的研究进展[J]. 国际眼科杂志, 2022, 22(5):827-832. DOI: 10.3980/j.issn.1672-5123.2022.5.26.
[49]
BakheitAH, Al-HadiyaBM, Abd-ElgalilAA. Azithromycin[J]. Profiles Drug Subst Excip Relat Methodol, 2014, 39:1-40. DOI: 10.1016/B978-0-12-800173-8.00001-5.
[50]
McDonaldPJ, PruulH. Phagocyte uptake and transport of azithromycin[J]. Eur J Clin Microbiol Infect Dis, 1991, 10(10):828-833. DOI: 10.1007/BF01975835.
[51]
HaqueRM, TorkildsenGL, BrubakerK, et al. Multicenter open-label study evaluating the efficacy of azithromycin ophthalmic solution 1% on the signs and symptoms of subjects with blepharitis[J]. Cornea, 2010, 29(8):871-877. DOI: 10.1097/ICO.0b013e3181ca38a0.
[52]
LiDQ, ZhouN, ZhangL, et al. Suppressive effects of azithromycin on zymosan-induced production of proinflammatory mediators by human corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2010, 51(11):5623-5629. DOI: 10.1167/iovs.09-4992.
[53]
Fernandez-RobredoP, RecaldeS, Moreno-OrduñaM, et al. Azithromycin reduces inflammation in a rat model of acute conjunctivitis[J]. Mol Vis, 2013, 19:153-165.
[54]
ZhangL, SuZ, ZhangZ, et al. Effects of azithromycin on gene expression profiles of proinflammatory and anti-inflammatory mediators in the eyelid margin and conjunctiva of patients with meibomian gland disease[J]. JAMA Ophthalmol, 2015, 133(10):1117-1123. DOI: 10.1001/jamaophthalmol.2015.2326.
[55]
Green-ChurchKB, ButovichI, WillcoxM, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease[J]. Invest Ophthalmol Vis Sci, 2011, 52(4):1979-1993. DOI: 10.1167/iovs.10-6997d.
[56]
LiuY, KamWR, DingJ, et al. Effect of azithromycin on lipid accumulation in immortalized human meibomian gland epithelial cells[J]. JAMA Ophthalmol, 2014, 132(2):226-228. DOI: 10.1001/jamaophthalmol.2013.6030.
[57]
LiuY, KamWR, DingJ, et al. One man′s poison is another man′s meat: using azithromycin-induced phospholipidosis to promote ocular surface health[J]. Toxicology, 2014, 320:1-5. DOI: 10.1016/j.tox.2014.02.014.
[58]
LiuY, KamWR, DingJ, et al. Can tetracycline antibiotics duplicate the ability of azithromycin to stimulate human meibomian gland epithelial cell differentiation?[J]. Cornea, 2015, 34(3):342-346. DOI: 10.1097/ICO.0000000000000351.
[59]
王红娟, 高莹莹, 李秀兰. 口服阿奇霉素治疗中重度睑板腺功能障碍的临床疗效[J]. 中华眼视光学与视觉科学杂志, 2019, 21(7):540-548. DOI: 10.3760/cma.j.issn.1674-845X.2019.07.010.
[60]
尤广智, 余海跃, 董泽英, . 口服阿奇霉素联合睑板腺按摩治疗睑板腺功能障碍患者的疗效观察[J]. 淮海医药, 2022, 40(3):305-307. DOI: 10.14126/j.cnki.1008-7044.2022.03.024.
[61]
FoulksGN, BorchmanD, YappertM, et al. Topical azithromycin therapy for meibomian gland dysfunction: clinical response and lipid alterations[J]. Cornea, 2010, 29(7):781-788. DOI: 10.1097/ICO.0b013e3181cda38f.
[62]
BalciO, GulkilikG. Assessment of efficacy of topical azithromycin 1.5 per cent ophthalmic solution for the treatment of meibomian gland dysfunction[J]. Clin Exp Optom, 2018, 101(1):18-22. DOI: 10.1111/cxo.12557.
[63]
CilogluE, ÖzcanAA, IncekalanT, et al. The role of topical azithromycin in the treatment of meibomian gland dysfunction[J]. Cornea, 2020, 39(3):321-324. DOI: 10.1097/ICO.0000000000002233.
[64]
YildizE, YenerelNM, Turan-YardimciA, et al. Comparison of the clinical efficacy of topical and systemic azithromycin treatment for posterior blepharitis[J]. J Ocul Pharmacol Ther, 2018, 34(4):365-372. DOI: 10.1089/jop.2017.0095.
[65]
KashkouliMB, FazelAJ, KiavashV, et al. Oral azithromycin versus doxycycline in meibomian gland dysfunction: a randomised double-masked open-label clinical trial[J]. Br J Ophthalmol, 2015, 99(2):199-204. DOI: 10.1136/bjophthalmol-2014-305410.
[66]
De BenedettiG, VaianoAS. Oral azithromycin and oral doxycycline for the treatment of meibomian gland dysfunction: a 9-month comparative case series[J]. Indian J Ophthalmol, 2019, 67(4):464-471. DOI: 10.4103/ijo.IJO_1244_17.
[67]
FoulksGN, BorchmanD, YappertM, et al. Topical azithromycin and oral doxycycline therapy of meibomian gland dysfunction: a comparative clinical and spectroscopic pilot study[J]. Cornea, 2013, 32(1):44-53. DOI: 10.1097/ICO.0b013e318254205f.
[68]
ZandianM, RahimianN, SoheilifarS. Comparison of therapeutic effects of topical azithromycin solution and systemic doxycycline on posterior blepharitis[J]. Int J Ophthalmol, 2016, 9(7):1016-1019. DOI: 10.18240/ijo.2016.07.14.
[69]
SatitpitakulV, RatanawongphaibulK, KasetsuwanN, et al. Efficacy of azithromycin 1.5% eyedrops vs oral doxycycline in meibomian gland dysfunction: a randomized trial[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(6):1289-1294. DOI: 10.1007/s00417-019-04322-1.
[70]
陈澎, 高延娥, 王鸿. 阿奇霉素眼水在睑板腺功能障碍及其造成干眼中的应用[J]. 中国老年保健医学, 2013, 11(2):69-71. DOI: 10.3969/j.issn.1672-4860.2013.02.037.
[71]
FadlallahA, RamiHE, FahdD, et al. Azithromycin 1.5% ophthalmic solution: efficacy and treatment modalities in chronic blepharitis[J]. Arq Bras Oftalmol, 2012, 75(3):178-182. DOI: 10.1590/s0004-27492012000300006.
[72]
IgamiTZ, HolzchuhR, OsakiTH, et al. Oral azithromycin for treatment of posterior blepharitis[J]. Cornea, 2011, 30(10):1145-1149. DOI: 10.1097/ICO.0b013e318207fc42.
[73]
OpitzDL, TylerKF. Efficacy of azithromycin 1% ophthalmic solution for treatment of ocular surface disease from posterior blepharitis[J]. Clin Exp Optom, 2011, 94(2):200-206. DOI: 10.1111/j.1444-0938.2010.00540.x.
[74]
AritaR, FukuokaS. Efficacy of azithromycin eyedrops for individuals with meibomian gland dysfunction-associated posterior blepharitis[J]. Eye Contact Lens, 2021, 47(1):54-59. DOI: 10.1097/ICL.0000000000000729.
[75]
JohnT, ShahAA. Use of azithromycin ophthalmic solution in the treatment of chronic mixed anterior blepharitis[J]. Ann Ophthalmol (Skokie), 2008, 40(2):68-74.
[76]
GranetD, LichtensteinSJ, OnofreyB, et al. An assessment of the tolerability of moxifloxacin 0.5% compared to azithromycin 1.0% in DuraSite[J]. Clin Ophthalmol, 2007, 1(4):519-525.
[77]
ProtzkoE, BowmanL, AbelsonM, et al. Phase 3 safety comparisons for 1.0% azithromycin in polymeric mucoadhesive eye drops versus 0.3% tobramycin eye drops for bacterial conjunctivitis[J]. Invest Ophthalmol Vis Sci, 2007, 48(8):3425-3429. DOI: 10.1167/iovs.06-1413.
[78]
Gedar TotukOM, YukselenA. Acute allergic reaction caused by topical azithromycin eye drops: a report of two cases[J]. Saudi J Ophthalmol, 2019, 33(2):180-182. DOI: 10.1016/j.sjopt.2018.10.001.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词