综述
程序性细胞死亡受体1单抗联合治疗复发难治霍奇金淋巴瘤的研究进展
中华医学杂志, 2024,104(7) : 552-558. DOI: 10.3760/cma.j.cn112137-20230926-00575
摘要

霍奇金淋巴瘤(HL)的发病率占全部淋巴瘤的5%~10%,尽管标准一线化疗组合ABVD方案(多柔比星+博来霉素+长春碱+达卡巴嗪)对HL患者的治愈率较高,但我国仍有约20%患者一线治疗后进展或复发。复发患者经过挽救化疗后进行自体造血干细胞移植可使无进展生存时间略有改善,但总体治愈率仅50%左右,移植前治疗能否达到完全缓解对于移植后能否实现长期无进展生存至关重要,因此一线化疗失败及难以耐受化疗的患者需要有效的解救治疗及移植前桥接方案。近年来,程序性细胞死亡受体1(PD-1)单抗在治疗复发难治HL中取得了巨大进展,但单药治疗暴露出了诸多不足。本文总结了近年来含PD-1单抗联合治疗的临床试验结果,并以分子免疫学和临床前研究为基础介绍了一些有潜力的联合治疗方案,包括PD-1单抗联合细胞毒性药物方案、PD-1单抗联合表观遗传药物方案、PD-1单抗联合细胞衔接蛋白方案、PD-1单抗联合其他免疫调节剂方案、PD-1单抗联合过继性细胞免疫疗法方案、PD-1单抗联合造血干细胞移植方案,从临床效果和作用机制等方面阐释了目前不同联合治疗方案的优劣,以期为临床诊疗提供参考。

引用本文: 姜文鑫, 刘鹏. 程序性细胞死亡受体1单抗联合治疗复发难治霍奇金淋巴瘤的研究进展 [J] . 中华医学杂志, 2024, 104(7) : 552-558. DOI: 10.3760/cma.j.cn112137-20230926-00575.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

霍奇金淋巴瘤(Hodgkin lymphoma,HL)的发病率占全部淋巴瘤的5%~10%,经典型霍奇金淋巴瘤(classical Hodgkin lymphoma,cHL)为最常见亚型,尽管标准一线化疗组合ABVD方案(多柔比星+博来霉素+长春碱+达卡巴嗪)对HL患者的治愈率较高,但我国仍有约20%患者一线治疗后进展或复发1。复发患者经过挽救化疗后进行自体造血干细胞移植(autologous stem cell transplantation,ASCT)可使无进展生存(progression-free survival,PFS)时间略有改善,但总体治愈率仅50%左右2,移植前治疗能否达到完全缓解(complete response,CR)对于移植后能否实现长期PFS至关重要。因此一线化疗失败及难以耐受化疗的患者需要有效的解救治疗及移植前桥接方案,基于程序性细胞死亡受体1(programmed death 1,PD-1)单抗的联合治疗方案是其中具有很大潜力的选择之一,现将PD-1单抗联合治疗复发难治HL的临床及临床前研究进行综述,为下一步研究提供参考。

一、PD-1和PD-1单抗

PD-1是隶属于CD28超家族的免疫共抑制受体,基本结构为跨膜糖蛋白,其胞内区的免疫受体酪氨酸抑制基序(immunoreceptor tyrosine-based inhibition motif,ITIM)和免疫受体酪氨酸转换基序(immunoreceptor tyrosine-based switch motif,ITSM)结合配体后可被肉瘤基因(sarcoma gene,SRC)家族酪氨酸激酶磷酸化,通过下游分子使磷脂酰肌醇-3激酶(phosphatidylinositol-3-kinase,PI3K)去磷酸化发挥效应3。PD-1表达于激活的淋巴细胞、自然杀伤(natural killer,NK)细胞、单核-巨噬细胞等免疫细胞表面,属于发挥免疫抑制作用的免疫检查点。目前发现的PD-1配体包括程序性死亡配体1(programmed death 1 ligand 1,PD-L1)和程序性死亡配体2(programmed death 1 ligand 2,PD-L2),高表达PD-L1的肿瘤细胞不仅侵袭性更强,还可诱导免疫抑制,抑制T细胞增殖,从而降低抗肿瘤免疫反应4,这种T细胞耗竭引发的免疫逃逸在恶性肿瘤的发生与发展中发挥了重要作用。PD-1及PD-L1单抗为目前主要开展临床试验和应用的免疫检查点抑制剂,其主要作用机制在于解除T细胞及NK细胞的免疫抑制5

二、PD-1单抗应用于HL的理论基础

HL是仅有的肿瘤细胞占少数,而背景细胞占多数的恶性肿瘤,免疫组化显示肿瘤细胞,即Reed-Sternberg(RS)细胞表达CD15和CD30,并表现出基因组不稳定性,高表达PD-L1和PD-L26,而RS细胞基因驱动的PD-L1表达和主要组织相容性复合体(major histocompatibility complex,MHC)Ⅱ类分子阳性是PD-1单抗治疗预后良好的潜在预测因子7,说明了PD-1与HL的密切关系。HL的肿瘤微环境(tumor micro-environment,TME)也与PD-1关系密切,肿瘤相关巨噬细胞(tumor-associated macrophages,TAM)可表达PD-L1和PD-L2,造成免疫抑制,组织中大量TAM与不良预后有关8;增加的PD-1阳性肿瘤浸润淋巴细胞(tumor infiltrating lymphocyte,TIL)也与不良预后相关9;此外,PD-1与TME中NK细胞的数量和功能降低亦相关5

三、联合治疗方案

尽管PD-1及PD-L1单抗单药治疗复发难治霍奇金淋巴瘤(relapsed or refractory Hodgkin lymphoma,RRHL)有一定效果,但CR率仅为10%~30%10, 11, 12, 13, 14, 15, 16, 17,中位PFS较短,荟萃分析显示,纳武利尤单抗(nivolumab)和帕博利珠单抗(pembrolizumab)的中位PFS分别为13.7、17.2个月18,且大多数单药治疗的RRHL患者最终进展,尤其是未达CR者19,因此很有必要探索加强疗效的联合方案。目前PD-1单抗联合治疗方案的主要设计思路包括:(1)PD-1单抗与促进肿瘤抗原释放的细胞毒性药物联合形成协同效应;(2)PD-1单抗联合表观遗传药物促进T细胞的浸润和免疫功能;(3)PD-1单抗联合细胞衔接蛋白增强NK细胞和巨噬细胞功能;(4)PD-1单抗联合免疫调节药物协同增强抗肿瘤免疫;(5)利用PD-1单抗增强细胞免疫治疗效果;(6)PD-1单抗作为移植前桥接或移植后巩固治疗。

1.PD-1单抗联合细胞毒性药物方案:细胞毒性药物可触发免疫原性肿瘤细胞死亡,释放的免疫原信号可被自然免疫系统识别,从而触发免疫反应,进而清除或控制残留肿瘤细胞。在1项评估PD-1单抗(帕博利珠单抗)+GVD化疗方案(吉西他滨+长春瑞滨+多柔比星脂质体)用于复发难治经典型霍奇金淋巴瘤(relapsed or refractory classical Hodgkin lymphoma,RRcHL)效果的Ⅱ期研究中,总体缓解率(overall response rate,ORR)和CR率分别达到100%和95%,不良反应多为1~2级,联合治疗后达到CR的患者接受高剂量化疗及ASCT作为巩固治疗,在中位随访13.5个月时均未复发20,表明帕博利珠单抗+GVD化疗方案高效且耐受性良好,是优良的移植前桥接方案。而PD-1单抗(纳武利尤单抗)+苯达莫司汀联合方案在纳武利尤单抗单药治疗失败的RRcHL患者中达到了57%的CR率和87%的ORR21,均高于既往研究中苯达莫司汀单药的疗效22,没有发生致命的不良反应。PD-1单抗+ICE化疗方案(异环磷酰胺+卡铂+依托泊苷)也正在广泛开展临床试验。PD-1单抗对化疗的重要意义还在于提高或恢复化疗的敏感性,有回顾性研究表明PD-1单抗治疗后再次化疗的患者中,有很大比例患者可获得缓解,其中甚至包括部分既往化疗无效而再次接受相同化疗方案的患者23。因此,即使PD-1单抗在部分患者中疗效不理想,仍可能使患者在后续化疗中受益。

作为抗体偶联药物(antibody drug conjugate,ADC),维布妥昔单抗(brentuximab vedotin,BV)通过连接子链接CD30抗体和微管破坏剂(monomethyl auristatin E,MMAE),可向CD30+RS细胞输送细胞毒性药物,直接造成靶向毒性,还可通过内质网诱导免疫原性细胞死亡,激活抗肿瘤免疫,单药在RRcHL患者的解救治疗中达到34%的CR率和75%的ORR24。基于PD-1单抗和BV单药尚可的疗效以及可能的协同机制,目前有研究探索了PD-1单抗(纳武利尤单抗)+ BV联合方案的效果,在62例RRcHL患者中达到了61%的CR率和82%的ORR,不良反应可控,31%患者出现≥3级不良反应,治疗相关严重不良事件(serious adverse event,SAE)发生率为10%,经对症治疗后可缓解25。因此BV+PD-1单抗联合方案可作为RRcHL的挽救疗法,并且可能取代化疗作为移植前的桥接治疗,这一点对于传统化疗耐受性差的老年患者尤为重要。

2.PD-1单抗联合表观遗传药物方案:广泛存在于各种肿瘤的表观遗传异常可影响cHL的TME26。属于表观遗传药物的组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor,HDACi)对T细胞趋化因子的表达有强大的激活作用,从而促进T细胞向肿瘤组织转移,与PD-1单抗协同增强T细胞功能27,接受过表观遗传药物治疗的RRcHL患者对免疫检查点抑制剂治疗的CR率更高28,临床研究结果亦显示PD-1单抗+HDACi(伏立诺他,vorinostat)联合方案对包括HL在内的淋巴瘤有不错的效果29,并且在Ⅰ期研究中,此组合在既往PD-1单抗耐药的患者中也获得了56%的ORR和11%的CR率,耐受性良好30,提示HDACi改善PD-1单抗耐药的潜力。

DNA异常甲基化也是表观遗传异常的常见形式,其促进成熟T细胞耗竭是PD-1单抗的重要耐药因素,在评估DNA甲基转移酶抑制剂(DNA methylation transferase inhibitor,DNMTi)地西他滨(decitabine)与PD-1单抗联合治疗RRcHL的临床研究中,既往未接受过PD-1单抗治疗的患者在PD-1单抗(卡瑞利珠单抗,camrelizumab)单药组获得了32%的CR率和90%的ORR,而地西他滨+卡瑞利珠单抗联合治疗组达到了71%的CR率和95%的ORR,对于经过3线以上治疗及ASCT后仍复发或进展的患者,联合治疗的CR率均高于卡瑞利珠单抗单药治疗;而既往PD-1单抗治疗失败的患者使用联合治疗仍可获得52%的ORR,包括28%的CR率31。对未接受过PD-1单抗治疗患者的后续随访显示,联合治疗组的PFS优于单药治疗组,中位PFS分别为35.0、15.5个月,联合治疗后循环中心记忆T细胞(central memory T-cells,Tcm)在CD8+或CD4+细胞中比例升高,联合治疗组的CD8+Tcm高于单药组,这种差异在联合治疗组达到CR的患者中尤为明显32,提示了联合治疗更持久的免疫记忆,而最常见的不良反应是临床意义相对有限的樱桃状血管瘤和自限性白细胞减少症,两组的免疫相关不良事件(immune-related adverse events,irAE)发生率相似。鉴于PD-1单抗+地西他滨联合方案在RRcHL取得的出色效果,进一步探索此方案的多项研究正在进行中。期待PD-1单抗与表观遗传药物的联合治疗方案为PD-1单抗耐药患者提供新的治疗选择。

3.PD-1单抗联合细胞衔接蛋白方案:如前文所述,NK细胞功能衰竭与HL的发生、发展密切相关。CD16A作为触发原始NK细胞活性的激活受体,可促进抗体依赖细胞介导的细胞毒作用,CD16A、CD30四价双特异性抗体AFM13可同时与自然免疫细胞的CD16A和RS细胞的CD30结合,作为桥梁招募和激活自然免疫细胞33。AFM13+PD-1单抗(帕博利珠单抗)联合治疗RRcHL患者达到了83%的ORR和37%的CR率,仅6.7%的患者出现≥3级不良反应,安全性与AFM13或PD-1单抗单药相似,且既往BV治疗不影响AFM13使用,但两药半衰期的巨大差异也使得联合给药方案实施起来较为复杂34

4.PD-1单抗联合其他免疫调节剂方案:除PD-1外,免疫细胞还存在多种涉及免疫抑制的共抑制分子,PD-1单抗理论上可与其他共抑制分子抑制剂联用,通过作用于不同靶点达到进一步增强抗肿瘤免疫的效果。细胞毒性T淋巴细胞相关蛋白4(cytotoxic T-lymphocyte-associated protein 4,CTLA-4)属于负调节免疫的共抑制分子35,与单药相比,双免疫检查点抑制剂组合(PD-1单抗+CTLA-4单抗)在部分实体瘤中获得了更好的疗效36,二者的作用机制具有协同效应:CTLA-4单抗促进T细胞活化和增殖而启动免疫,而PD-1单抗促进效应T细胞功能,但双免疫检查点抑制剂组合并没有对RRHL患者显示出更好的协同疗效,且不良反应更强,29%的患者出现≥3级治疗相关不良事件(treatment-related adverse events,TRAE),48%患者出现SAE37,是否有应用价值存疑。而BV+双免疫检查点抑制剂方案的临床研究结果显示,BV+纳武利尤单抗+CTLA-4抑制剂伊匹木单抗(ipilimumab)三药联合方案的CR率(73%)高于BV+伊匹木单抗(57%)、BV+纳武利尤单抗(61%)的双药联合方案,PFS更优(1年PFS率分别为80%、61%、70%),但不良反应发生率更高38,因此其更强的近期疗效和更强的毒性需要进一步研究验证是否具有远期生存优势。同属免疫共抑制分子的淋巴细胞活化基因3(lymphocyte activation gene-3,LAG-3)和T细胞免疫球蛋白黏蛋白3(T-cell immunoglobulin domain and mucin domain-3,TIM-3)在RS细胞和TME中均有表达39,同时阻断PD-1和LAG-3靶点可诱导肿瘤退化40,目前LAG-3抑制剂玛维泽利单抗(favezelimab)+PD-1单抗联合方案已进入临床试验。CD47通过受体信号调节蛋白α(signal regulatory protein α,SIRPα)向循环巨噬细胞传递信号,抑制其吞噬作用41,体外实验中抗CD47+PD-L1单抗联合治疗可诱导巨噬细胞吞噬和T细胞活化,显示出强大的抗肿瘤活性,并可诱导持久免疫记忆42。PI3K可调节多种细胞功能,其p110δ(PI3Kδ)亚基在B系细胞高度表达,对信号转导、增殖和分化有重要意义43,PI3Kδ选择抑制剂艾代拉利司(idelalisib)单药用于RRcHL的缓解率不甚理想44,尽管单药疗效有限,但良好的耐受性赋予了其与PD-1单抗联合治疗的潜力,现有多项PI3Kδ抑制剂+PD-1单抗联合治疗RRcHL的临床试验正在进行中。

免疫检查点的表达与TME中胆固醇的积累相关,如CD8+T细胞的免疫检查点水平与细胞总胆固醇含量呈正相关,高胆固醇血症亦可促使TME中CD8+T细胞耗竭45,提示了胆固醇代谢与PD-1的密切关系。小鼠模型中PCSK9基因(抑制低密度脂蛋白胆固醇受体到细胞表面的再循环,从而升高血低密度脂蛋白胆固醇水平)缺失可通过细胞毒性T细胞(cytotoxic T lymphocyte,CTL)依赖方式抑制癌细胞生长,抑制PCSK9可使肿瘤细胞表面MHC-Ⅰ类分子表达显著增加,促进CTL浸润,与PD-1单抗协同抑制肿瘤生长46。他汀类药物通过作用于羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶降低血胆固醇,同时可下调T细胞的PD-1、CTLA-4等共抑制受体的表达,还可通过抑制PD-L1表达减轻肿瘤细胞对T细胞的抑制47,在其他肿瘤中已观察到他汀类对免疫检查点抑制剂治疗的协同作用48。但调节胆固醇代谢药物与HL的确切关系尚不明确,其远期生存获益和是否可能诱导肿瘤转化为非PD-1依赖表型导致PD-1单抗耐药需进一步研究。

5.PD-1单抗联合过继性细胞免疫疗法方案:PD-1单抗激活细胞免疫的特点理论上可增强细胞免疫疗法的疗效,通过减少免疫细胞耗竭改善耐药。嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)治疗将T细胞抗原受体与肿瘤抗体进行嵌合,达到靶向杀伤肿瘤细胞的目的49,但CAR-T的PD-1表达上调可导致其抗肿瘤免疫反应降低。因此,CAR-T联合PD-1单抗可能克服PD-1所造成的免疫抑制,小鼠模型已证实PD-1单抗与CD19 CAR-T的协同作用50,而在小样本研究中,CD30 CAR-T(107/kg)+ PD-1单抗在5例HL患者中实现了80%的CR率和100%的ORR,有2例达到20个月以上的持续CR,不良反应可控,未发生严重细胞释放因子综合征(cytokine release syndrome,CRS),仅1例患者接受了糖皮质激素和托珠单抗治疗51。靶向肿瘤相关抗原特异性T细胞(tumor-associated antigen-specific T-cells,TAA-T)联合PD-1单抗治疗RRHL患者的小样本试验也取得了一定成果,安全性尚可,所有不良反应均可由对症处理缓解52

6.PD-1单抗与造血干细胞移植(hematopoietic stem cell transplantation,HSCT):ASCT前的疾病缓解情况对于移植后无病生存时间至关重要2,而PD-1单抗为2线化疗失败的患者提供了可能的桥接治疗,并可能使部分患者免于化疗。有回顾性研究结果提示纳武利尤单抗可作为ASCT前的桥接疗法53,且PD-1单抗在ASCT前接受挽救化疗后进展的高危患者中也取得了良好效果,PFS与PD-1单抗治疗后反应相关,而与多种挽救治疗无效无关54。Ⅱ期试验NCT03016871中,RRcHL患者接受纳武利尤单抗治疗最多6个周期后达到CR者进行ASCT,而未达CR者接受2个周期的NICE方案(纳武利尤单抗+异环磷酰胺+卡铂+依托泊苷)治疗,34例患者接受单独纳武利尤单抗治疗,9例患者接受纳武利尤单抗+NICE方案治疗。纳武利尤单抗治疗后的ORR为81%,CR率为71%。接受NICE方案的9例患者全部达到缓解,8例(89%)达到 CR。治疗结束时,33例患者可直接转入ASCT。所有患者的2年PFS率和总生存(overall survival,OS)率分别为72%和95%,直接桥接到ASCT患者的2年PFS率为94%。3例患者在纳武利尤单抗单药治疗期间因不良反应而停药,NICE方案治疗的9例患者没有出现不可接受的不良反应55。帕博利珠单抗作为ASCT后的巩固治疗在Ⅱ期试验中也产生了可观的效果,18个月PFS率为82%,30%的患者出现≥3级不良反应,无致命不良反应56,而纳武利尤单抗+BV联合方案作为ASCT后巩固治疗,其18个月PFS率甚至达到了94%,29%患者出现需要激素治疗的irAE,无治疗相关死亡57

尽管有移植物抗宿主病(graft versus host disease,GVHD)的风险,但PD-1单抗依然可作为异基因造血干细胞移植(allogeneic hematopoietic stem cell transplantation,allo-HSCT)后复发HL患者的选择,回顾性研究中的ORR为79%~95%,但GVHD的发生风险结论并不统一58, 59,因此仍需进一步大样本研究证实其安全性。PD-1单抗作为RRcHL患者allo-HSCT前的桥接治疗,增加了GVHD的发生率60,但有研究报道allo-HSCT前接受纳武利尤单抗桥接治疗的患者相比未接受者具有OS优势61,因此异基因移植前的PD-1单抗应用仍有很大的探索价值。

四、总结

尽管RRHL在既往研究中对PD-1单抗反应尚佳,但存在CR率低、易复发等局限,因此有必要探索具有更高缓解率、更大生存获益并兼顾安全性的联合治疗方案。PD-1单抗失败的原因主要与TME中的T细胞功能紊乱有关62,具体原因包括:(1)抗原呈递识别不足63;(2)TME中缺乏足够T细胞64;(3)免疫抑制分子上调65;(4)T细胞活化不足66;(5)对干扰素-γ(interferon-γ,IFN-γ)信号传导的敏感性降低等。因此联合各环节对应的靶向药物是增加PD-1单抗效果的可能途径。

对cHL患者的肿瘤细胞分析显示,分别有64%和41%的cHL患者缺失MHC-Ⅰ类和Ⅱ类分子,约30%患者同时缺乏两类分子67,提示了cHL异常的抗原呈递,由于PD-1单抗依靠自身抗肿瘤免疫发挥治疗效果,充分的肿瘤抗原暴露尤其重要,因此细胞毒性药物的联合应用有望增强PD-1单抗的抗肿瘤免疫。新型靶向细胞毒性药物BV与PD-1单抗联合方案的效果值得肯定,其出色的缓解率很适合用于RRcHL的挽救治疗,亦可取代不良反应较强的传统化疗作为后续HSCT的桥梁治疗,在移植后巩固治疗患者中也取得了出色的结果,未来有广阔的探索空间,同时也启发了PD-1单抗与其他ADC类药物联合治疗的可能。PD-1单抗与2线化疗联合在RRcHL患者中取得了不错的缓解率,且通常可耐受,并且由于其增强化疗敏感性的特点,未来可能成为化疗耐药者的关键增敏治疗。

T细胞从初始T细胞到效应T细胞的克隆扩增与不同的DNA甲基化背景相关68,组蛋白甲基化修饰也可参与PD-L1的表达调控69,从而抑制T细胞的抗肿瘤表型。阻断免疫检查点如PD-1后,DNA甲基化强制的不可逆转录抑制限制了CD8+T细胞对PD-1单抗的反应性及抗肿瘤免疫反应的持久性70。与PD-1单抗耐药与表观遗传异常的密切关系相对应的,表观遗传药物可通过增强T细胞趋化因子表达和IFN-γ反应71、影响T细胞表型等多种机制协同PD-1单抗,发挥了促进免疫反应及免疫记忆等关键作用,这一点在目前的临床研究中也得到了验证,为改善甚至逆转PD-1单抗耐药提供了新的思路。

此外,单一免疫检查点抑制剂有限的疗效自然推动了对多免疫检查点联合抑制方案的探索,尽管其理论上可增强疗效,并在部分实体瘤中取得了不错效果,但PD-1单抗+ CTLA-4单抗的组合在HL患者中疗效不够肯定,其他共抑制分子抑制剂和共刺激分子激动剂目前处于试验阶段。PD-1单抗的免疫激活作用使其对于其他种类的免疫治疗也有重要意义,如CAR-T治疗失败的原因可能与免疫抑制性TME有关,而免疫检查点可导致CAR-T耗竭72,PD-1单抗可能增强CAR-T治疗的效果已在包括HL在内的多种淋巴瘤中得到报道,甚至可能使一些过去效果不佳的免疫治疗重新进入研究视野,为今后免疫治疗的发展提供了更多可能。

引用本文:

姜文鑫, 刘鹏. 程序性细胞死亡受体1单抗联合治疗复发难治霍奇金淋巴瘤的研究进展[J]. 中华医学杂志, 2024, 104(7): 552-558. DOI: 10.3760/cma.j.cn112137-20230926-00575.

利益冲突
利益冲突

所有作者声明不存在利益冲突

参考文献
[1]
石远凯, 陶云霞, 何小慧, . 标准治疗模式下霍奇金淋巴瘤患者的生存和预后分析[J]. 中华医学杂志, 2022, (41):3295-3303. DOI: 10.3760/cma.j.cn112137-20220420-00864.
[2]
DeanRM, SweetenhamJW, JinT, et al. Risk factors and outcomes for relapse after autologous stem cell transplantation for Hodgkin lymphoma[J].Blood, 2007, 110(11):1903.DOI: 10.1182/blood.V110.11.1903.1903.
[3]
IsoyamaS, MoriS, SugiyamaD, et al. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal[J].J Immunother Cancer, 2021, 9(8):e002279.DOI: 10.1136/jitc-2020-002279.
[4]
KlineJ, GodfreyJ, AnsellSM. The immune landscape and response to immune checkpoint blockade therapy in lymphoma[J]. Blood, 2020, 135(8):523-533. DOI: 10.1182/blood.2019000847.
[5]
顾丽琴, 濮阳隆翔, 谢芳. PD-1/PD-L1参与NK细胞调控抗肿瘤免疫的作用机制[J]. 临床与实验病理学杂志, 2022, 38(4):452-455. DOI: 10.13315/j.cnki.cjcep.2022.04.013.
[6]
RoemerM, ReddRA, CaderFZ, et al. Major histocompatibility complex class Ⅱ and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma[J]. J Clin Oncol, 2018, 36(10):942-950. DOI: 10.1200/JCO.2017.77.3994.
[7]
XieM, HuangX, YeX, et al. Prognostic and clinicopathological significance of PD-1/PD-L1 expression in the tumor microenvironment and neoplastic cells for lymphoma[J]. Int Immunopharmacol, 2019, 77:105999. DOI: 10.1016/j.intimp.2019.105999.
[8]
WernerL, DreyerJH, HartmannD, et al. Tumor-associated macrophages in classical Hodgkin lymphoma: hormetic relationship to outcome[J]. Sci Rep, 2020, 10(1):9410. DOI: 10.1038/s41598-020-66010-z.
[9]
NagpalP, Descalzi-MontoyaDB, LodhiN. The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes[J]. Cancer Rep (Hoboken), 2021, 4(2):e1311. DOI: 10.1002/cnr2.1311.
[10]
AnsellSM, LesokhinAM, BorrelloI, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin′s lymphoma[J]. N Engl J Med, 2015, 372(4):311-319. DOI: 10.1056/NEJMoa1411087.
[11]
YounesA, SantoroA, ShippM, et al. Nivolumab for classical Hodgkin′s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial[J]. Lancet Oncol, 2016, 17(9):1283-1294. DOI: 10.1016/S1470-2045(16)30167-X.
[12]
ChenR, ZinzaniPL, FanaleMA, et al. Phase Ⅱ study of the efficacy and safety of pembrolizumab for relapsed/refractory classic hodgkin lymphoma[J]. J Clin Oncol, 2017, 35(19):2125-2132.DOI: 10.1200/JCO.2016.72.1316.
[13]
KuruvillaJ, RamchandrenR, SantoroA, et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): an interim analysis of a multicentre, randomised, open-label, phase 3 study[J]. Lancet Oncol, 2021, 22(4):512-524. DOI: 10.1016/S1470-2045(21)00005-X.
[14]
ShiY, SuH, SongY, et al. Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): a multicentre, single-arm, phase 2 trial[J]. Lancet Haematol, 2019, 6(1):e12-e19. DOI: 10.1016/S2352-3026(18)30192-3.
[15]
SongY, GaoQ, ZhangH, et al. Treatment of relapsed or refractory classical Hodgkin lymphoma with the anti-PD-1, tislelizumab: results of a phase 2, single-arm, multicenter study[J]. Leukemia, 2020, 34(2):533-542. DOI: 10.1038/s41375-019-0545-2.
[16]
HerreraAF, BurtonC, RadfordJ, et al. Avelumab in relapsed/refractory classical Hodgkin lymphoma: phase 1b results from the JAVELIN Hodgkins trial[J]. Blood Adv, 2021, 5(17):3387-3396. DOI: 10.1182/bloodadvances.2021004511.
[17]
SongY, WuJ, ChenX, et al. A Single-arm, multicenter, phase Ⅱ study of camrelizumab in relapsed or refractory classical hodgkin lymphoma[J].Clin Cancer Res, 2019, 25(24):7363-7369.DOI: 10.1016/S1470-2045(21)00005-X.
[18]
SunC, ChenH, WangY, et al. Safety and efficacy of PD-1 and PD-L1 inhibitors in relapsed and refractory Hodgkin′s lymphoma: a systematic review and meta-analysis of 20 prospective studies[J]. Hematology, 2023, 28(1):2181749. DOI: 10.1080/16078454.2023.2181749.
[19]
MansonG, MearJB, HerbauxC, et al. Long-term efficacy of anti-PD1 therapy in Hodgkin lymphoma with and without allogenic stem cell transplantation[J]. Eur J Cancer, 2019, 115:47-56. DOI: 10.1016/j.ejca.2019.04.006.
[20]
MoskowitzAJ, ShahG, SchöderH, et al. Phase Ⅱ trial of pembrolizumab plus gemcitabine, vinorelbine, and liposomal doxorubicin as second-Line therapy for relapsed or refractory classical Hodgkin lymphoma[J].J Clin Oncol, 2021, 39(28):3109-3117.DOI: 10.1200/JCO.21.01056.
[21]
LepikKV, MikhailovaNB, KondakovaEV, et al. A study of safety and efficacy of nivolumab and bendamustine (NB) in patients with relapsed/refractory Hodgkin lymphoma after nivolumab monotherapy failure[J]. Hemasphere, 2020, 4(3):e401. DOI: 10.1097/HS9.0000000000000401.
[22]
MoskowitzAJ, HamlinPA, PeralesMA, et al. Phase Ⅱ study of bendamustine in relapsed and refractory Hodgkin lymphoma[J]. J Clin Oncol, 2013, 31(4):456-460. DOI: 10.1200/JCO.2012.45.3308.
[23]
RossiC, GilhodesJ, MaerevoetM, et al. Efficacy of chemotherapy or chemo-anti-PD-1 combination after failed anti-PD-1 therapy for relapsed and refractory Hodgkin lymphoma:a series from Lysa centers[J].Am J Hematol, 2018, 93(8):1042-1049.DOI: 10.1002/ajh.25154.
[24]
YounesA, GopalAK, SmithSE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin′s lymphoma[J]. J Clin Oncol, 2012, 30(18):2183-2189. DOI: 10.1200/JCO.2011.38.0410.
[25]
HerreraAF, MoskowitzAJ, BartlettNL, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma[J]. Blood, 2018, 131(11):1183-1194. DOI: 10.1182/blood-2017-10-811224.
[26]
LiuY, HuangR, LiuL, et al. Epigenetic abnormalities of classical Hodgkin lymphoma and its effect on immune escape[J]. Cell Biochem Funct, 2020, 38(3):242-248. DOI: 10.1002/cbf.3463.
[27]
ZhengH, ZhaoW, YanC, et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma[J]. Clin Cancer Res, 2016, 22(16):4119-4132. DOI: 10.1158/1078-0432.CCR-15-2584.
[28]
FalchiL, SawasA, DengC, et al. High rate of complete responses to immune checkpoint inhibitors in patients with relapsed or refractory Hodgkin lymphoma previously exposed to epigenetic therapy[J]. J Hematol Oncol, 2016, 9(1):132. DOI: 10.1186/s13045-016-0363-1.
[29]
HerreraAF, ChenL, PopplewellLL. Preliminary results from a phase Ⅰ trial of pembrolizumab plus vorinostat in patients with relapsed or refractory diffuse large B-cell lymphoma, follicular lymphoma, and Hodgkin lymphoma[J].Blood, 2019, 134(Suppl1):759.DOI: 10.1182/blood-2019-123163.
[30]
MeiM, ChenL, GodfreyJ, et al. Pembrolizumab plus vorinostat induces responses in patients with Hodgkin lymphoma refractory to prior PD-1 blockade[J]. Blood, 2023, 142(16):1359-1370. DOI: 10.1182/blood.2023020485.
[31]
NieJ, WangC, LiuY, et al. Addition of low-dose decitabine to anti-PD-1 antibody camrelizumab in relapsed/refractory classical Hodgkin lymphoma[J]. 2019, 37(17):1479-1489.
[32]
LiuY, WangC, LiX, et al. Improved clinical outcome in a randomized phase Ⅱ study of anti-PD-1 camrelizumab plus decitabine in relapsed/refractory Hodgkin lymphoma[J].J Immunother Cancer, 2021, 9(4):e002347.DOI: 10.1136/jitc-2021-002347.
[33]
KerbauyLN, MarinND, KaplanM, et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood-derived NK cells facilitates CAR-like responses against CD30(+) malignancies[J]. Clin Cancer Res, 2021, 27(13):3744-3756. DOI: 10.1158/1078-0432.CCR-21-0164.
[34]
BartlettNL, HerreraAF, Domingo-DomenechE, et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma[J]. Blood, 2020, 136(21):2401-2409. DOI: 10.1182/blood.2019004701.
[35]
李涛, 张侃, 杨文雨, . 免疫检查点抑制剂CTLA-4在实体肿瘤治疗中的临床应用[J]. 协和医学杂志, 2023, 14(3):652-659. DOI: 10.12290/xhyxzz.2022-0617.
[36]
WolchokJD, Chiarion-SileniV, GonzalezR, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2017, 377(14):1345-1356. DOI: 10.1056/NEJMoa1709684.
[37]
AnsellS, GutierrezME, ShippMA, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039)[J].Blood, 2016, 128(22):183.DOI: 10.1007/s11912-020-0866-3.
[38]
DiefenbachCS, HongF, AmbinderRF, et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: phase 1 results of an open-label, multicentre, phase 1/2 trial[J]. Lancet Haematol, 2020, 7(9):e660-e670. DOI: 10.1016/S2352-3026(20)30221-0.
[39]
El HalabiL, AdamJ, GravelleP, et al. Expression of the immune checkpoint regulators LAG-3 and TIM-3 in classical Hodgkin lymphoma[J]. Clin Lymphoma Myeloma Leuk, 2021, 21(4):257-266.e3. DOI: 10.1016/j.clml.2020.11.009.
[40]
AhmedH, MahmudAR, Faijanur-Rob-SiddiqueeM, et al. Role of T cells in cancer immunotherapy: opportunities and challenges[J].Cancer Pathogenesis and Therapy, 2023, 1(2):116-126.
[41]
覃利平, 肖玲, 曾若兰, . CD47在血液系统恶性肿瘤免疫逃逸中的作用与进展[J].肿瘤药学, 2023, 13(5):550-558.
[42]
LiuB, GuoH, XuJ, et al. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses[J]. MAbs, 2018, 10(2):315-324. DOI: 10.1080/19420862.2017.1409319.
[43]
CooneyJD, LinAP, JiangD, et al. Synergistic targeting of the regulatory and catalytic subunits of PI3Kδ in mature B-cell malignancies[J]. Clin Cancer Res, 2018, 24(5):1103-1113.DOI: 10.1158/1078-0432.CCR-17-2218.
[44]
GopalAK, FanaleMA, MoskowitzCH, et al. Phase Ⅱ study of idelalisib, a selective inhibitor of PI3Kδ, for relapsed/refractory classical Hodgkin lymphoma[J].Ann Oncol, 2017, 28(5):1057-1063.DOI: 10.1093/annonc/mdx028.
[45]
BersanelliM, CortelliniA, ButiS. The interplay between cholesterol (and other metabolic conditions) and immune-checkpoint immunotherapy: shifting the concept from the"inflamed tumor"to the"inflamed patient"[J].Hum Vaccin Immunother, 2021, 17(7):1930-1934.DOI: 10.1080/21645515.2020.1852872.
[46]
LiuX, BaoX, HuM, et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer[J]. Nature, 2020, 588(7839):693-698.DOI: 10.1080/21645515.2020.1852872.
[47]
NiW, MoH, LiuY, et al. Targeting cholesterol biosynthesis promotes anti-tumor immunity by inhibiting long noncoding RNA SNHG29-mediated YAP activation[J].Mol Ther, 2021, 29(10):2995-3010.DOI: 10.1016/j.ymthe.2021.05.012.
[48]
KansalV, BurnhamAJ, KinneyBLC, et al. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models[J].J Immunother Cancer, 2023, 11(1):e005940. DOI: 10.1136/jitc-2022-005940.
[49]
伍学强. 嵌合抗原受体T细胞免疫疗法追溯与展望[J]. 中国现代医药杂志, 2023, 25(8):1-8. DOI: 10.3969/j.issn.1672-9463.2023.08.001.
[50]
ZhangR, DengQ, JiangYY, et al. Effect and changes in PD-1 expression of CD19 CAR-T cells from T cells highly expressing PD-1 combined with reduced-dose PD-1 inhibitor[J]. Oncol Rep, 2019, 41(6):3455-3463. DOI: 10.3892/or.2019.7096.
[51]
SangW, WangX, GengH, et al. Anti-PD-1 therapy enhances the efficacy of CD30-directed chimeric antigen receptor T cell therapy in patients with relapsed/refractory CD30+lymphoma[J]. Front Immunol, 2022, 13:858021. DOI: 10.3389/fimmu.2022.858021.
[52]
DaveH, TerpilowskiM, MaiM, et al. Tumor-associated antigen-specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma[J]. Blood Adv, 2022, 6(2):473-485. DOI: 10.1182/bloodadvances.2021005343.
[53]
PatelJ, GargA, PatelK, et al. Experience of nivolumab prior to autologous stem cell transplant for relapsed refractory Hodgkin lymphoma[J]. Indian J Hematol Blood Transfus, 2022, 38(3):585-590. DOI: 10.1007/s12288-021-01490-1.
[54]
MerrymanRW, ReddRA, NishihoriT, et al. Autologous stem cell transplantation after anti-PD-1 therapy for multiply relapsed or refractory Hodgkin lymphoma[J]. Blood Adv, 2021, 5(6):1648-1659. DOI: 10.1182/bloodadvances.2020003556.
[55]
MeiMG, LeeHJ, PalmerJM, et al. Response-adapted anti-PD-1-based salvage therapy for Hodgkin lymphoma with nivolumab alone or in combination with ICE[J]. Blood, 2022, 139(25):3605-3616. DOI: 10.1182/blood.2022015423.
[56]
ArmandP, ChenYB, ReddRA, et al. PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation[J]. Blood, 2019, 134(1):22-29. DOI: 10.1182/blood.2019000215.
[57]
HerreraAF, ChenL, NietoY, et al. Brentuximab vedotin plus nivolumab after autologous haematopoietic stem-cell transplantation for adult patients with high-risk classic Hodgkin lymphoma: a multicentre, phase 2 trial[J]. Lancet Haematol, 2023, 10(1):e14-e23. DOI: 10.1016/S2352-3026(22)00318-0.
[58]
HerbauxC, GauthierJ, BriceP, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma[J]. Blood, 2017, 129(18):2471-2478. DOI: 10.1182/blood-2016-11-749556.
[59]
HaverkosBM, AbbottD, HamadaniM, et al. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD[J]. Blood, 2017, 130(2):221-228. DOI: 10.1182/blood-2017-01-761346.
[60]
MerrymanRW, KimHT, ZinzaniPL, et al. Safety and efficacy of allogeneic hematopoietic stem cell transplant after PD-1 blockade in relapsed/refractory lymphoma[J]. Blood, 2017, 129(10):1380-1388. DOI: 10.1182/blood-2016-09-738385.
[61]
İskenderD, ÇakarMK, DalMS, et al. Nivolumab as a bridge to allogeneic hematopoietic stem cell transplantation is associated with improved survival[J]. Eur Rev Med Pharmacol Sci, 2022, 26(3):957-965. DOI: 10.26355/eurrev_202202_28005.
[62]
ParkYJ, KuenDS, ChungY. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance[J]. Exp Mol Med, 2018, 50(8):1-13. DOI: 10.1038/s12276-018-0130-1.
[63]
McGranahanN, FurnessAJ, RosenthalR, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280):1463-1469. DOI: 10.1126/science.aaf1490.
[64]
HarlinH, MengY, PetersonAC, et al. Chemokine expression in melanoma metastases associated with CD8+T-cell recruitment[J]. Cancer Res, 2009, 69(7):3077-3085. DOI: 10.1158/0008-5472.CAN-08-2281.
[65]
DongZY, WuSP, LiaoRQ, et al. Potential biomarker for checkpoint blockade immunotherapy and treatment strategy[J]. Tumour Biol, 2016, 37(4):4251-4261. DOI: 10.1007/s13277-016-4812-9.
[66]
WuW, WangW, WangY, et al. IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-κB/S6K signalings[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47(8):597-603. DOI: 10.1093/abbs/gmv058.
[67]
NijlandM, VeenstraRN, VisserL, et al. HLA dependent immune escape mechanisms in B-cell lymphomas: implications for immune checkpoint inhibitor therapy?[J]. Oncoimmunology, 2017, 6(4):e1295202. DOI: 10.1080/2162402X.2017.1295202.
[68]
ScharerCD, BarwickBG, YoungbloodBA, et al. Global DNA methylation remodeling accompanies CD8 T cell effector function[J]. J Immunol, 2013, 191(6):3419-3429. DOI: 10.4049/jimmunol.1301395.
[69]
陈俊豪, 张媛玲, 黄锐, . 组蛋白甲基化修饰对程序性细胞死亡配体1表达调控的研究进展[J].中华医学杂志, 2022, 102(34):2721-2725.DOI: 10.3760/cma.j.cn112137-20220210-00282.
[70]
GhoneimHE, FanY, MoustakiA, et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation[J].Cell, 2017, 170(1):142-157.DOI: 10.1016/j.cell.2017.06.007.
[71]
温霆宇, 刘鹏. 人源化PD-1单抗联合组蛋白去乙酰化酶抑制剂罗米地辛治疗T细胞淋巴瘤的临床前研究[J].癌症, 2021, 40(3):127-136.
[72]
KasakovskiD, XuL, LiY, et al. T cell senescence and CAR-T cell exhaustion in hematological malignancies[J].J Hematol Oncol, 2018, 11(1):91.DOI: 10.1186/s13045-018-0629-x.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词