继续教育园地
成人身体活动与心血管疾病的关系
中华心血管病杂志, 2021,49(7) : 739-743. DOI: 10.3760/cma.j.cn112148-20210121-00072
摘要

身体活动不足是全球死亡主要危险因素之一,与心血管疾病的关系近年来引起社会各界广泛关注。该文论述了身体活动总量、强度、类型及其组合和规律性与心血管疾病危险因素、发生风险及死亡的关系,并对该领域的研究方向进行了展望。

引用本文: 张媞, 赵文华. 成人身体活动与心血管疾病的关系 [J] . 中华心血管病杂志, 2021, 49(7) : 739-743. DOI: 10.3760/cma.j.cn112148-20210121-00072.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。
编后

经全国继续医学教育委员会批准,本刊开设继续教育专栏,从2021年第1期开始共刊发10篇继续教育文章,文后附5道单选题,读者阅读后可扫描标签二维码答题,每篇可免费获得Ⅱ类继续教育学分0.5分,全年最多可获5分。

身体活动(physical activity)是由骨骼肌收缩引起能量消耗的身体移动,包括职业性身体活动、业余时间身体活动、家务性身体活动和交通性身体活动4个范畴。目前认为身体活动对健康有益,评价身体活动的健康效益主要考量其的4个基本要素,即频率、强度、活动类型和时长。静态行为(sedentary behavior)1是所有在清醒状态下的坐、斜靠、躺等能量消耗≤1.5梅脱(MET)的任何行为。身体活动包含所有强度类型,从静态行为、静态活动到低、中、高强度2。世界卫生组织(World Health Organization,WHO)数据显示3,随着人们生活方式的改变,身体活动不足发生率逐年升高,每4人中就有1人处于身体活动不足的状态,身体活动不足是全球死亡的主要危险因素之一,对心血管疾病的发病和死亡有重要影响。我国2017年疾病负担数据显示,心血管疾病死亡顺位近30年持续攀升,心血管疾病死亡率明显高于其他疾病4。研究表明,身体活动有助于降低心血管疾病死亡率,预防心血管疾病的发生发展,降低肥胖、糖尿病等心血管疾病危险因素的发生风险,促进心血管健康5, 6, 7, 8。身体活动对心血管疾病发生发展的影响与其暴露情况有关,近年来随着主观和客观评价方法的改进,身体活动暴露的测量更加准确,其与心血管疾病关系的研究使我们可以更好地认识身体活动对心血管疾病的效应。

笔者检索了2020年7月为止收录于PubMed、CINAHL、Cochrane和万方数据库中身体活动活动量、强度、类型、频率和时长与心血管疾病风险、死亡、复发相关的国内外综述和原始研究,对成人身体活动与心血管疾病关系进行了回顾与展望。

一、身体活动总量与心血管疾病

活动量用单位时间的MET计量,反映某一特定时间内(如每天、每周)身体活动剂量(dose)的累积量,较广泛地应用于身体活动对心血管疾病影响的定量研究中。现有证据表明身体活动对心血管代谢健康的影响与身体活动总量(volume)的关联更紧密,而非单次时长。动则有益,目前无相关证据表明时长不足10 min的身体活动对心血管健康无益9, 10, 11。早期关于身体活动的长期随访研究和干预试验多将身体活动分为活动量高组、活动量组,以不活动或低活动组作为对照,研究结果表明动则对心血管有益12, 13, 14。我国慢性病前瞻研究队列对487 334名成人追踪7年,结果显示身体活动总量最高组较最低组心血管事件发生少23%15。近年来随着身体活动测量手段的不断发展其的测量更为准确,剂量反应研究逐渐增多。Kyu等16对174项原始文献进行了综述,绘制出了每周身体活动总量与心血管疾病发生风险的连续风险曲线,结果显示身体活动总量与缺血性心脏病及缺血性卒中存在剂量-反应关系,随着身体活动总量的增加疾病发生风险逐渐降低,且相对身体活动量<600 MET·min·W-1者,身体活动量少量增加(600~3 999 MET·min·W-1)缺血性心脏病及缺血性卒中发病风险即显著降低,且随着身体活动量增加,发病风险持续降低,但曲线趋于平缓。身体活动较少或不活动者增加身体活动有助于预防心血管疾病及事件,身体活动达到WHO全球身体活动指南推荐的活动量,即可使心血管死亡风险降低70%~90%,对心血管疾病发生的保护效应类似17。因此,强有力的证据表明增加身体活动总量可降低心血管疾病的发病率和死亡率,身体活动总量增加与冠心病、卒中、心力衰竭等事件的减少存在显著的剂量-反应关系,不区分活动频率、强度、时间和类型,且这种保护性关联十分稳定18, 19, 20, 21, 22, 23, 24, 25。尽管目前关于身体活动量增加到何种程度,其对心血管健康的保护效应不再增加甚至有潜在危害仍缺乏证据,但已有研究显示极大量身体活动可增加心血管事件发生率,提示应适度量力进行身体活动26

二、身体活动强度与心血管疾病

身体活动强度分为绝对强度(absolute intensity)和相对强度(relative intensity)。绝对强度是完成任何身体活动所需要的能量消耗水平,可以用MET、卡路里(cal)、焦耳(J)或耗氧量来测量。MET是最常使用的一种强度单位,相当于人坐着休息时的能量消耗水平,对于大多数人,相当于每千克体重每分钟摄入3.5 ml氧。对于老年人、某些身体障碍者或不经常运动的人,自身有氧能力较低,感到活动相对更难完成,能量消耗的绝对水平不能与个人自觉用力程度相匹配,需要用相对强度来评估。相对强度作为个人进行任何特定身体活动的难易程度,可通过生理参数如最大摄氧量(VO2max)或最大心率百分比描述,非临床应用也可使用唱歌-说话测试主观测评。关注身体活动的健康效应研究多采用绝对强度,即评估完成身体活动所需要的能量消耗水平。不同强度的身体活动对心血管疾病的发生和死亡风险的作用不同,既往较充足的证据表明中-高强度身体活动可降低心血管疾病发生和死亡风险27。WHO 2020年发布的《全球身体活动指南》及美国、加拿大等多个国家的身体活动指南推荐每周保持150 min中等强度身体活动或75 min高强度身体活动或二者的组合2428, 29。中-高强度有氧身体活动和动态抗阻力训练(肌肉长度改变引起物体移动的肌肉收缩锻炼)可改善心血管疾病危险因素,如肥胖和超重、高血压,且存在剂量-反应效应,可降低心血管疾病发生和死亡风险30, 31, 32, 33。近年来,低强度身体活动与心血管疾病的关系研究逐渐增多。Hupin等34对1 011名65岁及以上退休老人随访15年,发现退休前活跃工作状态者心脑血管事件风险低于静态工作状态者,此种差异在从事低强度身体活动工作者同样存在。Batacan等35综述了2015年以前的33个低强度身体活动干预试验,发现低强度身体活动可改善身体活动不足的慢性非传染性疾病人群的血压。多项研究报道低强度身体活动与心脏代谢健康和心血管死亡风险降低有关,同时提示达到一定的身体活动量对心血管健康非常重要36, 37。张兴等38对11 849名我国自然人群随访5.9年,发现校正人口学特征因素后,每小时MET水平与缺血性心血管疾病患病率呈负相关,而纳入校正因素收缩压、体重指数(BMI)、总胆固醇、高密度脂蛋白胆固醇、吸烟、饮酒等后,保护作用减弱或消失,提示其可能是通过改善心血管疾病相关危险因素发挥作用。

三、身体活动类型及其组合与心血管疾病

部分身体活动研究聚焦某种特定活动类型或多种类型的组合与心血管疾病发生、发展及预后的关系,常见的有生理效应的活动主要包括有氧身体活动、无氧身体活动、肌肉力量活动、骨骼强化活动、平衡柔韧训练等。有氧身体活动与心肺功能关联紧密,有氧运动是有计划性、架构性、重复性与目的性的有氧身体活动39。随着《有氧运动》一书在专业领域和大众的普及,“aerobics(有氧运动)”被认可为维持或改善心肺功能或有氧代谢能力的身体活动总称40。其中,步行(或健走)因可通过步数或距离进行计量,更易于定量研究其与心血管疾病的关系,成为研究领域关注较高的有氧身体活动。Hall等41汇总了17项前瞻性研究,3万余成人的数据表明,与基线步数相比,每增加1 000步心血管疾病风险降低5%~21%,且不受体重、性别、年龄、健康状况的影响。Cavero-Redondo等7综述了既往每日步数与动脉硬化关系的研究,结果表明每日步数与脉搏波传导速度(PWV)这一心血管疾病亚临床危险因素呈剂量-反应关系。步数与心血管疾病的研究提示了低强度身体活动的益处。此外,多种活动类型的组合亦是关注热点。有关高强度间歇训练(high-intensity interval training,HIIT)的研究关注较高,其是短时间大强度无氧运动合并短时间低强度有氧运动恢复期交替完成的组合型间歇训练,目标强度为达到最大摄氧量的85%~95%的峰值心率,其通过改善成人胰岛素敏感性、血压和体成分,对心血管疾病的主要危险因素有干预效应,且此种效应在心血管疾病患者中更为明显,对于肥胖及超重人群HIIT改善效果更佳42, 43, 44。Ito45对HIIT的作用机制、组织实施规划、安全性等做了系统性综述,发现合理规划锻炼的HIIT是有效的短期心血管疾病一、二级预防的方法。在不同心血管疾病与健康状况、不同人口学特征的人群中,均观察到HIIT对心血管的保护作用,但现有证据尚无法确定此效应是否在不同人群间存在差异46, 47。HIIT可能提高心力衰竭患者的生存率,且效果与持续身体活动相当47, 48。Choi等49的试验结果提示,经过平均2个月余的锻炼干预,对于心肌梗死患者心功能、心理和活动状况HIIT的干预效果优于中等强度持续身体活动。此外,有研究显示多种身体活动类型组合的太极、瑜伽、八段锦、舞蹈等“身心”活动可降低心血管疾病的发生和死亡风险,且具有降压等作用50, 51, 52

四、身体活动的规律性与心血管疾病

由于每日或每周总时间固定,具有“定和性质”,仅分析身体活动时间数据对结局的影响不考虑其在总时间的比例及分布情况易得出错误结论,故通过各身体活动规律性(一定时间的频率、强度、时长及分布)综合探讨身体活动的效应逐渐成为身体活动与心血管疾病研究的新趋势53。Šimaitytė等54对40名受试者(其中20例为心血管疾病患者)客观监测的身体活动指标进行模式归类,结果发现与对照组比较心血管疾病患者每周身体活动更集中、静态行为比例较高。Xiao等55将每周锻炼超3次归为规律身体活动,对2万余中国农村人口的调查结果显示,与不活跃和身体活动不足人群比较,“周末勇士”和规律身体活动的人群的腰围、空腹血糖、收缩压、甘油三酯等心血管疾病危险因素水平较低,且规律身体活动人群的水平更低。每周规律进行身体活动可能通过调节红细胞聚集性降低心血管疾病高危者的卒中风险56,而对于卒中患者,打断静态行为状态,进行规律的每日身体活动有助于改善预后57

总之,现有证据支持身体活动有助于降低成人心血管疾病发生和死亡风险、改善预后,此种保护效应在不同身体活动强度和类型中均可观察到。身体活动无明确的最小有效剂量,进行即有效,逐步增加中或高强度身体活动或二者的组合达到《全球身体活动指南》的推荐标准,对一般人群、高危人群和患者的心血管健康均有益。心血管疾病患者身体活动可能受到疾病影响而减少58,个性化的指导以及适度量力地进行身体活动对心血管疾病高危人群和患者十分必要。规律的身体活动或可通过血液流变学作用而有利于心血管健康,但如何合理的组织身体活动的频率、强度和种类等以达到更好的心血管保护作用尚缺乏有力证据,尤其是中国人群的相关证据不足,需进一步深入探讨。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

思考题(单选)

1.以下哪项不属于身体活动的基本要素( )

A.频率

B.耗氧量

C.强度

D.活动类型

2.身体活动根据强度可以分为( )

A.一级、二级、三级、四级

B.小强度、中强度、大强度

C.静态行为、低强度、中等强度、高强度

D.休闲、普通、有强度、高强度

3.以下人群测量身体活动强度时优先推荐使用相对强度,除了( )

A.老年人

B.身体障碍者

C.几乎不运动的人

D.有规律运动习惯的健康成年人

4.静态行为或静态生活方式对健康的危害不包括( )

A.遗传性疾病

B.心血管疾病

C.骨骼和关节疾病

D.代谢性疾病

5.世界卫生组织《关于身体活动和久坐行为指南》中关于中、高强度身体活动的推荐,以下内容不正确的是( )

A.一般成人每周至少进行150~300 min中等强度有氧身体活动或75~150 min高强度有氧身体活动,或等量的二者组合

B.一般成人每周进行300 min以上中等强度身体活动或150 min以上高强度身体活动可以获得更多健康效益

C.每次进行身体活动需达到10 min以上

D.孕产妇每周至少进行150 min中等强度有氧身体活动

2021年6期“继续教育园地”栏目思考题答案:1C、2C、3D、4D、5A

参考文献
1
TremblayMS, AubertS, BarnesJD, et al. Sedentary behavior research network (SBRN)-terminology consensus project process and outcome[J]. Int J Behav Nutr Phys Act, 2017, 14(1):75. DOI: 10.1186/s12966-017-0525-8.
2
CaspersenCJ, PowellKE, ChristensonGM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research[J]. Public Health Rep, 1985, 100(2):126-131.
3
WHO. Physical activity[EB/OL]. (2018-02-23)[2018-02-23]. https://www.who.int/news-room/fact-sheets/detail/physical-activity.
4
ZhouM, WangH, ZengX, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204):1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
5
SadaranganiKP, HamerM, MindellJS, et al. Physical activity and risk of all-cause and cardiovascular disease mortality in diabetic adults from Great Britain: pooled analysis of 10 population-based cohorts[J]. Diabetes Care, 2014, 37(4):1016-1023. DOI: 10.2337/dc13-1816.
6
LearSA, HuW, RangarajanS, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study[J]. Lancet, 2017, 390(10113):2643-2654. DOI: 10.1016/S0140-6736(17)31634-3.
7
Cavero-RedondoI, Tudor-LockeC, Álvarez-BuenoC, et al. Steps per day and arterial stiffness[J]. Hypertension, 2019, 73(2):350-363. DOI: 10.1161/HYPERTENSIONAHA.118.11987.
8
ElhakeemA, HannamK, DeereKC, et al. Physical activity producing low, but not medium or higher, vertical impacts is inversely related to BMI in older adults: findings from a multicohort study[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(5):643-651. DOI: 10.1093/gerona/glx176.
9
GlazerNL, LyassA, EsligerDW, et al. Sustained and shorter bouts of physical activity are related to cardiovascular health[J]. Med Sci Sports Exerc, 2013, 45(1):109-115. DOI: 10.1249/MSS.0b013e31826beae5.
10
LoprinziPD, CardinalBJ. Association between biologic outcomes and objectively measured physical activity accumulated in ≥ 10-minute bouts and<10-minute bouts[J]. Am J Health Promot, 2013, 27(3):143-151. DOI: 10.4278/ajhp.110916-QUAN-348.
11
Wolff-HughesDL, FitzhughEC, BassettDR, et al. Total activity counts and bouted minutes of moderate-to-vigorous physical activity: relationships with cardiometabolic biomarkers using 2003-2006 NHANES[J]. J Phys Act Health, 2015, 12(5):694-700. DOI: 10.1123/jpah.2013-0463.
12
LeonAS, ConnettJ, Jacobs JrDR, et al. Leisure-time physical activity levels and risk of coronary heart disease and death. The Multiple Risk Factor Intervention Trial [J]. JAMA, 1987, 258(17): 2388-2395. DOI:10.1001/jama.1987.03400170074026.
13
MorrisJN, ClaytonDG, EverittMG, et al. Exercise in leisure time: coronary attack and death rates[J]. Br Heart J, 1990, 63(6):325-334. DOI: 10.1136/hrt.63.6.325.
14
张文, 王剑. 绝经后女性增加身体活动量与运动训练对心血管疾病的影响[J].中西医结合心脑血管病杂志, 2018, 16(20):3079-3080. DOI: 10.12102/j.issn.1672-1349.2018.20.051.
15
BennettDA, DuH, ClarkeR, et al. Association of physical activity with risk of major cardiovascular diseases in Chinese men and women[J]. JAMA Cardiol, 2017, 2(12):1349-1358. DOI: 10.1001/jamacardio.2017.4069.
16
KyuHH, BachmanVF, AlexanderLT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013[J]. BMJ, 2016, 354:i3857. DOI: 10.1136/bmj.i3857.
17
MooreSC, PatelAV, MatthewsCE, et al. Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis[J]. PLoS Med, 2012, 9(11):e1001335. DOI: 10.1371/journal.pmed.1001335.
18
DiepL, KwagyanJ, Kurantsin-MillsJ, et al. Association of physical activity level and stroke outcomes in men and women: a meta-analysis[J]. J Womens Health (Larchmt), 2010, 19(10):1815-1822. DOI: 10.1089/jwh.2009.1708.
19
Echouffo-TcheuguiJB, ButlerJ, YancyCW, et al. Association of physical activity or fitness with incident heart failure: a systematic review and meta-analysis[J]. Circ Heart Fail, 2015, 8(5):853-861. DOI: 10.1161/CIRCHEARTFAILURE.115.002070.
20
PandeyA, GargS, KhungerM, et al. Dose-response relationship between physical activity and risk of heart failure: a meta-analysis[J]. Circulation, 2015, 132(19):1786-1794. DOI: 10.1161/CIRCULATIONAHA.115.015853.
21
SattelmairJ, PertmanJ, DingEL, et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis[J]. Circulation, 2011, 124(7):789-795. DOI: 10.1161/CIRCULATIONAHA.110.010710.
22
SofiF, CapalboA, CesariF, et al. Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies[J]. Eur J Cardiovasc Prev Rehabil, 2008, 15(3):247-257. DOI: 10.1097/HJR.0b013e3282f232ac.
23
ZhengH, OrsiniN, AminJ, et al. Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis[J]. Eur J Epidemiol, 2009, 24(4):181-192. DOI: 10.1007/s10654-009-9328-9.
24
PowellKE, KingAC, BuchnerDM, et al. The scientific foundation for the physical activity guidelines for Americans, 2nd edition[J]. J Phys Act Health, 2018:1-11. DOI: 10.1123/jpah.2018-0618.
25
GeidlW, SchlesingerS, MinoE, et al. Dose-response relationship between physical activity and mortality in adults with noncommunicable diseases: a systematic review and meta-analysis of prospective observational studies[J]. Int J Behav Nutr Phys Act, 2020, 17(1):109. DOI: 10.1186/s12966-020-01007-5.
26
EijsvogelsT, ThompsonPD, FranklinBA. The "extreme exercise hypothesis": recent findings and cardiovascular health implications[J]. Curr Treat Options Cardiovasc Med, 2018, 20(10):84. DOI: 10.1007/s11936-018-0674-3.
27
2018 Physical Activity Guidelines Advisory Committee. 2018 Physical activity guidelines advisory committee scientific report [M]. Washington, DC: U.S. Department of Health and Human Services, 2018: F6-11.
28
BullFC, Al-AnsariSS, BiddleS, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour[J]. Br J Sports Med, 2020, 54(24):1451-1462. DOI: 10.1136/bjsports-2020-102955.
29
FaughtE, WaltersAJ, Latimer-CheungAE, et al. Optimal messaging of the Canadian 24-Hour Movement Guidelines for Adults aged 18-64 years and Adults aged 65 years and older[J]. Appl Physiol Nutr Metab, 2020, 45(10 (Suppl. 2)):S125-150. DOI: 10.1139/apnm-2020-0494.
30
CornelissenVA, SmartNA. Exercise training for blood pressure: a systematic review and meta-analysis[J]. J Am Heart Assoc, 2013, 2(1):e004473. DOI: 10.1161/JAHA.112.004473.
31
FagardRH, CornelissenVA. Effect of exercise on blood pressure control in hypertensive patients[J]. Eur J Cardiovasc Prev Rehabil, 2007, 14(1):12-17. DOI: 10.1097/HJR.0b013e3280128bbb.
32
Basterra-GortariFJ, Bes-RastrolloM, Pardo-FernándezM, et al. Changes in weight and physical activity over two years in Spanish alumni[J]. Med Sci Sports Exerc, 2009, 41(3):516-522. DOI: 10.1249/MSS.0b013e318188607c.
33
BrownWJ, KabirE, ClarkBK, et al. Maintaining a healthy BMI: data from a 16-year study of young Australian women[J]. Am J Prev Med, 2016, 51(6):e165-178. DOI: 10.1016/j.amepre.2016.09.007.
34
HupinD, RaffinJ, BarthN, et al. Even a previous light-active physical activity at work still reduces late myocardial infarction and stroke in retired adults aged>65 years by 32%: the PROOF Cohort Study[J]. Front Public Health, 2019, 7:51. DOI: 10.3389/fpubh.2019.00051.
35
BatacanRB, DuncanMJ, DalboVJ, et al. Effects of light intensity activity on CVD risk factors: a systematic review of intervention studies[J]. Biomed Res Int, 2015, 2015:596367. DOI: 10.1155/2015/596367.
36
ChastinS, De CraemerM, De CockerK, et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies[J]. Br J Sports Med, 2019, 53(6):370-376. DOI: 10.1136/bjsports-2017-097563.
37
LaMonteMJ, LewisCE, BuchnerDM, et al. Both light intensity and moderate-to-vigorous physical activity measured by accelerometry are favorably associated with cardiometabolic risk factors in older women: the Objective Physical Activity and Cardiovascular Health (OPACH) Study[J]. J Am Heart Assoc, 2017, 6(10): e007064.DOI: 10.1161/JAHA.117.007064.
38
张兴, 谢高强, 张林峰, . 基线体力活动强度与缺血性心血管病的关系[J].中华流行病学杂志, 2006, 27(11):930-933. DOI: 10.3760/j.issn:0254-6450.2006.11.003.
39
赵文华,李可基.美国身体活动指南科学证据报告2018版[M].北京:人民卫生出版社, 2020.
40
CooperKH. The new aerobics [M]. United States: M Evans and Company, 1970: 1-191.
41
HallKS, HydeET, BassettDR, et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia[J]. Int J Behav Nutr Phys Act, 2020, 17(1):78. DOI: 10.1186/s12966-020-00978-9.
42
BatacanRB, DuncanMJ, DalboVJ, et al. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies[J]. Br J Sports Med, 2017, 51(6):494-503. DOI: 10.1136/bjsports-2015-095841.
43
JelleymanC, YatesT, O′DonovanG, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis[J]. Obes Rev, 2015, 16(11):942-961. DOI: 10.1111/obr.12317.
44
KesslerHS, SissonSB, ShortKR. The potential for high-intensity interval training to reduce cardiometabolic disease risk[J]. Sports Med, 2012, 42(6):489-509. DOI: 10.2165/11630910-000000000-00000.
45
ItoS. High-intensity interval training for health benefits and care of cardiac diseases-The key to an efficient exercise protocol[J]. World J Cardiol, 2019, 11(7):171-188. DOI: 10.4330/wjc.v11.i7.171.
46
MamenA, ØvstebøR, SirnesPA, et al. High-intensity training reduces CVD risk factors among rotating shift workers: an eight-week intervention in industry[J]. Int J Environ Res Public Health, 2020, 17(11):3943.DOI: 10.3390/ijerph17113943.
47
HsuCC, FuTC, YuanSS, et al. High-intensity interval training is associated with improved long-term survival in heart failure patients[J]. J Clin Med, 2019, 8(3):409.DOI: 10.3390/jcm8030409.
48
AraújoB, LeiteJC, FuzariH, et al. Influence of high-intensity interval training versus continuous training on functional capacity in individuals with heart failure: a systematic review and meta-analysis[J]. J Cardiopulm Rehabil Prev, 2019, 39(5):293-298. DOI: 10.1097/HCR.0000000000000424.
49
ChoiHY, HanHJ, ChoiJW, et al. Superior effects of high-intensity interval training compared to conventional therapy on cardiovascular and psychological aspects in myocardial infarction[J]. Ann Rehabil Med, 2018, 42(1):145-153. DOI: 10.5535/arm.2018.42.1.145.
50
MeromD, DingD, StamatakisE. Dancing participation and cardiovascular disease mortality: a pooled analysis of 11 population-based British cohorts[J]. Am J Prev Med, 2016, 50(6):756-760. DOI: 10.1016/j.amepre.2016.01.004.
51
GuQ, WuSJ, ZhengY, et al. Tai Chi exercise for patients with chronic heart failure: a meta-analysis of randomized controlled trials[J]. Am J Phys Med Rehabil, 2017, 96(10):706-716. DOI: 10.1097/PHM.0000000000000723.
52
XiongX, WangP, LiS, et al. Effect of Baduanjin exercise for hypertension: a systematic review and meta-analysis of randomized controlled trials[J]. Maturitas, 2015, 80(4):370-378. DOI: 10.1016/j.maturitas.2015.01.002.
53
PedišićŽ. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research-the focus should shift to the balance between sleep, sedentary behaviour, standing and activity[J]. Kinesiology, 2014, 46(1): 135-146.
54
ŠimaitytėM, PetrėnasA, KravčenkoJ, et al. Objective evaluation of physical activity pattern using smart devices[J]. Sci Rep, 2019, 9(1):2006. DOI: 10.1038/s41598-019-38638-z.
55
XiaoJ, ChuM, ShenH, et al. Relationship of "weekend warrior" and regular physical activity patterns with metabolic syndrome and its associated diseases among Chinese rural adults[J]. J Sports Sci, 2018, 36(17):1963-1971. DOI: 10.1080/02640414.2018.1428883.
56
MuryP, FaesC, MillonA, et al. Higher daily physical activity level is associated with lower RBC aggregation in carotid artery disease patients at high risk of stroke[J]. Front Physiol, 2017, 8:1043. DOI: 10.3389/fphys.2017.01043.
57
KringleEA, Barone GibbsB, CampbellG, et al. Influence of interventions on daily physical activity and sedentary behavior after stroke: a systematic review[J]. PM R, 2020, 12(2):186-201. DOI: 10.1002/pmrj.12222.
58
于涛, 李明子, 赵立新, . 急性心肌梗死患者恢复期体力活动状况的调查分析[J].中华现代护理杂志, 2016, 22(8):1064-1070. DOI: 10.3760/cma.j.issn.1674-2907.2016.08.008.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词