专家论坛
新型降糖药物对心血管保护作用的临床新证据
中国心血管杂志, 2018,23(4) : 277-281. DOI: 10.3969/j.issn.1007-5410.2018.04.001
引用本文: 郑刚. 新型降糖药物对心血管保护作用的临床新证据 [J] . 中国心血管杂志, 2018, 23(4) : 277-281. DOI: 10.3969/j.issn.1007-5410.2018.04.001.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

除非特别声明,本刊刊出的所有文章不代表本刊编辑委员会的观点。

2型糖尿病(type 2 diabetes mellitus,T2DM)是导致心血管疾病(cardiovascular disease,CVD)死亡的一个重要原因,传统的降糖药仅降低血糖和T2DM微血管合并症,对大血管合并症影响较少[1]。以往大规模多中心随机双盲临床试验的证据显示,强化血糖控制仅使主要不良心血管事件(major adverse cardiac event,MACE)的危险降低9%、肾脏事件降低20%和眼合并症降低13%[2]。因此,缺少严格控制血糖对心血管保护作用的证据,曾经使用过的降糖药并不能降低T2DM患者心血管死亡危险。而大多数T2DM患者死于心血管疾病。如何开发一种既可降糖又对心血管没有不利或有保护作用的降糖药是近年来研究的热点。此外,2008年美国食品药品管理局规定,新开发的降糖药应行心血管安全评估[3]。因此,新型降糖药物对心血管影响成为临床关注的重点。

1 吡格列酮

吡格列酮属噻唑烷二酮类,是过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)的激动剂。吡格列酮通过刺激PPAR-γ增强机体对胰岛素的敏感性。临床研究显示,吡格列酮在增加机体对胰岛素敏感性,降低血糖的同时,对心血管、心律失常和脑卒中有保护作用。

目前临床证据显示,对基线无CVD的T2DM患者,吡格列酮能预防心血管事件(cardiovascular event,CVE)和降低病死率,特别是糖尿病肾病患者[4];此外,缺血性脑卒中或暂时性脑缺血等高风险患者亦可获益[5]。荟萃分析发现,吡格列酮能降低临床表现为心血管疾病患者的复发性MACE、卒中或心肌梗死的风险,对心血管有保护作用[6]。回顾性队列研究汇总分析显示,吡格列酮显著降低心血管和非心血管死亡危险[7]。吡格列酮可使糖尿病患者发生心房颤动(AF)的风险降低30%,而且不论是新发还是复发AF,均显著获益[8]。吡格列酮预防糖尿病患者发生AF,可能是通过降低糖尿病诱导的心房结构和电生理重构来实现的[9]

此外,近期发生过缺血性卒中或暂时性脑缺血的患者,接受吡格列酮治疗可降低再发卒中或心肌梗死的风险[10];且卒中或心肌梗死风险越高获益越大[11]。吡格列酮可预防胰岛素抵抗的非糖尿病的缺血性卒中风险,降低近期脑血管事件后急性冠状动脉综合征的发生率,吡格列酮在预防特发性1型心肌梗死上具有最明显的效果[12]

吡格列酮对心血管保护作用的可能机制:一方面可抑制糖尿病导致的血管内皮细胞炎症反应[13]。还可通过激活血管PPAR-γ,发挥抗炎和心血管保护作用[14]。此外,吡格列酮可通过抑制晚期糖基化终末产物受体(RAGE)信号传递系统而发挥抗动脉粥样硬化作用[15]。还有研究显示,吡格列酮与糖尿病患者血液中的瘦素水平有关[16]

2 二肽基肽酶4(dipeptidyl peptidase 4,DPP-4)抑制剂

胰高血糖素样肽1(glucagon-like peptide-1,GLP-1)是由空肠末端、回肠、结肠的细胞在摄食和神经内分泌刺激下分泌的一种激素,具有促进胰岛素释放的作用,当葡萄糖浓度升高时,分泌增强。食物中的糖类和脂类对GLP-1的刺激作用最强。体内GLP-1半衰期非常短,几分钟后即被DPP-4水解,降解为没有活性的物质。DPP-4抑制剂(DPP-4i)可以抑制DPP-4水解酶的活性,使GLP-1作用时间延长,通过胃肠道调节糖代谢而发挥降低血糖的作用[17]

目前研究发现,DPP-4i对T2DM患者的心血管作用为中性,既不增加也不降低心血管风险[18];而对肾脏有一定的保护作用[19]。DPP-4i对心力衰竭的作用有一定差异,沙格列汀可使T2DM患者因心力衰竭住院的风险显著升高,而维格列汀和西格列汀不增加T2DM患者因心力衰竭住院的风险[20,21]。荟萃分析发现,在短期内DPP-4i不增加T2DM患者MACE危险,并可降低T2DM患者卒中的风险[22]。但也有研究结果显示,DPP-4i的使用与因心力衰竭住院风险增加相关,维达列汀和西他列汀相对更安全[23]。DPP-4i对心血管的作用在基线有或无CVD的T2DM患者均一致[24]。大规模队列研究证据显示,与磺脲类相比,DPP-4i可改善患者的心血管预后[25];DPP-4i对因心力衰竭住院无显著影响;对基线有心力衰竭患者的亚组分析显示,DPP-4i的使用与心力衰竭无关[26]

DPP-4i对心血管作用的可能机制:间质细胞趋化因子1可促使冠状动脉粥样斑块生长和不稳定,刺激有害的神经内分泌机制、促使心肌炎症和心肌纤维化。而DPP-4i可抑制干细胞化学激酶(stem cell chemokine),从而抑制间质细胞趋化因子1,这可能是DPP-4i延缓动脉粥样硬化进展,稳定斑块,减少缺血性事件发生的一个可能机制[27]。也有研究显示,维达列汀可逆转慢性心肌梗死鼠模型的氧化应激和心肌纤维化,改善心脏功能。

3 GLP-1受体激动剂

GLP-1受体激动剂(GLP-1 RA)通过模拟天然GLP-1激活GLP-1受体而发挥作用,且不易被DPP-4快速降解,延长了半衰期,增加了活性GLP-1在体内的浓度[28]

研究结果证实,利西拉肽和艾塞那肽对具有心血管高危因素的T2DM患者的心血管预后无显著影响,利拉鲁肽和索马鲁肽则有显著的心血管保护作用[29]。对于不同的结果仍需新的随机试验来证实。度拉鲁肽对糖尿病心血管预后影响研究(REWIND试验)纳入了24个国家的370个医疗中心的9 901例平均糖尿病病程>10年且既往有CVD的T2DM患者,REWIND试验为国际性、女性比例高、既往有CVD、入选时糖化血红蛋白高的大规模临床试验,该研究结果最终将揭示全球范围内中年糖尿病患者使用GLP-1 RA对心血管是否有保护作用[30]

荟萃分析发现,GLP-1 RA治疗可降低全因、心血管和心肌梗死死亡危险[31];但是,GLP-1RA治疗对致命性和非致命性心肌梗死、致命性和非致命性卒中、因心力衰竭和不稳定型心绞痛住院无显著影响[32]。而利拉鲁肽可显著降低CVE、心血管死亡和全因死亡,索马鲁肽可显著降低CVE和非致命性卒中[33]。在使用他汀治疗的日本T2DM患者中,GLP-1 RA能降低血清LDL-C[34]。利拉鲁肽可以改善慢性心力衰竭患者的心功能[35]

GLP-1 RA对T2DM患者心脏保护作用的机制包括:GLP-1 RA抑制心肌缺血导致的氧化激活、炎症反应、细胞凋亡和心肌纤维化;GLP-1 RA可抑制斑块进展、改变斑块组成成分并稳定斑块[36]。临床观察也发现,GLP-1RA通过抑制氧化应激作用,改善心房僵硬度和左心室张力[37]

4 钠-葡萄糖协同转运蛋白2抑制剂(sodium-glucose co-transporter 2 inhibitors,SGLT2-I)

1835年,法国化学家在苹果树树皮中发现了一种称之为SGLT2-I的物质,SGLT2-I可以不依赖胰岛素的降糖途径,即通过减少葡萄糖在肾脏的重吸收,从尿中直接排糖。SGLT2-I除具有明确的降糖效果外,还能带来减轻体重、降低血压、降低尿酸的额外获益。

研究显示,SGLT2-I的使用可显著降低心力衰竭发生率39%、死亡危险51%、心力衰竭或死亡率复合终点46%[38]。恩格列净不仅可降低复合终点风险,还能降低心力衰竭住院、心血管死亡及全因死亡风险[39]。与安慰剂组相比,坎格列净治疗组心血管复合终点发生率降低14%、因心力衰竭住院风险减少33%、肾脏复合结局风险降低40%,并且严重不良事件相对较少[40]。恩格列净可降低尿白蛋白排泄率,改善糖尿病患者的肾功能[41]。荟萃分析表明,在T2DM患者中,达格列净会增加不良肾脏事件风险,而恩格列净具有保护作用[42]

SGLT2-I选择性地抑制肾脏近曲小管上皮细胞膜管腔侧的SGLT2,减少葡萄糖重吸收并促进尿糖排泄,进而降低血糖,同时这类药物还有减轻体重、降低血脂、降压等作用。目前研究发现,SGLT2-I对心血管保护作用机制如下。

4.1 改善心肌代谢

SGLT2-I使红细胞比积增加;在轻度、持续的高酮血症状态下β-羟丁酸优先于游离脂肪酸被心脏选择作为能量供应来源,改善能量代谢[43]

4.2 减轻体重

SGLT2-I可降低T2DM和非糖尿病个体的最大肾葡萄糖转运和葡萄糖溢出到尿液中的阈值。恩格列净对T2DM和非T2DM患者都能增加肾脏排糖,并降低葡萄糖溢出阈值,这也可能是目前SGLT2类药物可减轻体重的机制[44]

4.3 底物转化学说

SGLT2-I引起能量代谢方式的转变,使机体脂肪氧化增加。达格列净可引起脂肪氧化增加14%,葡萄糖氧化减少20%。脂肪氧化终产物乙酰辅酶A会转变为酮体,心肌优先利用酮体,继而改善心肌工作效率。研究表明,β-羟丁酸在降低氧消耗的同时,使心脏工作效率提高了24%。此外,轻度β-羟丁酸升高也可减少氧化应激,刺激线粒体生物合成,稳定细胞膜电位,抑制心律失常[45]。因此,酮体的有效利用或许有助于SGLT2-I引起的心血管获益,但仍需更多研究证实。

4.4 电解质因素

T2DM合并心力衰竭患者的心肌细胞胞质中钠和钙离子含量升高,线粒体中钙离子含量降低。胞质中升高的钠离子不仅加重心力衰竭的进程,而且增加心律失常猝死的风险。负责心肌细胞钠转运的蛋白之一为Na/H逆向转运蛋白。研究表明,心力衰竭患者Na/H逆向转运蛋白活性升高,从而导致胞质钠离子升高及钙离子超载,而线粒体钙离子下降,引起心肌功能障碍。SGLT2-I能够直接抑制Na/H转运蛋白活性,从而降低心肌细胞胞质钠和钙离子含量,增加线粒体内钙离子含量,逆转心力衰竭患者的电解质失常[46]

4.5 血流动力学因素

SGLT2-I的降压作用明确,可显著降低患者的血压。因此,对于SGLT2-I的心血管获益,血压下降应是其部分原因。此外,SGLT2-I的渗透性利尿和尿钠排泄作用可直接影响心血管系统。EMPA-REG研究结束时,恩格列净组血细胞比容增加4.8%,提示血管容量降低。达格列净可引起糖尿病患者红细胞生成素增加,并在治疗2~4周后达到最大值,促进红细胞生成,一定程度上增加了血细胞比容[47]。另外,胞外液/胞内液比率是全因死亡和CVD的高风险指标,高比率通常导致全因死亡率和CVD发生率升高。因此,血细胞比容增加可能是SGLT2-I心血管获益的部分原因。

4.6 减弱心肌纤维化

心肌纤维化在心力衰竭的发生和发展中发挥着重要作用。动物实验利用肥胖T2DM小鼠模型,恩格列净治疗10周后,心肌间质纤维化、冠状动脉纤维化、冠状动脉内膜增厚和心肌间质巨噬细胞浸润明显减轻,血管扩张功能改善,这表明恩格列净可明显改善心血管损伤。另外,利用心肌梗死后心室重构动物模型,达格列净可以通过活性氧簇/信号转导与转录活化因子3信号通路促进巨噬细胞由M2型向M1型转化,减少心肌纤维细胞的浸润,减缓心肌纤维化进程。因此,心肌纤维化的减少可能也是SGLT2-I心血管获益的主要原因之一[48]

4.7 降低血尿酸水平

血尿酸水平升高会导致高血压、血管损伤和肾损伤,与CVD风险增加有关,而SGLT2-I可以促进尿酸排泄,降低血尿酸水平。SGLT2-I通过增加尿糖浓度减少尿酸的重吸收,并间接影响葡萄糖转运蛋白9亚型2的尿酸转运功能,增加尿酸排泄。血尿酸水平降低能够下调血压和阻止血管损伤,这可能有助于降低远期心血管死亡率。

4.8 缓解动脉硬化

动脉硬化是导致CVD的重要风险因素,而脉压和动态动脉硬化指数是动脉硬化的两个重要指标。研究显示,SGLT2-I可通过缓解动脉硬化,起到心血管保护作用。

5 小结

糖尿病是CVD的重要危险因素,合并T2DM的CVD患者比单纯CVD患者的MACE风险高约1.7倍。因此,减少T2DM相关危险因素极其重要。已有足够的研究表明,SGLT2-I依帕列净和坎格列净,以及GLP-1 RA利拉鲁肽和索马鲁肽,可以减少CVE。SGLT2-I依帕列净和GLP-1 RA利拉鲁肽可作为优选治疗方案。2016年欧洲CVD预防指南建议,对于T2DM合并CVD患者,应尽早应用SGLT2-I,以降低心血管死亡和总死亡率(Ⅱa类推荐)。当这些治疗方案不能达到治疗目标或存在禁忌时,可选用噻唑烷二酮类抗糖尿病药物吡格列酮、GLP-1 RA艾塞那肽和DPP-4i。目前研究显示,这些药物对于预防CVE具有中性作用或有潜在获益,DPP-4i沙格列汀和西格列汀对稳定型CVD或有CVD风险患者的主要心血管终点具有中性作用。未来的临床试验,应继续研究抗糖尿病药物对各种类型CVD心血管事件硬性终点的可能获益。

利益冲突
利益冲突:

参考文献
[1]
BistolaV,LambadiariV,DimitriadisG, et al. Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors [J]. Heart Fail Rev, 2018, 23(3): 377-388. DOI: 10.1007/s10741-018-9674-3.
[2]
PaneniF,LüscherTF. Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes [J]. Am J Med, 2017, 130(6S): S18-S29. DOI: 10.1016/j.amjmed.2017.04.008.
[3]
SecrestMH,UdellJA,FilionKB. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors [J]. Trends Cardiovasc Med, 2017, 27(3): 194-202. DOI: 10.1016/j.tcm.2017.01.009.
[4]
KernanWN,ViscoliCM,DearbornJL, et al; Insulin Resistance Intervention After Stroke (IRIS) Trial Investigators. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction [J]. JAMA Neurol, 2017, 74(11): 1319-1327. DOI: 10.1001/jamaneurol.2017.2136.
[5]
de JongM,van der WorpHB,van der GraafY, et al. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials [J]. Cardiovasc Diabetol, 2017, 16(1): 134. DOI: 10.1186/s12933-017-0617-4.
[6]
DavidsonMB,PanD. An updated meta-analysis of pioglitazone exposure and bladder cancer and comparison to the drug's effect on cardiovascular disease and non-alcoholic steatohepatitis [J]. Diabetes Res Clin Pract, 2017, 135: 102-110. DOI: 10.1016/j.diabres.2017.11.002.
[7]
BaiY,WangYL,ShantsilaA, et al. The Global Burden of Atrial Fibrillation and Stroke: A Systematic Review of the Clinical Epidemiology of Atrial Fibrillation in Asia [J]. Chest, 2017, 152(4): 810-820. DOI: 10.1016/j.chest.2017.03.048.
[8]
ZhangZ,ZhangX,KorantzopoulosP, et al. Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis [J]. BMC Cardiovasc Disord, 2017, 17(1): 96. DOI: 10.1186/s12872-017-0531-4.
[9]
LiuC,LiuR,FuH, et al. Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits [J]. Cardiovasc Ther, 2017, 35(5). DOI: 10.1111/1755-5922.12284.
[10]
KernanWN,ViscoliCM,DearbornJL, et al. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction [J]. JAMA Neurol, 2017, 74(11): 1319-1327. DOI: 10.1001/jamaneurol.2017.2136.
[11]
YaghiS,FurieKL,ViscoliCM, et al; IRIS Trial Investigators. Pioglitazone Prevents Stroke in Patients with a Recent TIA or Ischemic Stroke: A Planned Secondary Analysis of the IRIS Trial [J]. Circulation, 2018, 137(5): 455-463. DOI: 10.1161/CIRCULATIONAHA.117.030458.
[12]
YoungLH,ViscoliCM,CurtisJP, et al. Cardiac Outcomes After Ischemic Stroke or Transient Ischemic Attack: Effects of Pioglitazone in Patients With Insulin Resistance Without Diabetes Mellitus[J]. Circulation, 2017, 135(20): 1882-1893. DOI: 10.1161/CIRCULATIONAHA.116.024863.
[13]
SunH,ZhuX,LinW, et al. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells [J]. Cell Physiol Biochem, 2017, 42(3): 1227-1239. DOI: 10.1159/000478920.
[14]
ZhangY,ZhangC,LiH, et al. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia [J]. Biochem Biophys Res Commun, 2017, 492(2): 243-248. DOI: 10.1016/j.bbrc.2017.08.058.
[15]
GaoH,LiH,LiW, et al. Pioglitazone Attenuates Atherosclerosis in Diabetic Mice by Inhibition of Receptor for Advanced Glycation End-Product (RAGE) Signaling [J]. Med Sci Monit, 2017, 23: 6121-6131.
[16]
IdaS,MurataK,KanekoR. Effects of pioglitazone treatment on blood leptin levels in patients with type 2 diabetes [J]. J Diabetes Investig, 2018, 9(4): 917-924. DOI: 10.1111/jdi.12783.
[17]
CutshallBT,TwillaJD,OlingerAS, et al. A review on cardiovascular effects of newer hypoglycaemic medications [J]. Ann Med, 2017, 49(7): 603-612. DOI: 10.1080/07853890.2017.1335428.
[18]
NauckMA,MeierJJ,CavenderMA, et al. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors[J]. Circulation, 2017, 136(9): 849-870. DOI: 10.1161/CIRCULATIONAHA.117.028136.
[19]
DeaconCF. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials [J]. Diabetes Obes Metab, 2018, 20(Suppl 1): 34-46. DOI: 10.1111/dom.13135.
[20]
YeZ,LiH,LuH, et al. Long-term effects of sitagliptin in patients with type 2 diabetes mellitus and hypertension: results from the PROLOGUE study [J]. Oncotarget, 2017, 8(67): 111979-111997. DOI: 10.18632/oncotarget.22959.
[21]
McMurrayJJV,PonikowskiP,BolliGB, et al. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes? Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial [J]. JACC Heart Fail, 2018, 6(1): 8-17. DOI: 10.1016/j.jchf.2017.08.004.
[22]
XuS,ZhangX,TangL, et al. Cardiovascular effects of dipeptidyl peptidase-4 inhibitor in diabetic patients with and without established cardiovascular disease: a meta-analysis and systematic review [J]. Postgrad Med, 2017, 129(2): 205-215. DOI: 10.1080/00325481.2017.1255537.
[23]
GuoWQ,LiL,SuQ, et al. Effect of Dipeptidyl Peptidase-4 Inhibitors on Heart Failure: A Network Meta-Analysis [J]. Value Health, 201720(10): 1427-1430. DOI: 10.1016/j.jval.2017.04.010.
[24]
WangF,HeY,ZhangR, et al. Combination therapy of metformin plus dipeptidyl peptidase-4 inhibitor versus metformin plus sulfonylurea and their association with a decreased risk of cardiovascular disease in type 2 diabetes mellitus patients[J]. Medicine (Baltimore), 2017, 96(36): e7638. DOI: 10.1097/MD.0000000000007638.
[25]
KimYG,YoonD,ParkS, et al. Dipeptidyl Peptidase-4 Inhibitors and Risk of Heart Failure in Patients With Type 2 Diabetes Mellitus: A Population-Based Cohort Study [J]. Circ Heart Fail, 2017, 10(9). pii: e003957. DOI: 10.1161/CIRCHEARTFAILURE.117.003957.
[26]
CobrettiMR,BowmanB,GrabarczykT, et al. Dipeptidyl Peptidase-4 Inhibitors and Heart Failure Exacerbation in the Veteran Population: An Observational Study [J]. Pharmacotherapy, 2018, 38(3): 334-340. DOI: 10.1002/phar.2085.
[27]
PackerM. Have dipeptidyl peptidase-4 inhibitors ameliorated the vascular complications of type 2 diabetes in large-scale trials? The potential confounding effect of stem-cell chemokines [J]. Cardiovasc Diabetol, 2018, 17(1): 9. DOI: 10.1186/s12933-017-0648-x.
[28]
GiuglianoD,MaiorinoMI,BellastellaG, et al. Type 2 diabetes and cardiovascular prevention: the dogmas disputed [J]. Endocrine, 2018, 60(2): 224-228. DOI: 10.1007/s12020-017-1418-y.
[29]
MarsoSP,BainSC,ConsoliA, et al; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes [J]. N Engl J Med, 2016, 375(19): 1834-1844. DOI: 10.1056/NEJMoa1607141.
[30]
GersteinHC,ColhounHM,DagenaisGR, et al; REWIND Trial Investigators. Design and baseline characteristics of participants in the Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) trial on the cardiovascular effects of dulaglutide [J]. Diabetes Obes Metab, 2018, 20(1): 42-49. DOI: 10.1111/dom.13028.
[31]
MonamiM,ZannoniS,PalaL, et al. Effects of glucagon-like peptide-1 receptor agonists on mortality and cardiovascular events: A comprehensive meta-analysis of randomized controlled trials [J]. Int J Cardiol, 2017, 240: 414-421. DOI: 10.1016/j.ijcard.2017.03.163.
[32]
BethelMA,PatelRA,MerrillP,et al; EXSCEL Study Group. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis [J]. Lancet Diabetes Endocrinol, 2018, 6(2): 105-113. DOI: 10.1016/S2213-8587(17)30412-6.
[33]
LeBrasMH,BarryAR,KoshmanSL. Cardiovascular safety outcomes of new antidiabetic therapies [J]. Am J Health Syst Pharm, 2017, 74(13): 970-976. DOI: 10.2146/ajhp160279.
[34]
HasegawaY,HoriM,NakagamiT, et al. Glucagon-like peptide-1 receptor agonists reduced the low-density lipoprotein cholesterol in Japanese patients with type 2 diabetes mellitus treated with statins [J]. J Clin Lipidol, 2018, 12(1): 62-69.e1. DOI: 10.1016/j.jacl.2017.11.006.
[35]
ArturiF,SuccurroE,MiceliS, et al. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure [J]. Endocrine, 2017, 57(3): 464-473. DOI: 10.1007/s12020-016-1166-4.
[36]
NielsenR,JorsalA,IversenP, et al. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients: A double-blind, randomized, placebo-controlled LIVE sub-study [J]. J Nucl Cardiol, 2017Aug 2. DOI: 10.1007/s12350-017-1000-2.
[37]
LambadiariV,PavlidisG,KousathanaF, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes [J]. Cardiovasc Diabetol, 2018, 17(1): 8. DOI: 10.1186/s12933-017-0646-z.
[38]
KosiborodM,CavenderMA,FuAZ, et al; CVD-REAL Investigators and Study Group. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors) [J]. Circulation, 2017, 136(3): 249-259. DOI: 10.1161/CIRCULATIONAHA.117.029190.
[39]
FitchettD,ButlerJ,van de BorneP, et al; EMPA-REG OUTCOME® trial investigators.Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial [J]. Eur Heart J, 2018, 39(5): 363-370. DOI: 10.1093/eurheartj/ehx511.
[40]
NealB,PerkovicV,MahaffeyKW, et al; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes [J]. N Engl J Med, 2017, 377(7): 644-657. DOI: 10.1056/NEJMoa1611925.
[41]
CherneyDZI,ZinmanB,InzucchiSE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial [J]. Lancet Diabetes Endocrinol, 2017, 5(8): 610-621. DOI: 10.1016/S2213-8587(17)30182-1.
[42]
TangH,LiD,ZhangJ, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: A network and cumulative meta-analysis of randomized controlled trials [J]. Diabetes Obes Metab, 2017, 19(8): 1106-1115. DOI: 10.1111/dom.12917.
[43]
KaulS. Response to Comment on Kaul. Mitigating Cardiovascular Risk in Type 2 Diabetes With Antidiabetes Drugs: A Review of Principal Cardiovascular Outcome Results of EMPA-REG OUTCOME, LEADER, and SUSTAIN-6 Trials [J]. Diabetes Care, 2017, 40(7): 821-831.
[44]
Al-JoboriH,DanieleG,CersosimoE, et al. Empagliflozin and Kinetics of Renal Glucose Transport in Healthy Individuals and Individuals With Type 2 Diabetes[J]. Diabetes, 2017, 66(7): 1999-2006. DOI: 10.2337/db17-0100.
[45]
d'EmdenM,AmerenaJ,DeedG, et al. SGLT2 inhibitors with cardiovascular benefits: transforming clinical care in Type2 diabetes mellitus [J]. Diabetes Res Clin Pract, 2018, 136: 23-31. DOI: 10.1016/j.diabres.2017.11.023.
[46]
BerteroE,Prates RomaL,AmeriP, et al. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis[J]. Cardiovasc Res, 2018, 114(1): 12-18. DOI: 10.1093/cvr/cvx149.
[47]
InzucchiSE,ZinmanB,FitchettD, et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial [J]. Diabetes Care, 2018, 41(2): 356-363. DOI: 10.2337/dc17-1096.
[48]
von LewinskiD,KolesnikE,WallnerM, et al. New Antihyperglycemic Drugs and Heart Failure: Synopsis of Basic and Clinical Data [J]. Biomed Res Int, 2017, 2017: 1253425. DOI: 10.1155/2017/1253425.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词