病例报告与文献综述
基质血管片段促进脂肪移植后再血管化机制的研究进展
中华整形外科杂志, 2019,35(8) : 814-818. DOI: 10.3760/cma.j.issn.1009-4598.2019.08.017
摘要

基质血管片段(stromal vascular fraction,SVF)是脂肪组织中去除成熟脂肪细胞后所剩余的细胞成分,除含有一定数量的脂肪来源干细胞(adipose derived stem cells,ADSCs)外还有许多其他细胞,均具有促进血管生成的作用。该文对SVF在脂肪移植后再血管化机制进行了综述,认为血管的再生与形成受多种因素调控:SVF细胞可分泌多种因子,稳定内皮网络;其包含的ADSCs可向平滑肌细胞和内皮细胞分化、协同形成新生血管网。

引用本文: 汪正财, 马菁晶, 顾子春, 等.  基质血管片段促进脂肪移植后再血管化机制的研究进展 [J] . 中华整形外科杂志, 2019, 35(8) : 814-818. DOI: 10.3760/cma.j.issn.1009-4598.2019.08.017.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

1893年Neuber医生首次将脂肪移植用于临床,而后Fischer吸脂术的发明和Coleman对脂肪移植术整套程序的完善,使自体脂肪移植进入了发展的新纪元[1]。自体脂肪移植因其具有来源广泛、取材容易、微创、移植物无免疫排斥反应等特点而被应用于临床。然而术后脂肪移植物存活率较低是该技术发展的瓶颈。有研究显示,与传统的脂肪移植相比,基质血管片段(stromal vascular fraction,SVF)辅助移植能明显增加移植受区毛细血管密度、提高移植脂肪的保留率[2],术后4个月脂肪体积可达到移植体积的80%[3],这主要归因于SVF中的细胞成分能够促进脂肪移植后早期的血管化[4]。但SVF通过何种机制促进移植物再血管化目前仍不明确,我们从SVF的细胞组成成分以及其中各类细胞促进血管再生的可能机制进行了总结。

一、SVF组成

SVF是脂肪组织经胶原酶消化30 min至1 h后提取的细胞成分总和[5],是一组混杂的细胞群,包含脂肪来源干细胞(adipose derived stem cells,ADSCs)、血管内皮细胞、单核细胞、周细胞、成纤维细胞、红细胞、造血干细胞、淋巴细胞、巨噬细胞等[6,7,8]

二、SVF在脂肪移植中促进血管再生的可能机制
(一)SVF直接参与血管重建

有研究表明,在脂肪移植后早期,SVF中游离出来的血管内皮细胞之间的动态重组能够促使移植区快速形成血管网[9]。Altman等[10]将人脂肪干细胞移植到小鼠体内,发现在局部微环境下脂肪干细胞可向血管内皮细胞分化;而Mendel等[11]通过实验发现ADSCs移植到小鼠体内后,不仅具有周细胞形态而且还可表达周细胞的标志蛋白。这些体内实验均表明ADSCs可分化为血管内皮细胞和周细胞,而周细胞可促使血管内皮祖细胞出现,维持血管完整性,并协同形成血管网[12]

(二)SVF通过旁分泌促进颗粒脂肪移植术后血管再生

研究表明,经血管内皮生长因子(vascular endothelial growth factor,VEGF)抗体处理过的干细胞,在缺血环境中完全失去了促血管再生能力[13],且在SVF移植组织中,其血管密度、血流量以及分泌的各类生长因子均比对照组明显增多[14]。这表明旁分泌机制在SVF促再血管化过程中扮演了重要角色。

SVF在脂肪移植后可分泌多种抗炎症因子和免疫调节因子;还可抑制促炎症因子干扰素γ和白细胞介素12(interleukin 12,IL-12)的分泌[15,16],促进组织损伤炎症的修复,对血管生成起着辅助协同作用[17]

1.ADSCs分泌多种生物活性因子,促进血管生成

Procházka等[18]研究发现,ADSCs分泌的各种因子,能够改善兔严重的肢体缺血,并且实验组的组织血流灌注是对照组的2倍,毛细血管密度也明显多于对照组。这表明ADSCs分泌的多种细胞因子可促进血管再生。

事实上,ADSCs在脂肪移植后可分泌大量生物活性因子,如VEGF、肝细胞生长因子(hepatocyte growth factor,HGF)、碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)、血小板源性生长因子(platelet derived growth factor,PDGF)和转化生长因子β(transforming growth factor-β,TGF-β)等[19,20]

VEGF可活化内皮祖细胞;诱导内皮细胞表达整合素1、αv、β3、β5及其配体,分泌多种基质金属蛋白酶(matrix metalloproteinase,MMP),降解细胞外基质;促进内皮细胞的增殖、迁移和新生血管的融合,抑制内皮细胞凋亡[21,22]

HGF与其受体结合后,通过激活Grb2/Sos-Ras-Raf-MAPK信号途径促进血管内皮细胞增殖[23]。若抑制HGF的合成,可观察到ADSCs促缺血组织血管化的能力明显减弱[24]。而bFGF可通过成纤维细胞生长因子受体1 (fibroblast growth factor receptors,FGFR1)/c-Src/p38/核因子-κB (NF-κB)途径诱导VEGF表达[25];同时NF-κB的活化可促进内皮细胞DNA合成、细胞分裂增殖[26],促进血管新生。

PDGF促进再血管化可能的机制有:(1)PDGF-C促进内皮细胞、周细胞和平滑肌细胞的迁移、增殖;(2)PDGF-C招募成纤维细胞,促进其增殖、迁移,而成纤维细胞分泌的生长因子、招募的内皮细胞和周细胞有利于血管的新生;(3)PDGF-C通过调节巨噬细胞迁移和增殖及基因表达来促进血管化[27];(4)PDGF-BB促进ADSCs的VEGF基因的表达,使VEGF分泌增多,促进血管再生[28];(5)PDGF刺激ADSCs分泌细胞外囊泡(extracellular vesicle,EV),EV包含一系列促血管再生因子,如MFG-E8、ANGPTL1、血小板生成素和MMP,而MMP能促进内皮细胞迁移并激活血管再生因子和其他信号分子,从而加快血管的重建[29]。ADSCs产生的EV还含有C-Kit和干细胞因子(stem cell factor,SCF)蛋白;C-Kit是一种酪氨酸激酶受体,在祖细胞分化为血管内皮细胞时表达,是内皮祖细胞增殖、动员的关键因素[30],因而EV在脂肪移植后可聚集更多的内皮祖细胞,有利于血管再生。SCF是C-Kit配体,具有促进内皮细胞类血管形成、迁移和存活的作用[31];若阻断C-Kit与SCF蛋白可明显观察到EV促血管生成效应明显减弱[32]。ADSCs也可通过分泌EV将微RNA-31从ADSCs迁移到血管内皮细胞内,标记并抑制缺氧诱导因子抑制因子,从而促进新生血管形成[33]

TGF-β有助于内皮细胞和壁细胞之间进行相互作用[34],有利于血管生成。

由于脂肪移植后组织处于缺氧状态,组织氧供应不足刺激ADSCs激活缺氧诱导因子(hypoxia-inducible factor-1α,HIF-1α)表达,而HIF-1α可促使血管生成素、PDGF、VEGF等血管生成因子高表达[35,36],继而发挥促血管生成效应[36]

2.脂肪巨噬细胞的旁分泌作用

根据巨噬细胞活化状态的不同,将其分为M1型巨噬细胞和M2型巨噬细胞。在SVF中,脂肪组织内90%以上的巨噬细胞都是M2型[37]。M1型巨噬细胞是一种促炎症型巨噬细胞,可被促炎症介质如干扰素γ激活而大量分泌TNF-α、IL-6、IL-12等促炎症因子;M2型巨噬细胞则是一种抗炎症型巨噬细胞,ADSCs分泌的前列腺素E2(prostaglandin E2,PGE2),通过PGE2-EP2/4途径促进M2型巨噬细胞分化,分化成熟的M2型巨噬细胞能够分泌IL-4、IL-10、TGF-β等抗炎因子,以及bFGF、VEGF等促血管生成因子,能抑制炎症反应、促血管网生成[21,38],增加SVF辅助自体脂肪移植术后的脂肪细胞长期生存率[39]。而IL-10不仅能够在缺氧条件下促进M2型巨噬细胞分泌VEGF,抑制M1型巨噬细胞增殖[40],还能够修复内皮细胞衰老性功能损伤,维持动脉的正常结构[41],改善移植区域缺血状态。缺氧状态也可诱导巨噬细胞分泌VEGF、bFGF等血管再生因子,或通过调节酪氨酸激酶受体2表达,参与新生血管的形成[42]

Fantin等[43]将去除了巨噬细胞的SVF移植到去除了巨噬细胞的小鼠中,发现其移植区中央和周围的血管数量比对照组明显减少,且其周边形成的血管末端是钝性而不连续的,表明巨噬细胞对移植后血管网的形成具有重要作用;而将去巨噬细胞的SVF移植到正常小鼠中形成的血管在移植中央区域较多,周边区域较少,加入VEGF-A后血管网的密度可部分恢复正常,这表明脂肪巨噬细胞可能通过分泌VEGF-A和其他血管生成因子促进新血管网形成。也有研究显示,脂肪移植早期巨噬细胞浸润可促进TGF-β、肿瘤坏死因子-α等因子的表达,促血管生成,从而增加脂肪移植后的保留率[44]

巨噬细胞可分泌MMP-1降解血管基底膜和其周围的细胞外基质[45],还可分泌MMP-9、MMP-12、MMP-7促进相邻血管内皮顶端细胞之间的融合,迁移延伸而形成新生管腔,生成血管[46]

3.内皮细胞的分泌作用

内皮细胞可分泌外泌体,相邻的内皮细胞可作为靶细胞与外泌体结合,其含有的mi-RNA(miR-214)可抑制相邻内皮细胞的毛细血管共济失调突变基因的表达,促进内皮生长、迁移以及新生血管的形成[47];其含有的血管生成素-2可分泌促血管生成因子,稳定新生血管网[48]

内皮细胞也可通过表达趋化因子配体1激活细胞外信号调节激酶1/2信号通路,诱导表皮细胞生长因子(epidermal growth factor,EGF)的分泌,促进血管生成[49]。内皮细胞还可通过激活TGF-β、血管生成素-2、PDGF-B/PDGFR-β、Notch、S1P/Edg信号通路调节血管生长、稳定和成熟[50]

脂肪移植术后产生的组织损伤可诱导受损的内皮细胞释放大量的促血管化因子,如bFGF、PDGF、TGF-β和EGF,促进移植区域的血管再生,改善缺血、缺氧情况[51]

4.其他细胞成分的促血管作用

成纤维细胞和平滑肌细胞能分泌HGF促进血管的出芽延伸、内腔的形成和形态的成熟,从而促进新生血管网生长[23]。近期研究表明,周细胞可调节促血管生成因子的释放,促进血管网融合,而去除周细胞后可观察到抗血管生成因子上调。

(三)SVF浓度对脂肪移植的影响

SVF辅助脂肪移植时,常将所取脂肪一分为二,一份用于提取SVF,以1∶1体积比辅助另外一份脂肪移植,该浓度下的SVF虽可明显增加移植脂肪的保留率,但尚不确定其为最佳辅助脂肪移植浓度。为此,有学者分别将浓度为5×105/ml、1×106/ml、2×106/ml的SVF辅助颗粒脂肪移植,发现浓度为1×106/ml的SVF相比于其他2种浓度更能促进血管新生与脂肪存活[52]。但国外有研究表明,浓度在2.5×105/ml与4×106/ml之间的SVF,促进脂肪移植后血管化的程度与浓度成正相关[53]

三、小结与展望

SVF是一组混杂的细胞群,包含的各类细胞成分可直接参与或间接分泌生物活性因子诱导基底膜降解,影响内皮细胞增殖、迁移,促进新生血管融合与重塑,增加周细胞对血管网的稳定,来调节脂肪移植术后的血管再生。因此可以得出以下结论:SVF是一个整体,各成分之间相互影响,在血管生成过程发挥协同作用,但是各成分之间协同促血管再生和各细胞促再血管化的具体机制仍需要进一步研究。

SVF促脂肪移植术后再血管化在临床有着广泛的应用前景,不仅可提高颗粒脂肪移植术后脂肪细胞的存活率、促进烧伤创面愈合、改善糖尿病足溃疡与糖尿病视网膜病变的血运,还可改善心肌缺血,提高心功能、促放射性溃疡创面愈合[8]。但有关SVF的细胞辅助治疗还是处于临床前期研究阶段,其有效性和安全性仍需进一步明确。

利益冲突
利益声明:

本文作者与论文刊登的内容无利益关系。

利益冲突
Disclosure of Conflicts of Interest:

The authors have no financial interest to declare in relation to the content of this article.

参考文献
[1]
李青峰. 自体脂肪移植技术[M]. 北京军事科学出版社2014: 1-2.
[2]
ToyserkaniNM, QuaadeML, SorensenJA. Cell-assisted lipotransfer: a systematic review of its efficacy[J]. Aesthetic Plast Surg, 2016, 40(2): 309-318. DOI: 10.1007/s00266-016-0613-1.
[3]
KolleSF, Fischer-NielsenA, MathiasenAB, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial[J]. Lancet, 2013, 382(9898): 1113-1120. DOI: 10.1016/s0140-6736(13)61410-5.
[4]
ZhuM, DongZ, GaoJ, et al. Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells[J]. Cell Transplant, 2015, 24(1): 49-62. DOI: 10.3727/096368913x675133.
[5]
BourinP, BunnellBA, CasteillaL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)[J]. Cytotherapy, 2013, 15(6): 641-648. DOI: 10.1016/j.jcyt.2013.02.006.
[6]
GuoJ, NguyenA, BanyardDA, et al. Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action[J]. J Plast Reconstr Aesthet Surg, 2016, 69(2): 180-188. DOI: 10.1016/j.bjps.2015.10.014.
[7]
GentileP, OrlandiA, ScioliMG, et al. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery[J]. Stem Cells Transl Med, 2012, 1(3): 230-236. DOI: 10.5966/sctm.2011-0054.
[8]
NguyenA, GuoJ, BanyardDA, et al. Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature[J]. J Plast Reconstr Aesthet Surg, 2016, 69(2): 170-179. DOI: 10.1016/j.bjps.2015.10.015.
[9]
KohYJ, KohBI, KimH, et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells[J]. Arterioscler Thromb Vasc Biol, 201131(5): 1141-1150. DOI: 10.1161/ATVBAHA.110.218206.
[10]
AltmanAM, YanY, MatthiasN, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model[J]. Stem Cells, 2009, 27(1): 250-258. DOI: 10.1634/stemcells.2008-0178.
[11]
MendelTA, ClaboughEB, KaoDS, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy[J]. PLoS One, 2013, 8(5): e65691. DOI: 10.1371/journal.pone.0065691.
[12]
DarA, DomevH, Ben-YosefO, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb[J]. Circulation, 2012, 125(1): 87-99. DOI: 10.1161/circulationaha.111.048264.
[13]
SasakiK, MuroharaT, IkedaH, et al. Evidence for the importance of angiotensin Ⅱ type 1 receptor in ischemia-induced angiogenesis[J]. J Clin Invest, 2002, 109(5): 603-611. DOI: 10.1172/jci13055.
[14]
SugaH, GlotzbachJP, SorkinM, et al. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation[J]. Ann Plast Surg, 2014, 72(2): 234-241. DOI: 10.1097/SAP.0b013e318264fd6a.
[15]
SemonJA, ZhangX, PandeyAC, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis[J]. Stem Cells Transl Med, 2013, 2(10): 789-796. DOI: 10.5966/sctm.2013-0032.
[16]
BlaberSP, WebsterRA, HillCJ, et al. Analysis of in vitro secretion profiles from adipose-derived cell populations[J]. J Transl Med, 2012, 10(1): 172. DOI: 10.1186/1479-5876-10-172.
[17]
TraktuevDO, Merfeld-ClaussS, LiJ, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks[J]. Circ Res, 2008, 102(1): 77-85. DOI: 10.1161/circresaha.107.159475.
[18]
ProcházkaV, JurcikovaJ, LassakO, et al. Therapeutic potential of adipose-derived therapeutic factor concentrate for treating critical limb ischemia[J]. Cell Transplant, 2016, 25(9): 1623-1633. DOI: 10.3727/096368915x689767.
[19]
KondoK, ShintaniS, ShibataR, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1): 61-66. DOI: 10.1161/atvbaha.108.166496.
[20]
KwonHM, HurSM, ParkKY, et al. Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis[J]. Vascul Pharmacol, 2014, 63(1): 19-28. DOI: 10.1016/j.vph.2014.06.004.
[21]
HaoC, ShintaniS, ShimizuY, et al. Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells[J]. Am J Physiol Heart Circ Physiol, 2014, 307(6): H869-879. DOI: 10.1152/ajpheart.00310.2014.
[22]
MontenegroCF, Salla-PontesCL, RibeiroJU, et al. Blocking alphavbeta3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells[J]. Biochimie, 2012, 94(8): 1812-1820. DOI: 10.1016/j.biochi.2012.04.020.
[23]
NewmanAC, ChouW, Welch-ReardonKM, et al. Analysis of stromal cell secretomes reveals a critical role for stromal cell-derived hepatocyte growth factor and fibronectin in angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2013, 33(3): 513-522. DOI: 10.1161/atvbaha.112.300782.
[24]
CaiL, JohnstoneBH, CookTG, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization[J]. Stem Cells, 2007, 25(12): 3234-3243. DOI: 10.1634/stemcells.2007-0388.
[25]
TzengHE, ChenPC, LinKW, et al. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis[J]. Clin Sci (Lond), 2015, 129(2): 147-158. DOI: 10.1042/cs20140390.
[26]
YiEY, KimYJ. Xylitol inhibits in vitro and in vivo angiogenesis by suppressing the NF-kappaB and Akt signaling pathways[J]. Int J Oncol, 2013, 43(1): 315-320. DOI: 10.3892/ijo.2013.1917.
[27]
LiX, KumarA, ZhangF, et al. VEGF-independent angiogenic pathways induced by PDGF-C[J]. Oncotarget, 2010, 1(4): 309-314. DOI: 10.18632/oncotarget.141.
[28]
TraktuevDO, PraterDN, Merfeld-ClaussS, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells[J]. Circ Res, 2009, 104(12): 1410-1420. DOI: 10.1161/circresaha.108.190926.
[29]
RundhaugJE. Matrix metalloproteinases and angiogenesis[J]. J Cell Mol Med, 2005, 9(2): 267-285. DOI: 10.1111/j.1582-4934.2005.tb00355.x.
[30]
MatsuiJ, WakabayashiT, AsadaM, et al. Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells[J]. J Biol Chem, 2004, 279(18): 18600-18607. DOI: 10.1074/jbc.M311643200.
[31]
Abu El-AsrarAM, StruyfS, OpdenakkerG, et al. Expression of stem cell factor/c-kit signaling pathway components in diabetic fibrovascular epiretinal membranes[J]. Mol Vis, 2010, 16: 1098-1107. DOI: 10.1111/j.1755-3768.2010.2444.x.
[32]
LopatinaT, BrunoS, TettaC, et al. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential[J]. Cell Commun Signal, 2014, 12: 26. DOI: 10.1186/1478-811x-12-26.
[33]
KangT, JonesTM, NaddellC, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450. DOI: 10.5966/sctm.2015-0177.
[34]
HirschiKK, SkalakTC, PeirceSM, et al. Vascular assembly in natural and engineered tissues[J]. Ann N Y Acad Sci, 2002, 961: 223-242. DOI: 10.1111/j.1749-6632.2002.tb03090.x.
[35]
RezvaniHR, AliN, NissenLJ, et al. HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders[J]. J Invest Dermatol, 2011, 131(9): 1793-1805. DOI: 10.1038/jid.2011.141.
[36]
KellyBD, HackettSF, HirotaK, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J]. Circ Res, 2003, 93(11): 1074-1081. DOI: 10.1161/01.res.0000102937.50486.1b.
[37]
EtoH, IshimineH, KinoshitaK, et al. Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency[J]. Stem Cells Dev, 2013, 22(6): 985-997. DOI: 10.1089/scd.2012.0442.
[38]
LiP, LuM, NguyenMT, et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice[J]. J Biol Chem, 2010, 285(20): 15333-15345. DOI: 10.1074/jbc.M110.100263.
[39]
DongZ, FuR, LiuL, et al. Stromal vascular fraction (SVF) cells enhance long-term survival of autologous fat grafting through the facilitation of M2 macrophages[J]. Cell Biol Int, 2013, 37(8): 855-859. DOI: 10.1002/cbin.10099.
[40]
WuWK, LlewellynOP, BatesDO, et al. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia[J]. Immunobiology, 2010, 215(9-10): 796-803. DOI: 10.1016/j.imbio.2010.05.025.
[41]
KinzenbawDA, ChuY, Pena SilvaRA, et al. Interleukin-10 protects against aging-induced endothelial dysfunction[J]. Physiol Rep, 2013, 1(6): e00149. DOI: 10.1002/phy2.149.
[42]
PatelAS, SmithA, NuceraS, et al. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb[J]. EMBO Mol Med, 2013, 5(6): 858-869. DOI: 10.1002/emmm.201302752.
[43]
FantinA, VieiraJM, GestriG, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction[J]. Blood, 2010, 116(5): 829-840. DOI: 10.1182/blood-2009-12-257832.
[44]
CaiJ, FengJ, LiuK, et al. Early macrophage infiltration improves the fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment[J]. Plast Reconstr Surg, 2018141(2): 376-386. DOI: 10.1097/prs.0000000000004028.
[45]
ShengL, YangM, LiH, et al. Transplantation of adipose stromal cells promotes neovascularization of random skin flaps[J]. Tohoku J Exp Med, 2011, 224(3): 229-234. DOI: 10.1620/tjem.224.229.
[46]
SquadritoML, De PalmaM. Macrophage regulation of tumor angiogenesis: implications for cancer therapy[J]. Mol Aspects Med, 2011, 32(2): 123-145. DOI: 10.1016/j.mam.2011.04.005
[47]
van BalkomBW, de JongOG, SmitsM, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells[J]. Blood, 2013, 121(19): 3997-4006, s1-15. DOI: 10.1182/blood-2013-02-478925.
[48]
JuR, ZhuangZW, ZhangJ, et al. Angiopoietin-2 secretion by endothelial cell exosomes: regulation by the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan-4/syntenin pathways[J]. J Biol Chem, 2014, 289(1): 510-519. DOI: 10.1074/jbc.M113.506899.
[49]
MiyakeM, GoodisonS, UrquidiV, et al. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways[J]. Lab Invest, 2013, 93(7): 768-778. DOI: 10.1038/labinvest.2013.71.
[50]
ArmulikA, AbramssonA, BetsholtzC. Endothelial/pericyte interactions[J]. Circ Res, 2005, 97(6): 512-523. DOI: 10.1161/01.RES.0000182903.16652.d7.
[51]
EtoH, SugaH, InoueK, et al. Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adipose-derived stem/progenitor/stromal cells and induction of angiogenesis[J]. Am J Pathol, 2011, 178(5): 2322-2332. DOI: 10.1016/j.ajpath.2011.01.032.
[52]
朱茗. 血管基质片段细胞促进游离脂肪移植后再生机制的实验研究[D]. 广州南方医科大学2012.
[53]
MaijubJG, BoydNL, DaleJR, et al. Concentration-dependent vascularization of adipose stromal vascular fraction cells[J]. Cell Transplant, 2015, 24(10): 2029-2039. DOI: 10.3727/096368914x685401.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词