参考文献[1]
李青峰. 自体脂肪移植技术[M]. 北京:军事科学出版社,2014: 1-2.
[2]
ToyserkaniNM, QuaadeML, SorensenJA. Cell-assisted lipotransfer: a systematic review of its efficacy[J]. Aesthetic Plast Surg, 2016, 40(2): 309-318. .
[3]
KolleSF, Fischer-NielsenA, MathiasenAB, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial[J]. Lancet, 2013, 382(9898): 1113-1120. .
[4]
ZhuM, DongZ, GaoJ, et al. Adipocyte regeneration after free fat transplantation: promotion by stromal vascular fraction cells[J]. Cell Transplant, 2015, 24(1): 49-62. .
[5]
BourinP, BunnellBA, CasteillaL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)[J]. Cytotherapy, 2013, 15(6): 641-648. .
[6]
GuoJ, NguyenA, BanyardDA, et al. Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action[J]. J Plast Reconstr Aesthet Surg, 2016, 69(2): 180-188. .
[7]
GentileP, OrlandiA, ScioliMG, et al. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery[J]. Stem Cells Transl Med, 2012, 1(3): 230-236. .
[8]
NguyenA, GuoJ, BanyardDA, et al. Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature[J]. J Plast Reconstr Aesthet Surg, 2016, 69(2): 170-179. .
[9]
KohYJ, KohBI, KimH, et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2011,31(5): 1141-1150. .
[10]
AltmanAM, YanY, MatthiasN, et al. IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model[J]. Stem Cells, 2009, 27(1): 250-258. .
[11]
MendelTA, ClaboughEB, KaoDS, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy[J]. PLoS One, 2013, 8(5): e65691. .
[12]
DarA, DomevH, Ben-YosefO, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb[J]. Circulation, 2012, 125(1): 87-99. .
[13]
SasakiK, MuroharaT, IkedaH, et al. Evidence for the importance of angiotensin Ⅱ type 1 receptor in ischemia-induced angiogenesis[J]. J Clin Invest, 2002, 109(5): 603-611. .
[14]
SugaH, GlotzbachJP, SorkinM, et al. Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation[J]. Ann Plast Surg, 2014, 72(2): 234-241. .
[15]
SemonJA, ZhangX, PandeyAC, et al. Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis[J]. Stem Cells Transl Med, 2013, 2(10): 789-796. .
[16]
BlaberSP, WebsterRA, HillCJ, et al. Analysis of in vitro secretion profiles from adipose-derived cell populations[J]. J Transl Med, 2012, 10(1): 172. .
[17]
TraktuevDO, Merfeld-ClaussS, LiJ, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks[J]. Circ Res, 2008, 102(1): 77-85. .
[18]
ProcházkaV, JurcikovaJ, LassakO, et al. Therapeutic potential of adipose-derived therapeutic factor concentrate for treating critical limb ischemia[J]. Cell Transplant, 2016, 25(9): 1623-1633. .
[19]
KondoK, ShintaniS, ShibataR, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1): 61-66. .
[20]
KwonHM, HurSM, ParkKY, et al. Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis[J]. Vascul Pharmacol, 2014, 63(1): 19-28. .
[21]
HaoC, ShintaniS, ShimizuY, et al. Therapeutic angiogenesis by autologous adipose-derived regenerative cells: comparison with bone marrow mononuclear cells[J]. Am J Physiol Heart Circ Physiol, 2014, 307(6): H869-879. .
[22]
MontenegroCF, Salla-PontesCL, RibeiroJU, et al. Blocking alphavbeta3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells[J]. Biochimie, 2012, 94(8): 1812-1820. .
[23]
NewmanAC, ChouW, Welch-ReardonKM, et al. Analysis of stromal cell secretomes reveals a critical role for stromal cell-derived hepatocyte growth factor and fibronectin in angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2013, 33(3): 513-522. .
[24]
CaiL, JohnstoneBH, CookTG, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization[J]. Stem Cells, 2007, 25(12): 3234-3243. .
[25]
TzengHE, ChenPC, LinKW, et al. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis[J]. Clin Sci (Lond), 2015, 129(2): 147-158. .
[26]
YiEY, KimYJ. Xylitol inhibits in vitro and in vivo angiogenesis by suppressing the NF-kappaB and Akt signaling pathways[J]. Int J Oncol, 2013, 43(1): 315-320. .
[27]
LiX, KumarA, ZhangF, et al. VEGF-independent angiogenic pathways induced by PDGF-C[J]. Oncotarget, 2010, 1(4): 309-314. .
[28]
TraktuevDO, PraterDN, Merfeld-ClaussS, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells[J]. Circ Res, 2009, 104(12): 1410-1420. .
[29]
RundhaugJE. Matrix metalloproteinases and angiogenesis[J]. J Cell Mol Med, 2005, 9(2): 267-285. .
[30]
MatsuiJ, WakabayashiT, AsadaM, et al. Stem cell factor/c-kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells[J]. J Biol Chem, 2004, 279(18): 18600-18607. .
[31]
Abu El-AsrarAM, StruyfS, OpdenakkerG, et al. Expression of stem cell factor/c-kit signaling pathway components in diabetic fibrovascular epiretinal membranes[J]. Mol Vis, 2010, 16: 1098-1107. .
[32]
LopatinaT, BrunoS, TettaC, et al. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential[J]. Cell Commun Signal, 2014, 12: 26. .
[33]
KangT, JonesTM, NaddellC, et al. Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31[J]. Stem Cells Transl Med, 2016, 5(4): 440-450. .
[34]
HirschiKK, SkalakTC, PeirceSM, et al. Vascular assembly in natural and engineered tissues[J]. Ann N Y Acad Sci, 2002, 961: 223-242. .
[35]
RezvaniHR, AliN, NissenLJ, et al. HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders[J]. J Invest Dermatol, 2011, 131(9): 1793-1805. .
[36]
KellyBD, HackettSF, HirotaK, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J]. Circ Res, 2003, 93(11): 1074-1081. .
[37]
EtoH, IshimineH, KinoshitaK, et al. Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency[J]. Stem Cells Dev, 2013, 22(6): 985-997. .
[38]
LiP, LuM, NguyenMT, et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice[J]. J Biol Chem, 2010, 285(20): 15333-15345. .
[39]
DongZ, FuR, LiuL, et al. Stromal vascular fraction (SVF) cells enhance long-term survival of autologous fat grafting through the facilitation of M2 macrophages[J]. Cell Biol Int, 2013, 37(8): 855-859. .
[40]
WuWK, LlewellynOP, BatesDO, et al. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia[J]. Immunobiology, 2010, 215(9-10): 796-803. .
[41]
KinzenbawDA, ChuY, Pena SilvaRA, et al. Interleukin-10 protects against aging-induced endothelial dysfunction[J]. Physiol Rep, 2013, 1(6): e00149. .
[42]
PatelAS, SmithA, NuceraS, et al. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb[J]. EMBO Mol Med, 2013, 5(6): 858-869. .
[43]
FantinA, VieiraJM, GestriG, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction[J]. Blood, 2010, 116(5): 829-840. .
[44]
CaiJ, FengJ, LiuK, et al. Early macrophage infiltration improves the fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment[J]. Plast Reconstr Surg, 2018,141(2): 376-386. .
[45]
ShengL, YangM, LiH, et al. Transplantation of adipose stromal cells promotes neovascularization of random skin flaps[J]. Tohoku J Exp Med, 2011, 224(3): 229-234. .
[46]
SquadritoML, De PalmaM. Macrophage regulation of tumor angiogenesis: implications for cancer therapy[J]. Mol Aspects Med, 2011, 32(2): 123-145.
[47]
van BalkomBW, de JongOG, SmitsM, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells[J]. Blood, 2013, 121(19): 3997-4006, s1-15. .
[48]
JuR, ZhuangZW, ZhangJ, et al. Angiopoietin-2 secretion by endothelial cell exosomes: regulation by the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan-4/syntenin pathways[J]. J Biol Chem, 2014, 289(1): 510-519. .
[49]
MiyakeM, GoodisonS, UrquidiV, et al. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways[J]. Lab Invest, 2013, 93(7): 768-778. .
[50]
ArmulikA, AbramssonA, BetsholtzC. Endothelial/pericyte interactions[J]. Circ Res, 2005, 97(6): 512-523. .
[51]
EtoH, SugaH, InoueK, et al. Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adipose-derived stem/progenitor/stromal cells and induction of angiogenesis[J]. Am J Pathol, 2011, 178(5): 2322-2332. .
[52]
朱茗. 血管基质片段细胞促进游离脂肪移植后再生机制的实验研究[D]. 广州:南方医科大学,2012.
[53]
MaijubJG, BoydNL, DaleJR, et al. Concentration-dependent vascularization of adipose stromal vascular fraction cells[J]. Cell Transplant, 2015, 24(10): 2029-2039. .