病例报告与文献综述
紫外线致皮肤光老化及光癌变机制的研究进展
中华整形外科杂志, 2021,37(2) : 220-224. DOI: 10.3760/cma.j.cn114453-20200608-00343
摘要

日光的累计照射可加速皮肤老化与癌变,使皮肤的生物学及临床反应发生改变,包括急性损伤(日晒伤)和慢性损伤(光老化、光癌变或色素沉着等)。文章概述了近年来紫外线对皮肤光老化及光癌变影响的研究进展,揭示光老化和光致癌机制是通过紫外线照射产生活性氧和DNA损伤,以及由此引起的细胞损伤、炎症、免疫抑制、细胞外基质重塑及血管生成改变所致,为临床防治光老化和光癌变提供帮助。

引用本文: 佘金铭, 车静, 陈聪颖, 等.  紫外线致皮肤光老化及光癌变机制的研究进展 [J] . 中华整形外科杂志, 2021, 37(2) : 220-224. DOI: 10.3760/cma.j.cn114453-20200608-00343.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

皮肤因长期暴露于外界环境,是人体经紫外线(ultraviolet,UV)照射后最易受损的器官。光老化是指反复暴露于阳光中的UV辐射下而引起的皮肤过早老化[1]。皮肤早衰与恶性皮肤肿瘤、黑色素瘤和非黑色素瘤的发生发展密切相关[2]。皮肤老化影响皮肤外观,而皮肤癌直接威胁患者健康,现如今这些领域成为研究热点。近年来,UV辐射致皮肤光老化和光癌变机制有了更进一步的研究及阐释,研究者发现皮肤光老化及光癌变的机制复杂,但其主要的机制为UV产生的活性氧(reactive oxygen species,ROS)而引起的层级连锁反应,本文就UV诱导DNA及细胞稳态的改变导致复杂的炎症反应、信号转导通路和酶的级联作用等机制作出阐述,从而为临床医师开展相关治疗工作提供相应的理论参考。

一、UV对皮肤的损伤效应

UV辐射的积累可引起皮肤衰老和癌变。UV辐射可分为3大类:UVA(320~400 nm)、UVB(280~320 nm)和UVC(200~280 nm)[3],其中UVC几乎全部被臭氧层吸收,故使皮肤致病的主要为UVA和UVB[4]。环境中UVA和UVB损伤效应的不同导致其对皮肤结构与功能的影响存在明显差异。UVA含量丰富,占总UV的90%~95%,且具有较高的穿透能力,辐射穿透真皮乳头层影响真皮甚至皮下组织区域的细胞,例如成纤维细胞、血管内皮细胞和朗格汉斯细胞等,激活基质金属蛋白酶(matrix metalloproteinases,MMP)家族,促进胶原蛋白(主要为Ⅰ型和Ⅲ型胶原)及弹性纤维的降解,从而引起真皮结构紊乱,这种损伤难以自行修复,对真皮组织可造成持续性影响,导致皮肤松弛、下垂、皱纹异常增多等肉眼可见的光老化性损害[5,6]。因此,UVA会加速皮肤衰老,是引起皮肤光老化的主要因素。UVB含量较低(占总UV的5%~10%),但其具有较高的能量,主要被表皮层吸收,产生的效应为:(1)角质层增厚、表皮增生、炎症反应加剧;(2)黑色素细胞增殖明显,黑色素含量增加,产生新的黑色素并导致黄褐斑等色素增多性皮肤病的发生[7,8];(3)诱导角质形成细胞DNA突变,形成胸腺嘧啶二聚体,长期UVB辐射的累积造成DNA损伤不能及时修复,进而染色体变异,细胞癌变恶化,最终导致皮肤癌[9,10]。急性和慢性UV照射的主要影响是UV产生的ROS造成DNA损伤、炎症反应和免疫抑制,迅速破坏生物分子的链式反应,如端粒缩短、线粒体损伤、细胞膜降解以及蛋白酶氧化。UV辐射可直接或间接通过ROS参与致癌过程,直接影响DNA或激活其他因素,亦可通过抑制免疫调控机制促进肿瘤细胞的增殖[11,12,13],UV诱导产生的ROS促进蛋白酶释放和血管生成,导致肿瘤的扩散及转移[14]

二、光老化与光癌变机制

衰老是一个自然的过程,导致器官逐渐退化与组织学变化。衰老的主要原因之一是天然抗氧化系统对ROS的产生和清除难以平衡,由此导致氧化应激。ROS促进细胞膜脂质成分的过氧化,改变酶系统的结构和功能,促进碳水化合物的氧化[15,16,17,18]

(一)UV辐射改变DNA与细胞稳态

UV辐射,特别是UVB通过诱发的ROS使DNA在相邻嘧啶碱基处产生环丁烷胞嘧啶二聚体,从而改变DNA[19,20]。嘧啶二聚体在影响抑癌基因p53时尤为重要。皮肤中p53出现突变,表现为慢性皮肤损伤、皮肤角化病和皮肤癌[21]。p53突变后细胞对凋亡产生抗性,使细胞进入有丝分裂,而不经DNA修复。此外,ROS可直接参与p53无关的凋亡通路[22]

(二)光老化和光癌变致光氧化应激通路改变

光氧化应激的主要调控途径包括丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、核转录因子-κB(nuclear factor-κB,NF-κB)(p65)、jak激酶、核因子红血球相关因子-2(nuclear respiratory factors,Nrf-2)。MAPK激酶通路通过受体酪氨酸激酶激活转录因子激活蛋白-1(activator protein-1,AP-1),激活MMPs的表达,AP-1由细胞外信号调节激酶1/2、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)和p38蛋白组成[23]。JNK和p38通路在UV辐射介导的AP-1和环氧合酶-2表达的增加中起重要作用,是抗皮肤老化及癌变治疗的靶点[24]。转录因子Nrf-2通过抗氧化反应元件调节Ⅱ期关键保护酶的表达[25]

NF-κB通路也通过激活胞质NF-κB转录因子抑制剂(inhibitor of NF-κB,I-κB)激酶而被氧化应激激活,活性I-κB激酶磷酸化并降解I-κB。NF-κB的激活与UV辐射介导的细胞膜组分氧化修饰有关。NF-κB从其抑制剂I-κB中释放,导致活化的NF-κB向细胞核移位,激活炎症细胞因子和前列腺素。

(三)光老化和光癌变致线粒体功能障碍及细胞生物能量学改变

线粒体在氧化反应中起重要作用。UV积累可诱导线粒体DNA的突变、改变线粒体功能,减少O2消耗和ATP生成,从而影响细胞的迁移及分裂[26]。UV诱导线粒体功能障碍和毒性机制包括含半胱氨酸的天冬氨酸蛋白水解酶活化、膜去极化和细胞色素c释放[27]。总之,线粒体功能障碍,除了影响细胞能量消耗所需的活动,如运动和DNA修复,还会增加氧化应激水平,使氧分子在被线粒体利用过程中产生活泼的中间体ROS,造成氧毒性,随着ROS的不断累积,线粒体的损伤超过一定限度时,最终可导致细胞衰老甚至死亡[28]

Nrf-2是UV辐射的靶点。Nrf-2调控多种内源性抗氧化蛋白酶系统的表达,如葡萄糖-6-磷酸脱氢酶、硫氧还蛋白还原酶等硫氧还原蛋白的合成,谷胱甘肽-s-转移酶和过氧化物酶等的表达[29]。Nrf-2还控制线粒体呼吸的生物利用度[30],是维持体内氧化还原平衡的重要调节因子。

(四)光老化和光癌变的炎症级联反应

UV辐射诱导促炎基因的表达。炎症介质在光老化和光癌变过程中发挥重要的作用[31]。炎症介质从角质形成细胞、成纤维细胞、肿瘤细胞、白细胞和血管内皮细胞释放,包括血浆介质(缓激肽、纤溶酶、纤维蛋白)、脂质介质(前列腺素、白三烯、血小板活化因子)和炎性细胞因子白细胞介素-1(interleukin-1,IL-1)、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)[32,33,34]。ROS激活脂质介质环氧化酶-2(cyclooxygenase-2,COX-2)和前列腺素E2(prostaglandin E2,PGE2)参与鸟氨酸脱羧酶的激活,调节细胞的增殖活性[35,36,37]。UV的辐射使得皮下炎性细胞因子被激活,炎症过程触发ROS和活性氮,产生过氧亚硝酸盐,导致DNA缺失和重组[38,39]。DNA修复、细胞周期和凋亡的过程发生改变,加速皮肤癌变的进展速度。此外,UV辐射改变了转化生长因子-β(transforming growth factor-β,TGF-β)的表达,TGF-β通过调控MMPs使得细胞外基质(extracellular matrix, ECM)重塑,从而促进皮肤光老化的发生和肿瘤扩散[40]

(五)UV辐射引起体内免疫抑制

UV辐射主要降低细胞免疫,但体液免疫也可受到影响[41]。UV辐射使表皮朗格汉斯细胞枯竭,朗格汉斯细胞是细胞免疫应答的重要介质,它们在抗原提呈中起着重要的作用[42]。UV辐射不仅减少了朗格汉斯细胞的数量,而且还破坏了它们的功能,如淋巴细胞的迁移及表面抗原的表达。功能受损的朗格汉斯细胞其抗原提呈功能降低,主要原因是长期UV辐射使得朗格汉斯细胞表面共刺激分子表达减少所致,例如膜相关抗原B7(B7-1、B7-2)的合成过程受到抑制,这一过程的主要机制是反式尿氨酸异构化为顺式,直接减少了朗格汉斯细胞的迁移并降低了其活性[43]。此外,UV辐射促进免疫抑制细胞因子IL-10的分泌,IL-10由角质形成细胞分泌,其在皮肤免疫抑制中起着至关重要的作用,在皮肤病中亦发现IL-10分泌增加,例如黑色素瘤,其中高浓度IL-10与其不良预后相关[44]。UV辐射引起朗格汉斯细胞耗竭,导致表皮中巨噬细胞增加,激活调节性T细胞,辅助型T细胞1/2(T helper 1/2 cell,Th1/Th2)免疫平衡失调,并使Th1/Th2向Th2反应极化[45]。Th2反应极化导致的免疫抑制作用可能与趋化因子IL-12有关,因为朗格汉斯细胞表达的IL-12耗竭使T细胞活化倾向于Th2,同时促进调节性T细胞(regulatory cells,Treg)活化[46,47,48]

(六)UV辐射通过影响胶原、弹性蛋白和MMP引起ECM重塑

胶原蛋白和弹性蛋白是ECM的结构蛋白。胶原纤维和弹性蛋白纤维的重塑促进血管生成和转移,而且受损的胶原蛋白和弹性蛋白是光氧化应激的增敏剂。不同胶原的特殊性质基于三螺旋段的长度、三螺旋断裂和氨基酸修饰[49]。弹性蛋白纤维主要由纤维微纤包围的弹力蛋白核心(90%)组成。皮肤中的弹性纤维在UV照射下会失去正常的结构和功能。UV辐射也耗尽了表皮-真皮层和真皮层中的微纤维网络,生成异常的弹性纤维[50]

在ECM重塑和皮肤癌变过程中,ECM蛋白水解酶(MMPs和弹性蛋白酶)是由表皮角质细胞、成纤维细胞产生的[51,52,53],它们的基础水平随着年龄的增长而增加,并且由于环境污染物和UV辐射而进一步增加,导致胶原蛋白和弹性蛋白在致癌过程中发生断裂。MMPs根据启动子中存在的AP-1或TATA核苷酸序列分为3类:第1类MMPs(MMP-1、3、7、9、10、12、13、19和26),其中含有TATA盒和AP-1位点;第2类MMPs(MMP-8、11、21)没有AP-1位点;第3类MMPs(MMP-2、14、28)没有TATA框和AP-1位点[54,55]

转录因子AP-1主要受MAPK通路的刺激,可刺激多种MMP的转录,从而共同降解ECM,如MMP-1、MMP-2、MMP-9和MMP-3。此外,AP-1抑制Ⅰ型胶原基因的转录。因此,MMPs对ECM的降解增强以及ECM结构蛋白的表达降低进一步损伤ECM和组织完整性。MMP组织抑制剂(Timps)可抑制MMP的亲和力。胶原蛋白和弹性蛋白的重塑,对于血管生成、转移和组织破坏,主要是由于MMP表达增加和Timps表达减少所致[56,57]

三、小结

光老化和光致癌机制主要是通过UV辐射引起的ROS和DNA损伤及其产生的细胞损伤、炎症、氧化应激介导的信号转导途径的改变、免疫抑制和ECM重塑。本文阐明UV辐射导致光老化和光癌变的机制,探寻其关键通路和靶点,为临床建立防治皮肤光老化及光癌变的方法提供有效帮助。然而,目前仍有一些问题需要解决,如UV辐射致氧化应激介导的信号转导途径改变的始动因素及关键分子尚不明确,缺乏日光中各波段、不同辐射剂量的UV在光老化及光癌变中的相关作用数据,以上问题尚需进一步的探讨和研究。

利益冲突
利益声明:

本文作者与论文刊登的内容无利益关系。

利益冲突
Disclosure of Conflicts of Interest:

The authors have no financial interest to declare in relation to the content of this article.

参考文献
[1]
Scharffetter-KochanekK, BrenneisenP, WenkJ, et al. Photoaging of the skin from phenotype to mechanisms[J]. Exp Gerontol, 2000, 35(3): 307-316. DOI: 10.1016/S0531-5565(00)00098-X.
[2]
OrioliD, DellambraE. Epigenetic regulation of skin cells in natural aging and premature aging diseases[J]. Cells, 2018, 7(12): 268. DOI: 10.3390/cells7120268.
[3]
de GruijlFR. Photocarcinogenesis: UVA vs. UVB radiation[J]. Skin Pharmacol Appl Skin Physiol, 2002, 15(5): 316-320. DOI: 10.1159/000064535.
[4]
ZhangJ, BowdenGT. Activation of p38 MAP kinase and JNK pathways by UVA irradiation[J]. Photochem Photobiol Sci, 2012, 11(1): 54-61. DOI: 10.1039/c1pp05133d.
[5]
RabeJH, MamelakAJ, McElgunnPJ, et al. Photoaging: mechanisms and repair[J]. J Am Acad Dermatol, 2006, 55(1): 1-19. DOI: 10.1016/j.jaad.2005.05.010.
[6]
DeuschleVCKN, BruscoI, PianaM, et al. Persea americana Mill. crude extract exhibits antinociceptive effect on UVB radiation-induced skin injury in mice[J]. Inflammophar-macology, 2019, 27(2): 323-338. DOI: 10.1007/s10787-018-0441-9.
[7]
YumHW, KimSH, KangJX, et al. Amelioration of UVB-induced oxidative stress and inflammation in fat-1 transgenic mouse skin[J]. Biochem Biophys Res Commun, 2018, 502(1): 1-8. DOI: 10.1016/j.bbrc.2018.05.093.
[8]
HadshiewIM, EllerMS, GilchrestBA. Skin aging and photoaging: the role of DNA damage and repair[J]. Am J Contact Dermat, 2000, 11(1): 19-25. DOI: 10.1016/S1046-199X(00)90028-9.
[9]
YaarM, GilchrestBA. Photoageing: mechanism, prevention and therapy[J]. Br J Dermatol, 2007, 157(5): 874-887. DOI: 10.1111/j.1365-2133.2007.08108.x.
[10]
DreherD, JunodAF. Role of oxygen free radicals in cancer development[J]. Eur J Cancer, 1996, 32(1): 30-38. DOI: 10.1016/0959-8049(95)00531-5.
[11]
NishisgoriC. Current concept of photocarcinogenesis[J]. Photochem Photobiol Sci, 2015, 14(9): 1713-1721. DOI: 10.1039/c5pp00185d.
[12]
KawanishiS, HirakuY, OikawaS. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging[J]. Mutat Res Rev Mutat Res, 2001, 488(1): 65-76. DOI: 10.1016/S1383-5742(00)00059-4.
[13]
YuMO, ParkKJ, ParkDH, et al. Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma[J]. J Neurooncol, 2015, 125(1): 55-63. DOI: 10.1007/s11060-015-1889-8.
[14]
UliaszA, SpencerJM. Chemoprevention of skin cancer and photoaging[J]. Clin Dermatol, 2004, 22(3): 178-182. DOI: 10.1016/j.clindermatol.2003.12.012.
[15]
LeeEH, RossiAM, NehalKS. Age and treatment of nonmelanoma skin cancer[J]. JAMA Surg, 2018, 153(9): 865-866. DOI: 10.1001/jamasurg.2018.1675.
[16]
FinnaneA, DallestK, JandaM, et al. Teledermatology for the diagnosis and management of skin cancer: a systematic review[J]. JAMA Dermatol, 2017, 153(3): 319-327. DOI: 10.1001/jamadermatol.2016.4361.
[17]
ShaoY, HeT, FisherGJ, et al. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo[J]. Int J Cosmet Sci, 2017, 39(1): 56-65. DOI: 10.1111/ics.12348.
[18]
MortonCA. Can photodynamic therapy reverse the signs of photoageing and field cancerization?[J]. Br J Dermatol, 2012, 167(1): 2. DOI: 10.1111/j.1365-2133.2012.10914.x.
[19]
BalupillaiA, NagarajanRP, RamasamyK, et al. Caffeic acid prevents UVB radiation induced photocarcinogenesis through regulation of PTEN signaling in human dermal fibroblasts and mouse skin[J]. Toxicol Appl Pharmacol, 2018, 352: 87-96. DOI: 10.1016/j.taap.2018.05.030.
[20]
TongL, WuS. The mechanisms of carnosol in chemoprevention of ultraviolet B-light-Induced non-melanoma skin cancer formation[J]. Sci Rep, 2018, 8(1): 1-9. DOI: 10.1038/s41598-018-22029-x.
[21]
BrashDE, RudolphJA, SimonJA, et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma[J]. Proc Natl Acad Sci, 1991, 88(22): 10124-10128. DOI: 10.1073/pnas.88.22.10124.
[22]
DesgarnierMCD, RochettePJ. Enhancement of UVB-induced DNA damage repair after a chronic low-dose UVB pre-stimulation[J]. DNA Repair, 2018, 63(2): 56-62. DOI: 10.1016/j.dnarep.2018.01.008.
[23]
TanosT, MarinissenMJ, LeskowFC, et al. Phosphorylation of c-Fos by members of the p38 MAPK family role in the AP-1 response to UV light[J]. J Biol Che, 2005, 280(19): 18842-18852. DOI: 10.1074/jbc.M500620200.
[24]
DeceanHP, BrieIC, TatomirCB, et al. Targeting MAPK (p38, ERK, JNK) and inflammatory CK (GDF-15, GM-CSF) in UVB-activated human skin cells with vitis vinifera seeds extract[J]. J Environ Pathol Toxicol, 2018, 37(3): 261-272. DOI: 10.1615/JEnvironPatholToxicolOncol.2018027009.
[25]
JeayengS, WongkajornsilpA, SlominskiAT, et al. Nrf2 in keratinocytes modulates UVB-Induced DNA damage and apoptosis in melanocytes through ROS-Dependent mechanism[J]. Free Radic Biol Med, 2016, 100(15): 41-45. DOI: 10.1016/j.freeradbiomed.2016.10.106.
[26]
ZhaoB, ShahP, QiangL, et al. Distinct role of Sesn2 in response to UVB-induced DNA damage and UVA-induced oxidative stress in melanocytes[J]. Photochem Photobiol, 2017, 93(1): 375-381. DOI: 10.1111/php.12624.
[27]
AbonnencM, SonegoG, CrettazD, et al. In vitro study of platelet function confirms the contribution of the ultraviolet B (UVB) radiation in the lesions observed in riboflavin/UVB-treated platelet concentrates[J]. Transfusion, 2015, 55(9): 2219-2230. DOI: 10.1111/trf.13123.
[28]
EscobalesN, NuñezRE, JangS, et al. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats[J]. J Mol Cell Cardiol, 2014, 77(8): 136-146. DOI: 10.1016/j.yjmcc.2014.10.009.
[29]
Aparicio-SotoM, Sánchez-HidalgoM, CárdenoA, et al. Dietary extra virgin olive oil attenuates kidney injury in pristane-induced SLE model via activation of HO-1/Nrf-2 antioxidant pathway and suppression of JAK/STAT, NF-κB and MAPK activation[J]. J Nutr Biochem, 2016, 27(16): 278-288. DOI: 10.1016/j.jnutbio.2015.09.017.
[30]
QiR, WangD, XingL, et al. Cyclosporin a inhibits mitochondrial biogenesis in Hep G2 cells[J]. Biochem Biophys Res Commun, 2018, 496(3): 941-946. DOI: 10.1016/j.bbrc.2018.01.113.
[31]
BoschR, PhilipsN, Suárez-PérezJA, et al. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals[J]. Antioxidants, 2015, 4(2): 248-268. DOI: 10.1016/j.bbrc.2018.01.113.
[32]
SurR, LytePA, SouthallMD. Hsp27 regulates pro-inflammatory mediator release in keratinocytes by modulating NF-κB signaling[J]. J Invest Dermatol, 2008, 128(5): 1116-1122. DOI: 10.1038/sj.jid.5701157.
[33]
WooffY, ManSM, NatoliR, et al. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases[J]. Front Immunol, 2019, 10(21): 1618-1623. DOI: 10.3389/fimmu.2019.01618
[34]
BoguniewiczM, AlexisAF, BeckLA, et al. Expert perspec-tives on management of moderate-to-severe atopic dermatitis: a multidisciplinary consensus addressing current and emerging therapies[J]. J Allergy Clin Immunol Pract, 2017, 5(6): 1519-1531. DOI: 10.1016/j.jaip.2017.08.005.
[35]
XuH, WangCY, ZhangHN, et al. Astragaloside Ⅳ suppresses inflammatory mediator production in synoviocytes and collageninduced arthritic rats[J]. Mol Med Rep, 2016, 13(4): 3289-3296. DOI: 10.3892/mmr.2016.4923.
[36]
LeeCW, LinZC, HuCS, et al. Urban particulate matter down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction[J]. Sci Rep, 2016, 17(6): 27995-28001. DOI: 10.1038/srep27995.
[37]
TsaiMH, HsuLF, LeeCW, et al. Resveratrol inhibits urban particulate matter-induced COX-2/PGE2 release in human fibroblast-like synoviocytes via the inhibition of activation of NADPH oxidase/ROS/NF-κB[J]. Int J Biochem Cell Biol, 2017, 88(9): 113-123. DOI: 10.1016/j.biocel.2017.05.015.
[38]
ZhengH, ZhangM, LuoH, et al. Isoorientin alleviates UVB-induced skin injury by regulating mitochondrial ROS and cellular autophagy[J]. Biochem Biophys Res Commun, 2019, 514(4): 1133-1139. DOI: 10.1016/j.bbrc.2019.04.195.
[39]
BridgemanBB, WangP, YeB, et al. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention[J]. Cell Signal, 2016, 28(5): 460-468. DOI: 10.1016/j.cellsig.2016.02.008.
[40]
DerynckR, AkhurstRJ, BalmainA. TGF-β signaling in tumor suppression and cancer progression[J]. Nat Genet, 2001, 29(2): 117-129. DOI: 10.1038/ng1001-117.
[41]
KulkarniNN, AdaseCA, ZhangL, et al. IL-1 receptor-knockout mice develop epidermal cysts and show an altered innate immune response after exposure to UVB radiation[J]. J Invest Dermatol, 2017, 137(11): 2417-2426. DOI: 10.1016/j.jid.2017.07.814.
[42]
XuJL, FengYD, SongGX, et al. Tacrolimus reverses UVB irradiation-induced epidermal Langerhans cell reduction by inhibiting TNF-α secretion in keratinocytes via regulation of NF-κB/p65[J]. Front Pharmacol, 2018, 9(3): 67. DOI: 10.3389/fphar.2018.00067.
[43]
FengX, YangM, YangZ, et al. Abnormal expression of the co-stimulatory molecule B7-H3 in lichen simplex chronicus is associated with expansion of langerhans cells[J]. Clin Exp Dermatol, 2020, 45(1): 30-35. DOI: 10.1111/ced.14001.
[44]
GordyJT, LuoK, FrancicaB, et al. Anti-IL-10 mediated enhancement of anti-tumor efficacy of a dendritic-cell targeting MIP3α-gp100 vaccine in the B16F10 mouse melanoma model is dependent on type I interferons[J]. J Immunother, 2018, 41(4): 181-185. DOI: 10.1097/CJI.0000000000000212.
[45]
ChenN, ScarpaR, ZhangL, et al. Nondenatured soy extracts reduce UVB-induced skin damage via multiple mechanisms[J]. Photochem Photobiol, 2010, 84(6): 1551-1559. DOI: 10.1111/j.1751-1097.2008.00383.x.
[46]
LingG, LingE, BroidesA, et al. IL-12 receptor 1β deficiency with features of autoimmunity and photosensitivity[J]. Autoimmunity, 2016, 49(3): 143-146. DOI: 10.3109/08916934.2015.1134513.
[47]
BehzadiP, BehzadiE, RanjbarR. IL-12 family cytokines: general characteristics, pathogenic microorganisms, receptors, and signalling pathways[J]. Acta Microbiol Immunol Hung, 2016, 63(1): 1-25. DOI: 10.1556/030.63.2016.1.1.
[48]
ZengJ, LuoS, HuangY, et al. Critical role of environmental factors in the pathogenesis of psoriasis[J]. J Dermatol, 2017, 44(8): 863-872. DOI: 10.1111/1346-8138.13806.
[49]
TangsadthakunC, KanokpanontS, SanchavanakitN, et al. The influence of molecular weight of chitosan on the physical and biological properties of collagen/chitosan scaffolds[J]. J Biomater Sci Polym Ed, 2007, 18(2): 147-163. DOI: 10.1163/156856207779116694.
[50]
WeihermannAC, LorenciniM, BrohemCA, et al. Elastin structure and its involvement in skin photoageing[J]. Int J Cosmet Sci, 2017, 39(3): 241-247. DOI: 10.1111/ics.12372.
[51]
KimHK. Adenophora remotiflora protects human skin keratinocytes against UVB-induced photo-damage by regulating antioxidative activity and MMP-1 expression[J]. Nutr Res Pract, 2016, 10(4): 371-376. DOI: 10.1111/ics.12372.
[52]
KoçtürkS, Yüksel EgrilmezM, AktanŞ, et al. Melatonin attenuates the detrimental effects of UVA irradiation in human dermal fibroblasts by suppressing oxidative damage and MAPK/AP-1 signal pathway in vitro[J]. Photodermatol Photoimmunol Photomed, 2019, 35(4): 221-231. DOI: 10.1111/phpp.12456.
[53]
PientaweeratchS, PanapisalV, TansirikongkolA. Antioxidant, anti-collagenase and anti-elastase activities of phyllanthus emblica, manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications[J]. Pharm Biol, 2016, 54(9): 1865-1872. DOI: 10.3109/13880209.2015.1133658.
[54]
ChatterjeeK, JanaS, DasMahapatraP, et al. EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression[J]. FASEB J, 2018, 32(8): 4560-4572. DOI: 10.1096/fj.201701382RR.
[55]
JieZ, XieZ, ZhaoX, et al. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38-and JNK-mediated CREB-AP1 complexes formation[J]. J Cell Physiol, 2019, 234(4): 4167-4178. DOI: 10.1002/jcp.27171.
[56]
QinZ, BalimunkweRM, QuanT, et al. Age-related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo[J]. Br J Dermatol, 2017, 177(5): 1337-1348. DOI: 10.1111/bjd.15379.
[57]
RadziejewskaI, SupruniukK, NazarukJ, et al. Rosmarinic acid influences collagen, MMPs, TIMPs, glycosylation and MUC1 in CRL-1739 gastric cancer cell line[J]. Biomed Pharmacother, 2018, 107(9): 397-407. DOI: 10.1016/j.biopha.2018.07.123.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词