参考文献[1]
PasswegJR, BaldomeroH, BaderP, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report[J]. Bone Marrow Transplant, 2017, 52(6): 811-817. .
[2]
XuLP, WuDP, HanMZ, et al. A review of hematopoietic cell transplantation in China: data and trends during 2008-2016[J]. Bone Marrow Transplant, 2017, 52(11): 1512-1518. .
[3]
PeiXY, ZhaoXY, XuLP, et al. Immune reconstitution in patients with acquired severe aplastic anemia after haploidentical stem cell transplantation[J]. Bone Marrow Transplant, 2017, 52(11): 1556-1562. .
[4]
D'SouzaA, FrethamC, LeeSJ, et al. Current Use of and Trends in Hematopoietic Cell Transplantation in the United States[J]. Biol Blood Marrow Transplant, 2020, 26(8):e177-e182. .
[5]
黄晓军.中国造血干细胞移植登记工作现状和展望[J].内科理论与实践, 2018, 13(2): 69-72. .
[6]
AdmiraalR, van KesterenC, Jol-van der ZijdeCM, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis[J]. Lancet Haematol, 2015, 2(5): e194-e203. .
[7]
de KoningC, PlantingaM, BesselingP, et al. Immune reconstitution after allogeneic hematopoietic cell transplantation in children[J]. Biol Blood Marrow Transplant, 2016, 22(2): 195-206. .
[8]
RembergerM, TörlénJ, RingdénO, et al. Effect of total nucleated and CD34+ cell dose on outcome after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2015, 21(5): 889-893. .
[9]
HeimfeldS. HLA-identical stem cell transplantation: is there an optimal CD34 cell dose?[J]. Bone Marrow Transplant, 2003, 31(10): 839-845. .
[10]
PulsipherMA, ChitphakdithaiP, LoganBR, et al. Donor, recipient, and transplant characteristics as risk factors after unrelated donor PBSC transplantation: beneficial effects of higher CD34+ cell dose[J]. Blood, 2009, 114(13): 2606-2616. .
[11]
KriegerNR, YinDP, FathmanCG. CD4+ but not CD8+ cells are essential for allorejection[J]. J Exp Med, 1996, 184(5): 2013-2018. .
[12]
Yakoub-AghaI, SauleP, DepilS, et al. A high proportion of donor CD4+ T cells expressing the lymph node-homing chemokine receptor CCR7 increases incidence and severity of acute graft-versus-host disease in patients undergoing allogeneic stem cell transplantation for hematological malignancy[J]. Leukemia, 2006, 20(9): 1557-1565. .
[13]
ChoufiB, ThiantS, TrauetJ, et al. The impact of donor naive and memory T cell subsets on patient outcome following allogeneic stem cell transplantation: relationship between infused donor CD4+/CCR7+ T cell subsets and acute graft-versus-host disease[J]. Pathol Biol(Paris), 2014, 62(3): 123-128. .
[14]
ChoufiB, TrauetJ, ThiantS, et al. Donor-derived CD4+/CCR7+ T-cell partial selective depletion does not alter acquired anti-infective immunity[J]. Bone Marrow Transplant, 2014, 49(5): 611-615. .
[15]
FisherSA, LamikanraA, DoréeC, et al. Increased regulatory T cell graft content is associated with improved outcome in haematopoietic stem cell transplantation: a systematic review[J]. Br J Haematol, 2017, 176(3): 448-463. .
[16]
FujisakiJ, WuJ, CarlsonAL, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche[J]. Nature, 2011, 474(7350): 216-219. .
[17]
MuellerAMS, PoyserJ, KohrtHE, et al. Conventional CD4+CD25- and regulatory CD4+CD25+ T cells have opposite effects on progenitor cells and hematopoietic reconstitution following stem cell transplantation[J]. Blood, 2014, 124(21): 654. .
[18]
GandyKL, DomenJ, AguilaH, et al. CD8+TCR+ and CD8+TCR- cells in whole bone marrow facilitate the engraftment of hematopoietic stem cells across allogeneic barriers[J]. Immunity, 1999, 11(5): 579-590. .
[19]
CaoTM, ShizuruJA, WongRM, et al. Engraftment and survival following reduced-intensity allogeneic peripheral blood hematopoietic cell transplantation is affected by CD8+ T-cell dose[J]. Blood, 2005, 105(6): 2300-2306. .
[20]
ReshefR, HuffmanAP, GaoA, et al. High graft cd8 cell dose predicts improved survival and enables better donor selection in allogeneic stem-cell transplantation with reduced-intensity conditioning[J]. J Clin Oncol, 2015, 33(21): 2392-2398. .
[21]
CaoTM, WongRM, SheehanK, et al. CD34, CD4, and CD8 cell doses do not influence engraftment, graft-versus-host disease, or survival following myeloablative human leukocyte antigen-identical peripheral blood allografting for hematologic malignancies[J]. Exp Hematol, 2005, 33(3): 279-285. .
[22]
WidmanA, ReshefR. Precision in donor selection: Identifying ideal stem-cell donors through their T cells[J]. Exp Hematol, 2016, 44(11): 1020-1023. .
[23]
ChaidosA, PattersonS, SzydloR, et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation[J]. Blood, 2012, 119(21): 5030-5036. .
[24]
MalardF, LabopinM, ChevallierP, et al. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival[J]. Blood, 2016, 127(14): 1828-1835. .
[25]
VasuS, GeyerS, BingmanA, et al. Granulocyte colony-stimulating factor-mobilized allografts contain activated immune cell subsets associated with risk of acute and chronic graft-versus-host disease[J]. Biol Blood Marrow Transplant, 2016, 22(4): 658-668. .
[26]
MaggsL, KinsellaF, ChanYLT, et al. The number of CD56dim NK cells in the graft has a major impact on risk of disease relapse following allo-HSCT[J]. Blood Adv, 2017, 1(19): 1589-1597. .
[27]
ZhangJ, ChenHM, MaG, et al. The mechanistic study behind suppression of GVHD while retaining GVL activities by myeloid-derived suppressor cells[J]. Leukemia, 2019, 33(8): 2078-2089. .
[28]
FanQ, LiuH, LiangX, et al. Superior GVHD-free, relapse-free survival for G-BM to G-PBSC grafts is associated with higher MDSCs content in allografting for patients with acute leukemia[J]. J Hematol Oncol, 2017, 10(1):135. .
[29]
TeipelR, OelschlägelU, WetzkoK, et al. Differences in cellular composition of peripheral blood stem cell grafts from healthy stem cell donors mobilized with either granulocyte colony-stimulating factor(G-CSF)alone or G-CSF and Plerixafor[J]. Biol Blood Marrow Transplant, 2018, 24(11): 2171-2177. .
[30]
LeeHS, ParkLC, LeeEM, et al. Predictive factors for rapid neutrophil and platelet engraftment after allogenic peripheral blood stem cell transplantation in patients with acute leukemia[J]. Ann Hematol, 2013, 92(12): 1685-1693. .
[31]
ChoC, PeralesM-A. Expanding therapeutic opportunities for hematopoietic stem cell transplantation: T cell depletion as a model for the targeted allograft[J]. Annu Rev Med, 2019, 70: 381-393. .
[32]
KollmanC, SpellmanSR, ZhangMJ, et al. The effect of donor characteristics on survival after unrelated donor transplantation for hematologic malignancy[J]. Blood, 2016, 27(2): 260-267. .
[33]
YuAkahoshi, Shun-IchiKimura, AyumiGomyo, et al. Delayed platelet recovery after allogeneic hematopoietic stem cell transplantation: Association with chronic graft-versus-host disease and survival outcome[J]. Hematol Oncol, 2018, 36(1): 276-284. .
[34]
RezvaniAR, StorerBE, GuthrieKA, et al. Impact of donor age on outcome after allogeneic hematopoietic cell transplantation[J]. Biol Blood Marrow Transplant, 2015, 21(1):105-112. .
[35]
WangY, ChangYJ, XuLP, et al. Who is the best donor for a related HLA haplotype-mismatched transplant?[J]. Blood,2014, 124(6): 843-850. .
[36]
WilkeC, HoltanSG, SharkeyL, et al. Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: Effect of radiation dose and conditioning regimen[J]. Radiother Oncol, 2016, 118(1): 65-71. .
[37]
AbbuehlJ-P, TatarovaZ, HeldW, et al. Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation[J]. Cell Stem Cell, 2017, 21(2): 241-255. .
[38]
NakasoneH, FujiS, YakushijinK, et al. Impact of total body irradiation on successful neutrophil engraftment in unrelated bone marrow or cord blood transplantation[J]. Am J Hematol, 2017, 92(2): 171-178. .
[39]
WilkeC, Holtan SG, SharkeyL, et al. Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: Effect of radiation dose and conditioning regimen[J]. Radiother Oncol, 2016, 118(1): 65-71. .
[40]
SabloffM, ChhabraS, WangT, et al. Comparison of high doses of total body irradiation in myeloablative conditioning before hematopoietic cell transplantation[J]. Biol Blood Marrow Transplant, 2019, 25(12): 2398-2407. .
[41]
KleinL, KyewskiB, AllenPM, et al. Positive and negative selection of the T cell repertoire: what thymocytes see(and don't see)[J]. Nat Rev Immunol, 2014, 14(6): 377-391. .
[42]
ChaudhryMS, VelardiE, MalardF, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation: time to T up the thymus[J]. J Immunol, 2017, 198(1): 40-46. .
[43]
DudakovJA, MertelsmannAM, O'ConnorMH, et al. Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease[J]. Blood, 2017, 130(7): 933-942. .
[44]
LopesN, VachonH, MarieJ, et al. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation[J]. EMBO Mol Med, 2017, 9(6): 835-851. .
[45]
HoltickU, AlbrechtM, ChemnitzJM, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults - a systematic review and meta-analysis[J]. Crit Rev Oncol Hematol, 2015, 94(2): 179-188. .
[46]
AnasettiC, LoganBR, LeeSJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors[J]. N Engl J Med, 2012, 367(16): 1487-1496. .
[47]
DanbyR, RochaV. Improving engraftment and immune reconstitution in umbilical cord blood transplantation[J]. Front Immunol, 2014, 5: 68. .
[48]
UllahMA, HillGR, TeyS-K. Functional reconstitution of natural killer cells in allogeneic hematopoietic stem cell transplantation[J]. Front Immunol, 2016, 7: 144. .
[49]
SternL, McGuireH, AvdicS, et al. Mass cytometry for the assessment of immune reconstitution after hematopoietic stem cell transplantation[J]. Front Immunol, 2018, 9: 1672. .
[50]
Auffermann-GretzingerS, LossosIS, VayntrubTA, et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients[J]. Blood, 2002, 99(4): 1442-1448. .
[51]
OgonekJ, Kralj JuricM, GhimireS, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation[J]. Front Immunol, 2016, 7: 507. .
[52]
MehtaRS, RezvaniK. Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection[J]. Virulence, 2016, 7(8): 901-916. .
[53]
JacobsonCA, TurkiAT, McDonoughSM, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation[J]. Biol Blood Marrow Transplant, 2012, 18(4): 565-574. .
[54]
KarpovaD, BonigH. Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis-lessons from pharmacological and genetic models[J]. Stem Cells, 2015, 33(8): 2391-2399. .
[55]
KarpovaD, RitcheyJK, HoltMS, et al. Continuous blockade of CXCR4 results in dramatic mobilization and expansion of hematopoietic stem and progenitor cells[J]. Blood, 2017, 129(21): 2939-2949. .
[56]
ZhangJ, RenX, ShiW, et al. Small molecule Me6TREN mobilizes hematopoietic stem/progenitor cells by activating MMP-9 expression and disrupting SDF-1/CXCR4 axis[J]. Blood, 2014, 123(3): 428-441. .
[57]
HoggattJ, MohammadKS, SinghP, et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2[J]. Nature, 2013, 495(7441): 365-369. .
[58]
AljitawiOS, PaulS, GangulyA, et al. Erythropoietin modulation is associated with improved homing and engraftment after umbilical cord blood transplantation[J]. Blood, 2016, 128(25): 3000-3010. .
[59]
PopatU, MehtaRS, RezvaniK, et al. Enforced fucosylation of cord blood hematopoietic cells accelerates neutrophil and platelet engraftment after transplantation[J]. Blood, 2015, 125(19): 2885-2892. .
[60]
HorwitzME, WeaseS, BlackwellB, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide[J]. J Clin Oncol, 2019, 37(5): 367-374. .
[61]
Wagner JrJE, BrunsteinCG, BoitanoAE, et al. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft[J]. Cell Stem Cell, 2016, 18(1): 144-155. .
[62]
TobinLM, HealyME, EnglishK, et al. Human mesenchymal stem cells suppress donor CD4(+)T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease[J]. Clin Exp Immunol, 2013, 172(2):333-348. .
[63]
FisherSA, CutlerA, DoreeC, et al. Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant(HSCT)recipients with a haematological condition[J]. Cochrane Database Syst Rev, 2019, 1(1): CD009768. .
[64]
KongY, SongY, HuY, et al. Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants[J]. Oncotarget, 2016, 7(21): 30892-38906. .
[65]
HuL, ChengH, GaoY, et al. Antioxidant N-acetyl-L-cysteine increases engraftment of human hematopoietic stem cells in immune-deficient mice[J]. Blood, 2014, 124(20): e45-e48. .
[66]
KongY, WangY, ZhangYY, et al. Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation[J]. Blood Adv, 2019, 3(8): 1303-1317. .
[67]
PeralesM-A, GoldbergJD, YuanJ, et al. Recombinant human interleukin-7(CYT107)promotes T-cell recovery after allogeneic stem cell transplantation[J]. Blood, 2012, 120(24): 4882-4891. .
[68]
HanTT, XuLP, LiuDH, et al. Recombinant human thrombopoietin promotes platelet engraftment after haploidentical hematopoietic stem cell transplantation: a prospective randomized controlled trial[J]. Ann Hematol, 2015, 94(1): 117-128. .
[69]
MahatU, Rotz SJ, HannaR. Use of thrombopoietin receptor agonists in prolonged thrombocytopenia after hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2020, 26(3): e65-e73. .