综述
线粒体、内质网及其紧密连接在糖尿病肾病发病机制中的研究进展
中华医学杂志, 2021,101(10) : 750-754. DOI: 10.3760/cma.j.cn112137-20201116-03113
摘要

糖尿病肾病(DKD)是糖尿病的严重并发症之一,也是导致终末期肾功能不全的主要原因。该病发病机制复杂,一般认为DKD是遗传因素与各种环境因素共同作用的结果,但详细的细胞分子生物机制尚未完全阐明。近年研究发现,亚细胞器及其相互作用在细胞生物学活动中发挥重要作用,线粒体、内质网及其紧密连接,即线粒体相关内质网膜(MAM)异常在DKD肾组织损伤中发挥重要作用。本文将围绕上述问题,结合国内外有关文献及作者研究结果,简要介绍线粒体、内质网、MAM在DKD发病机制中的作用及其研究进展。

引用本文: 杨金斐, 肖力, 孙林. 线粒体、内质网及其紧密连接在糖尿病肾病发病机制中的研究进展 [J] . 中华医学杂志, 2021, 101(10) : 750-754. DOI: 10.3760/cma.j.cn112137-20201116-03113.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

糖尿病肾病(diabetic kidney disease,DKD)是由糖尿病引起的严重微血管并发症,最终进展为终末期肾脏病1。随着糖尿病患病人数的增长,DKD的患病率不断攀升,已成为全球慢性肾脏病的首要病因2。目前DKD的治疗措施有限,降血糖、降血压、调节血脂等是该病的主要治疗措施,对延缓疾病进展发挥了重要作用,但仍有部分患者可发展至终末期肾脏病;因此,亟需对DKD发病机制进行深入探讨。目前认为,肾脏血流动力学异常、代谢异常、氧化应激、炎症细胞因子过表达以及遗传易感因素等多种致病机制参与DKD的发生发展过程3, 4, 5。然而针对上述发病机制着手研发的抗氧、抗炎症、抗纤维化等药物并未取得令人满意的临床效果。近年来研究表明,亚细胞器及亚细胞器之间的相互作用共同构成细胞器互作网络,发挥一系列重要的细胞功能。其中,线粒体、内质网及其紧密连接,即线粒体相关内质网膜(mitochondria-associated endoplasmic reticulum,MAM)的异常在DKD发病过程中起重要作用6。本文将简要介绍线粒体、内质网及MAM三个方面的最新研究进展,分述它们在DKD发病机制中的作用。

一、线粒体与DKD

线粒体是细胞的产能中心,同时还参与类固醇合成、脂质代谢、钙信号转导和细胞凋亡等多种生物学过程7, 8, 9。此外,线粒体还是细胞内活性氧簇(reactive oxygen species,ROS)的主要来源10。肾脏作为一个高能量代谢需求的器官,其线粒体丰度仅次于心脏11。因此,线粒体数量、形态和质量的恒定是维持肾脏功能的前提条件10。然而,本课题组及其他研究者发现,糖尿病患者肾脏及小鼠肾脏中均存在线粒体片段化及线粒体嵴溶解等线粒体结构变化12, 13。另外,线粒体动力学、线粒体自噬等线粒体质量控制途径在维持线粒体内稳态方面至关重要14,其中任何一环中断均可引起线粒体功能障碍,导致脂代谢异常、钙离子超载、凋亡等,最终引起DKD的发生和进展15

(一)线粒体动力学变化

线粒体动力学是指线粒体处于不断融合与分裂的过程,当线粒体受损时,线粒体分裂可将有缺陷或无功能部分分裂出去,维持线粒体稳态16。目前发现,多种鸟苷三磷酸(GTP)酶参与线粒体动力学的调控,如线粒体融合蛋白1 (mitofusion1,Mfn1)、线粒体融合蛋白2(mitofusion2,Mfn2)以及视神经萎缩相关蛋白1(optic atrophy1,Opa1)介导线粒体的融合17;而动力相关蛋白1(dynamin-related protein 1,Drp1)和动力蛋白2(dynamin2,Drp2)则负责线粒体的收缩和断裂17, 18。此外,线粒体分裂因子(mitochondrial fission factor,Mff)19、分裂蛋白1(fission protein 1,Fis1)等通过招募Drp1而介导线粒体的断裂20

在DKD动物模型肾脏中已发现Mfn1、Mfn2的表达降低,Drp1、Fis1、Mff表达增加,同时线粒体片段化增加,而过表达Mfn2或敲除Drp1可改善线粒体结构,伴随肾脏损伤的改善,提示线粒体动力学异常在DKD发病机制中起重要作用21, 22, 23。研究发现,Rho相关蛋白激酶1、激酶锚定蛋白A、肌醇加氧酶以及长链非编码RNA母系表达基因3等均可通过直接或间接磷酸化Drp1和(或)增加Drp1的表达水平,促进其向线粒体的募集而触发高糖诱导的线粒体分裂24, 25, 26, 27。本课题组研究发现,高糖状态下低表达的二硫键氧化还原酶类似蛋白(disulfide-bond A oxidoreductase-like protein,DsbA-L)可通过活化c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)增加Mff的磷酸化水平,招募Drp1至线粒体,诱导线粒体分裂22。此外,糖尿病状态下表达下调的双特异性蛋白磷酸酶1也参与JNK-Mff通路28。另外,高糖状态下,肾小管细胞内衰老蛋白p66Shc磷酸化水平增加,通过与Fis1相互作用促进线粒体分裂,同时促进Mfn1与B细胞淋巴瘤-2(Bcl2)拮抗因子/杀伤因子蛋白结合而抑制线粒体融合,在DKD小管损伤中起致病作用29。本课题组还发现,缺氧诱导因子1α可通过增加血红素加氧酶1(HO-1)基因的表达,促进线粒体融合(Mfn1和Mfn2)、抑制线粒体分裂(Drp1和Fis1)而维持线粒体结构及数量的稳态,发挥肾脏保护作用30。总之,高糖环境下多种因子可通过调控线粒体动力学相关蛋白的表达及活性,影响线粒体的结构与功能,从而参与DKD的发病机制。

(二)线粒体自噬

线粒体自噬是细胞根据自身能量需求清除冗余的线粒体31,或在应激条件下清除受损或功能障碍的线粒体,维持细胞稳态的过程32, 33。在哺乳动物中,线粒体自噬主要受泛素依赖机制和泛素非依赖机制调控34,前者受PTEN基因诱导激酶蛋白1(PTEN-induced putative kinase protein1,Pink1)-Parkin通路调控,后者则与线粒体自噬受体Bcl-2/腺病毒E1B19kDa结合蛋白3(Bcl2/adenovirus E1B 19-kDa protein-interacting protein 3,BNIP3)和Nip3样蛋白X等有关34

已知高糖培养的肾脏细胞中Pink1和Parkin的表达下降35,本课题组的研究也发现,db/db小鼠肾脏中线粒体自噬功能缺陷,而外源性给予MitoQ可促进线粒体自噬,减轻肾损伤36,提示线粒体自噬的相对不足是DKD肾脏损伤的重要机制。然而,也有学者发现,db/db小鼠肾脏中Pink1、Parkin表达增加,且线粒体自噬水平增加37, 38, 39;而给予黄芪提取物治疗后,线粒体自噬水平下降、肾损伤改善,提示线粒体自噬过度激活的有害性37, 38。目前认为,糖尿病早期线粒体自噬不足参与细胞损伤,而晚期自噬过度活化同样不利于细胞存活,导致糖尿病的肾脏损伤40

近期本课题组研究发现,高糖环境下肾脏肌醇加氧酶表达上调,通过抑制Pink1的表达及随后招募Parkin至线粒体的过程抑制线粒体自噬,从而参与DKD小管损伤过程27;高糖状态下活性降低的转录因子NF-E2相关因子2 (NF-E2-related factor 2,Nrf2)也可通过降低Pink1的表达而抑制线粒体自噬36。Huang等41研究发现,硫氧还蛋白相互作用蛋白(thioredoxin interacting protein,TXNIP)也是线粒体自噬的调控因子,高糖可上调TXNIP的表达,进而抑制BNIP3的表达,导致线粒体自噬障碍41。此外,最新的研究显示microRNA也是线粒体自噬上游的调控分子,DKD动物模型肾组织中miR-379簇表达增加,通过靶向TXNIP和Fis1,可减少线粒体自噬从而加重DKD肾损伤42

二、内质网与DKD

众所周知,各种病理因素刺激会导致内质网稳态失衡,未折叠蛋白或错误折叠蛋白积累引发内质网应激(endoplasmic reticulum stress,ERS)43。轻微的ERS可诱发适应性的未折叠蛋白反应(unfolded protein response,UPR)来缓解ERS,而持续且强烈的刺激则激活凋亡性UPR途径,诱发细胞死亡44

研究发现ERS在DKD的病理损伤过程中发挥重要作用45, 46,但高糖诱发的ERS究竟是保护性还是破坏性的目前尚无定论,如敲除诱导ERS的Tribbles同源蛋白3 (tribbles homolog 3,TRB3)基因加重糖尿病鼠的肾损伤47。但也有研究发现通过药物减轻ERS可改善伴随足细胞48,本课题组研究也发现,外源性给予脂联素受体激动剂可通过改善DKD小鼠的ERS而显著减轻肾小管细胞的凋亡及组织纤维化49。不同动物模型及细胞,以及不同的疾病阶段可能对ERS的反应性不一致。笔者认为,DKD早期,ERS通过激活UPR、内质网相关降解等促进内质网稳态的恢复,而持续刺激可引起未折叠蛋白等的大量积累加重内质网的负担,启动凋亡程序,诱发细胞死亡。多种分子参与DKD-ERS过程。Liu等50报道了晚期糖基化终产物(advanced glycation end-products,AGE)可通过激活活化转录因子4(activatingtranscription factor 4,ATF4)/p16信号诱导ERS,参与DKD的进展。AGE受体(receptor for AGEs,RAGE)也被证明可介导DKD中ERS的发生51。此外,非编码RNA也参与DKD-ERS过程52,在DKD中,AGE/RAGE/烟酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase,Nox)触发ERS,而多种非编码RNA参与AGE、RAGE和Nox的转录调控,从而调节ERS的发生或缓解52

最新研究还发现内质网自噬也参与内质网内稳态53。多种内质网自噬受体通过与轻链3/自噬相关基因8结合,将待降解的内质网及其腔内结构包裹入自噬体内进行降解54。研究发现,内质网自噬参与重金属诱导的肾损伤55,但目前有关内质网自噬在DKD发病中的作用尚不明确,相关机制有待阐明。

三、MAM与DKD

内质网与线粒体之间存在着紧密的物理连结,该结构被称为MAM56, 57。多种内质网及线粒体相关蛋白相互作用构成蛋白复合物,参与维持MAM结构及功能的完整性658, 59, 60, 61。目前研究发现,MAM的主要细胞功能包括参与Ca2+交换,调节细胞与线粒体自噬,参与脂质代谢、炎症、氧化应激及细胞凋亡等658, 59, 60。最近本课题组提出,MAM可能是代谢综合征治疗的新靶点6,并且,MAM是自噬的起始位点62

目前有关MAM在DKD发病机制中作用的研究有限。本课题组报道了DKD患者及动物模型的肾组织中MAM减少,可能与DsbA-L的表达下调有关63。进一步研究发现,DsbA-L可能通过促进Mfn2表达上调而增强线粒体与内质网的偶联,修复MAM功能(尚未发表)。本课题组也论述了磷酸弗林酸性簇分选蛋白2(phosphofurin acidic cluster sorting protein 2,PACS-2)是维持MAM结构完整性的重要蛋白,参与膜转运、凋亡等过程61,并发现高糖可抑制PACS-2的表达,从而导致MAM结构破坏(尚未发表)。鉴于MAM强大的功能,多种蛋白参与维持其结构及功能,而有关MAM及其关键蛋白在DKD发病机制中的作用研究尚处于起步阶段。因此,对MAM在DKD发生发展中的具体作用及调控机制值得更深入的研究,为DKD探寻新的治疗靶点。

四、小结

近年来,亚细胞器的研究为DKD发病机制的阐明带来了新的契机。除线粒体、内质网等亚细胞器损伤外,MAM的完整性破坏也参与介导DKD的发生。本文简要介绍了线粒体、内质网及其互作网络MAM在DKD发病过程中的作用与分子机制,但由于内质网自噬及MAM在DKD中的作用与机制研究才刚刚起步,该领域尚存诸多研究空白。相信随着细胞生物学技术的发展及观念的进步,细胞器及其相互作用网络在DKD中的研究将不断深入,从而有望为DKD诊疗提供新的靶点。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
1
北京大学医学系糖尿病肾脏病专家共识协作组. 糖尿病肾脏病诊治专家共识[J]. 中华医学杂志, 2020, 100(4):247-260. DOI: 10.3760/cma.j.issn.0376-2491.2020.04.003.
2
TongL, AdlerSG. Diabetic kidney disease[J]. Clin J Am Soc Nephrol, 2018, 13(2):335-338. DOI: 10.2215/CJN.04650417.
3
KanwarYS, SunL, XieP, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J]. Annu Rev Pathol, 2011, 6:395-423. DOI: 10.1146/annurev.pathol.4.110807.092150.
4
HuC, SunL, XiaoL, et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy[J]. Curr Med Chem, 2015, 22(24):2858-2870. DOI: 10.2174/0929867322666150625095407.
5
NiZ, GuoL, LiuF, et al. Allium tuberosum alleviates diabetic nephropathy by supressing hyperglycemia-induced oxidative stress and inflammation in high fat diet/streptozotocin treated rats[J]. Biomed Pharmacother, 2019, 112:108678. DOI: 10.1016/j.biopha.2019.108678.
6
YangM, LiC, SunL. Mitochondria-associated membranes (MAMs): a novel therapeutic target for treating metabolic syndrome[J]. Curr Med Chem, 2020, In press. DOI: 10.2174/0929867327666200212100644.
7
HajnóczkyG, CsordásG, DasS, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+uptake in apoptosis[J]. Cell Calcium, 2006, 40(5-6):553-560. DOI: 10.1016/j.ceca.2006.08.016.
8
RossierMF. T channels and steroid biosynthesis: in search of a link with mitochondria[J]. Cell Calcium, 2006, 40(2):155-164. DOI: 10.1016/j.ceca.2006.04.020.
9
倪海强, 欧志宇, 夏仁飞, . XBP1调控TXNIP-NLRP3通路对小鼠肾小管上皮细胞缺氧复氧模型的影响及其作用机制[J]. 中华医学杂志, 2020, 100(48):3863-3869. DOI: 10.3760/cma.j.cn112137-20201102-02996.
10
TangC, HeL, LiuJ, et al. Mitophagy: basic mechanism and potential role in kidney diseases[J]. Kidney Dis (Basel), 2015, 1(1):71-79. DOI: 10.1159/000381510.
11
CadenasS. Mitochondrial uncoupling, ROS generation and cardioprotection[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9):940-950. DOI: 10.1016/j.bbabio.2018.05.019.
12
XiaoL, ZhuX, YangS, et al. Rap1 ameliorates renal tubular injury in diabetic nephropathy[J]. Diabetes, 2014, 63(4):1366-1380. DOI: 10.2337/db13-1412.
13
詹明, 张国阳, 杨军, . 糖尿病肾病患者线粒体结构变化对肾小管病理损伤的影响分析[J]. 现代实用医学, 2018, 30(5):569-570, 694. DOI: 10.3969/j.issn.1671-0800.2018.05.004.
14
ChanDC. Mitochondria: dynamic organelles in disease, aging, and development[J]. Cell, 2006, 125(7):1241-1252. DOI: 10.1016/j.cell.2006.06.010.
15
NunnariJ, SuomalainenA. Mitochondria: in sickness and in health[J]. Cell, 2012, 148(6):1145-1159. DOI: 10.1016/j.cell.2012.02.035.
16
YouleRJ, van der BliekAM. Mitochondrial fission, fusion, and stress[J]. Science, 2012, 337(6098):1062-1065. DOI: 10.1126/science.1219855.
17
TilokaniL, NagashimaS, PaupeV, et al. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3):341-360. DOI: 10.1042/EBC20170104.
18
KrausF, RyanMT. The constriction and scission machineries involved in mitochondrial fission[J]. J Cell Sci, 2017, 130(18):2953-2960. DOI: 10.1242/jcs.199562.
19
Gandre-BabbeS, van der BliekAM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells[J]. Mol Biol Cell, 2008, 19(6):2402-2412. DOI: 10.1091/mbc.e07-12-1287.
20
YuR, JinSB, LendahlU, et al. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery[J]. EMBO J, 2019, 38(8):e99748. DOI: 10.15252/embj.201899748.
21
TangWX, WuWH, ZengXX, et al. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney[J]. Endocrine, 2012, 41(2):236-247. DOI: 10.1007/s12020-011-9555-1.
22
GaoP, YangM, ChenX, et al. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease[J]. Clin Sci (Lond), 2020, 134(7):677-694. DOI: 10.1042/CS20200005.
23
AyangaBA, BadalSS, WangY, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy[J]. J Am Soc Nephrol, 2016, 27(9):2733-2747. DOI: 10.1681/ASN.2015101096.
24
WangW, WangY, LongJ, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells[J]. Cell Metab, 2012, 15(2):186-200. DOI: 10.1016/j.cmet.2012.01.009.
25
ChenZ, MaY, YangQ, et al. AKAP1 mediates high glucose-induced mitochondrial fission through the phosphorylation of Drp1 in podocytes[J]. J Cell Physiol, 2020, 235(10):7433-7448. DOI: 10.1002/jcp.29646.
26
DengQ, WenR, LiuS, et al. Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission[J]. Cell Death Dis, 2020, 11(9):814. DOI: 10.1038/s41419-020-03022-7.
27
ZhanM, UsmanIM, SunL, et al. Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J]. J Am Soc Nephrol, 2015, 26(6):1304-1321. DOI: 10.1681/ASN.2014050457.
28
ShengJ, LiH, DaiQ, et al. DUSP1 recuses diabetic nephropathy via repressing JNK-Mff-mitochondrial fission pathways[J]. J Cell Physiol, 2019, 234(3):3043-3057. DOI: 10.1002/jcp.27124.
29
ZhanM, UsmanI, YuJ, et al. Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy[J]. Clin Sci (Lond), 2018, 132(12):1297-1314. DOI: 10.1042/CS20180005.
30
JiangN, ZhaoH, HanY, et al. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics[J]. Cell Prolif, 2020, 53(11):e12909. DOI: 10.1111/cpr.12909.
31
YouleRJ, NarendraDP. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12(1):9-14. DOI: 10.1038/nrm3028.
32
FriedmanJR, NunnariJ. Mitochondrial form and function[J]. Nature, 2014, 505(7483):335-343. DOI: 10.1038/nature12985.
33
刘春蕾, 何云云, 李鑫, . 选择性自噬的研究进展[J]. 中华医学杂志, 2014, 94(20):1590-1593. DOI: 10.3760/cma.j.issn.0376-2491.2014.20.019.
34
WangY, CaiJ, TangC, et al. Mitophagy in acute kidney injury and kidney repair[J]. Cells, 2020, 9(2):338. DOI: 10.3390/cells9020338.
35
CzajkaA, AjazS, GnudiL, et al. Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy[J]. EBioMedicine, 2015, 2(6):499-512. DOI: 10.1016/j.ebiom.2015.04.002.
36
XiaoL, XuX, ZhangF, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1[J]. Redox Biol, 2017, 11:297-311. DOI: 10.1016/j.redox.2016.12.022.
37
LiuX, LuJ, LiuS, et al. Huangqi-Danshen decoction alleviates diabetic nephropathy in db/db mice by inhibiting PINK1/Parkin-mediated mitophagy[J]. Am J Transl Res, 2020, 12(3):989-998.
38
LiuX, WangW, SongG, et al. Astragaloside Ⅳ ameliorates diabetic nephropathy by modulating the mitochondrial quality control network[J]. PLoS One, 2017, 12(8):e0182558. DOI: 10.1371/journal.pone.0182558.
39
SmithMA, CovingtonMD, SchnellmannRG. Loss of calpain 10 causes mitochondrial dysfunction during chronic hyperglycemia[J]. Arch Biochem Biophys, 2012, 523(2):161-168. DOI: 10.1016/j.abb.2012.04.020.
40
ShintaniT, KlionskyDJ. Autophagy in health and disease: a double-edged sword[J]. Science, 2004, 306(5698):990-995. DOI: 10.1126/science.1099993.
41
HuangC, ZhangY, KellyDJ, et al. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway[J]. Sci Rep, 2016, 6:29196. DOI: 10.1038/srep29196.
42
KatoM, AbdollahiM, TunduguruR, et al. miR-379 deletion ameliorates features of diabetic kidney disease by enhancing adaptive mitophagy via FIS1[J]. Commun Biol, 2021, 4(1):30. DOI: 10.1038/s42003-020-01516-w.
43
ChenX, ShenWB, YangP, et al. High glucose inhibits neural stem cell differentiation through oxidative stress and endoplasmic reticulum stress[J]. Stem Cells Dev, 2018, 27(11):745-755. DOI: 10.1089/scd.2017.0203.
44
SmithM, WilkinsonS. ER homeostasis and autophagy[J]. Essays Biochem, 2017, 61(6):625-635. DOI: 10.1042/EBC20170092.
45
LiuG, SunY, LiZ, et al. Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease[J]. Biochem Biophys Res Commun, 2008, 370(4):651-656. DOI: 10.1016/j.bbrc.2008.04.031.
46
LindenmeyerMT, RastaldiMP, IkehataM, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress[J]. J Am Soc Nephrol, 2008, 19(11):2225-2236. DOI: 10.1681/ASN.2007121313.
47
BorstingE, PatelSV, DeclèvesAE, et al. Tribbles homolog 3 attenuates mammalian target of rapamycin complex-2 signaling and inflammation in the diabetic kidney[J]. J Am Soc Nephrol, 2014, 25(9):2067-2078. DOI: 10.1681/ASN.2013070811.
48
王艳红, 田继华, 郭海秀, . 脂联素对高糖环境下足细胞内质网应激和细胞骨架的影响[J]. 中华医学杂志, 2014, 94(14):1092-1096. DOI: 10.3760/cma.j.issn.0376-2491.2014.14.013.
49
XiongS, HanY, GaoP, et al. AdipoRon protects against tubular injury in diabetic nephropathy by inhibiting endoplasmic reticulum stress[J]. Oxid Med Cell Longev, 2020, 2020:6104375. DOI: 10.1155/2020/6104375.
50
LiuJ, YangJR, ChenXM, et al. Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy[J]. Am J Physiol Cell Physiol, 2015, 308(8):C621-C630. DOI: 10.1152/ajpcell.00096.2014.
51
LiuJ, HuangK, CaiGY, et al. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling[J]. Cell Signal, 2014, 26(1):110-121. DOI: 10.1016/j.cellsig.2013.10.002.
52
PathomthongtaweechaiN, ChutipongtanateS. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy[J]. Biomed Pharmacother, 2020, 131:110655. DOI: 10.1016/j.biopha.2020.110655.
53
WilkinsonS. ER-phagy: shaping up and destressing the endoplasmic reticulum[J]. FEBS J, 2019, 286(14):2645-2663. DOI: 10.1111/febs.14932.
54
LoiM, FregnoI, GuerraC, et al. Eat it right: ER-phagy and recovER-phagy[J]. Biochem Soc Trans, 2018, 46(3):699-706. DOI: 10.1042/BST20170354.
55
JiangS, LinY, YaoH, et al. The role of unfolded protein response and ER-phagy in quantum dots-induced nephrotoxicity: an in vitro and in vivo study[J]. Arch Toxicol, 2018, 92(4):1421-1434. DOI: 10.1007/s00204-018-2169-0.
56
van VlietAR, AgostinisP. Mitochondria-associated membranes and ER stress[J]. Curr Top Microbiol Immunol, 2018, 414:73-102. DOI: 10.1007/82_2017_2.
57
CsordásG, RenkenC, VárnaiP, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria[J]. J Cell Biol, 2006, 174(7):915-921. DOI: 10.1083/jcb.200604016.
58
D′ElettoM, RossinF, OcchigrossiL, et al. Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75[J]. Cell Rep, 2018, 25(13):3573-3581.e4. DOI: 10.1016/j.celrep.2018.11.094.
59
Gomez-SuagaP, PaillussonS, StoicaR, et al. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy[J]. Curr Biol, 2017, 27(3):371-385. DOI: 10.1016/j.cub.2016.12.038.
60
GaoP, YangW, SunL. Mitochondria-associated endoplasmic reticulum membranes (MAMs) and their prospective roles in kidney disease[J]. Oxid Med Cell Longev, 2020, 2020:3120539. DOI: 10.1155/2020/3120539.
61
LiC, LiL, YangM, et al. PACS-2: a key regulator of mitochondria-associated membranes (MAMs)[J]. Pharmacol Res, 2020, 160:105080. DOI: 10.1016/j.phrs.2020.105080.
62
YangM, LiC, YangS, et al. Mitochondria-associated ER membranes-the origin site of autophagy[J]. Front Cell Dev Biol, 2020, 8:595. DOI: 10.3389/fcell.2020.00595.
63
YangM, ZhaoL, GaoP, et al. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity[J]. EBioMedicine, 2019, 43:607-619. DOI: 10.1016/j.ebiom.2019.04.044.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词