综述
TOLL样受体4/核因子-κB信号通路抑制剂在新生儿坏死性小肠结肠炎中的保护作用
中华新生儿科杂志(中英文), 2023,38(9) : 573-576. DOI: 10.3760/cma.j.issn.2096-2932.2023.09.014
摘要

坏死性小肠结肠炎(necrotizing enterocolitis,NEC)是早产儿常见的胃肠道急危重症。未成熟肠道细胞中大量TOLL样受体4(toll-like receptor 4,TLR4)激活后导致TLR4/ 核因子-κB(nuclear factor kappa-B,NF-κB)信号通路激活并释放大量炎性细胞因子,导致促炎和抗炎稳态破坏,诱导细胞程序性死亡、坏死和组织损伤,是早产儿NEC进展的重要机制。已发现TLR4/NF-κB信号通路抑制剂可通过拮抗受体激活、信号通路间串扰、抑制细胞坏死性凋亡、抑制NOD样受体蛋白3表达等方式抑制下游瀑式炎性反应,发挥对NEC的保护作用,本文对相关抑制剂及其机制进行综述。

引用本文: 张林, 张雨寒, 汪渝, 等.  TOLL样受体4/核因子-κB信号通路抑制剂在新生儿坏死性小肠结肠炎中的保护作用 [J] . 中华新生儿科杂志(中英文), 2023, 38(9) : 573-576. DOI: 10.3760/cma.j.issn.2096-2932.2023.09.014.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

新生儿坏死性小肠结肠炎(necrotizing enterocolitis,NEC)是早产儿常见的胃肠道急危重症,在欧美国家早产儿中发病率为5%~7%,病死率为20%~30%,其发病率与胎龄和出生体重呈负相关1。在我国新生儿重症监护病房中NEC发病率为2%~5%,病死率为20%~30%,其中超低出生体重儿病死率达30%~50.9%2。存活患儿常遗留严重后遗症,影响生活质量3。目前NEC发病机制仍未完全明确,缺乏特异性治疗,除外科手术外,临床上仍以内科常规治疗为主。绝大多数NEC发生在胎龄<34周早产儿中,因此有学者提出,早产儿未成熟肠道中高度表达的TOLL样受体4(toll-like receptor 4,TLR4)可通过TLR4/ 核因子-κB(nuclear factor kappa-B,NF-κB)信号通路激活下游炎性瀑式反应,导致肠组织免疫稳态破坏、肠损害,最终促进NEC进展4。为寻找NEC更好的治疗策略,本文以抑制TLR4/NF-κB信号通路为关注点,综述其抑制剂对NEC的保护作用。

一、TLR4/NF-κB信号通路激活与NEC发生的关系

TLR4可识别来自病原体抗原的外源性分子以及组织损伤或机体应激等产生的内源性分子,继而启动固有免疫5。TLR4由细胞内、跨膜和胞外部分组成,胞外部分可结合脂多糖(lipopolysaccharide,LPS),TLR4激活后胞内段TOLL/IL-1同源受体结构域(TOLL/IL-1 receptor homology domain,TIR)发生构象改变,进而引起下游信号传导6

与足月儿相比,早产儿肠细胞上TLR4表达更高,生后肠道大量微生物定植,肠细胞暴露于富含LPS的环境中,LPS与LPS绑定蛋白结合,在白细胞分化抗原14(cluster of differentiation 14,CD14)的作用下,LPS中脂质A部分与TLR4/髓样分化蛋白2(myeloid differentiation protein-2,MD-2)复合体结合位点结合,形成TLR4/MD-2/LPS二聚体,TLR4被激活7, 8。TLR4激活后发生构象变化,激活髓系分化因子88(myeloiddifferentiation factor 88,MyD88)依赖性途径,或招募β干扰素TIR结构域衔接蛋白(TIR-domain-containing adaptor inducing interferon-β,TRIF)激活Myd88非依赖性途径9。在Myd88依赖性途径中,活化的Myd88可激活肿瘤坏死因子(tumor necrosis factor,TNF)受体因子6,导致转化生长因子β活化激酶(transforming growth factor-β-activated kinase,TAK)1和NF-κB抑制蛋白激酶激活,使NF-κB抑制蛋白被降解,NF-κB亚单位p50、p65活化,进入核内启动促炎细胞因子转录10, 11。在Myd88非依赖途径中,TRIF激活TAK1,进而诱导干扰素调控因子3活化和干扰素转录9。TLR4在肠细胞、内皮细胞、中性粒细胞、巨噬细胞等均有表达,TLR4/NF-κB信号通路激活后释放的炎性细胞因子可诱导肠细胞凋亡、坏死性凋亡、细胞焦亡,紧密连接蛋白、粘蛋白和抗菌肽合成减少,导致肠道黏膜屏障功能障碍8,肠道内病原菌可易位至黏膜下固有层并激活血管内皮细胞上的TLR4,导致内皮型一氧化氮合酶表达减少,一氧化氮合成降低,肠组织灌注降低,促进全肠壁层坏死和穿孔12, 13

二、TLR4/NF-κB信号通路抑制机制

1.TLR4拮抗剂和人乳低聚糖(human milk oligosaccharides,HMOs)对TLR4激活的拮抗作用:TLR4拮抗剂主要有基于单糖的TLR4拮抗剂、阳离子单糖基TLR4拮抗剂、阿魏酸、C34、TAK242等,均可通过不同机制发挥TLR4拮抗作用14。基于单糖的TLR4拮抗剂结构与LPS脂质A部分类似,通过与MD-2结合竞争性拮抗LPS的结合位点,抑制TLR4激活15。阳离子单糖基TLR4拮抗剂是具有TLR4拮抗剂活性的阳离子两亲物,由吡喃葡萄糖或苄胺核心通过醚键与两条碳14脂质链连接而成14,与LPS形成稳定共聚体,减少LPS与MD-2结合,其还可与LPS竞争MD-2结合位点,发挥双重拮抗作用16。阿魏酸有较强的抗氧化性和还原性,还具有免疫调节和抗血栓作用,可影响MD-2与TLR4的绑定,干扰TLR4/MD-2复合体形成17。C34通过干扰LPS和CD14的结合,并与LPS脂质A结合发挥拮抗作用,其可抑制肠细胞和巨噬细胞中的TLR4/NF-κB信号通路转导,减轻NEC小鼠模型中TLR4介导的炎症反应718。上述几种化合物目前仍处于体外研究阶段。TAK242是一种环己烯羧酸酯衍生物,可通过细胞膜与TLR4 TIR结构域中的Cys747残基结合,破坏TIR结构域构象,继而抑制下游信号通路的激活19。TAK242已进入3期临床试验,但因未能降低病死率和抑制炎性细胞因子产物而被终止14

HMOs是母乳中仅次于乳糖和脂质的第三大营养成分,在初乳中含量为20~25 g/L,成熟乳中含量为5~10 g/L20。HMOs中的2’-岩藻糖基乳糖和6’-唾液酸乳糖能和LPS竞争其在TLR4上的绑定位点并抑制下游信号转导,发挥类似TLR4拮抗剂的功能21。动物实验证实喂养含有HMOs的配方奶后NEC新生小鼠肠细胞中TLR4表达明显降低22

2.经典Wnt/β-连环蛋白、转化生长因子(transforming growth factor,TGF)-β、表皮生长因子(epidermal growth factor,EGF)和TLR4/NF-κB信号通路间的串扰调控细胞增殖:经典Wnt/β-连环蛋白、TGF-β、EGF和TLR4/NF-κB信号通路间可通过对糖原合成激酶3β(glycogen synthase kinase-3β,GSK-3β)磷酸化的调控而影响核内β-连环蛋白表达,最终调控细胞增殖23。在经典Wnt信号途径中跨膜受体卷曲蛋白被激活后,激活胞内蓬乱蛋白并抑制GSK-3β激活,胞内β-连环蛋白通过磷酸化和泛素化降解减少,核内表达增高,并与T细胞因子/淋巴增强因子家族转录因子结合启动Wnt靶向基因的转录,促进细胞增殖1。TGF-β信号途径中,TGF受体复合物与TGF-β1结合而激活该途径,下游信号分子形成Smad蛋白2/3/4复合体并进入核内,促进核内β-连环蛋白的表达,此外,TGF-β信号途径激活后能激活磷脂酰肌醇3激酶(phosphoinositide 3 kinase,PI3K)/蛋白激酶B(protein kinase B,PKB)信号途径并抑制GSK-3β激活,抑制胞质内β-连环蛋白降解,促进其核内表达增加23, 24。EGF与其受体结合后会诱导GSK-3β磷酸化促进经典Wnt途径表达25。而在NEC患儿中,LPS激活TLR4后可诱导肠细胞Smad7表达增加,后者抑制TGF-β信号途径中Smad蛋白2/3/4复合体形成,同时伴随PI3K/PKB信号途径抑制和GSK-3磷酸化降低,导致胞内和核内β-连环蛋白表达降低,最终抑制细胞增殖26

母乳中EGF和TGF-β含量丰富,初乳中EGF和TGF-β1浓度分别可达(365.67±165.63)ng/ml和745.67 pg/ml27,通过上述机制可改善TLR4/NF-κB信号途径中抑制的核内β-连环蛋白表达,从而促进细胞增殖、肠细胞更新和维持肠道屏障功能。母乳HMOs可通过正向调控经典Wnt信号途径,促进肠细胞增殖,具体机制目前还不清楚,有研究发现添加HMOs配方奶喂养的NEC小鼠模型肠细胞分化标志物碱性磷酸酶和增殖标志物Ki67均显著增加28

3.受体相互作用抑制细胞坏死性凋亡:坏死性凋亡是程序性细胞死亡的一种,伴随细胞膜破裂和胞内大量损伤相关分子模式释放,可引发周围组织明显炎症29。因此在NEC急速肠道瀑式炎性反应中,其比细胞凋亡更能解释NEC的病理变化。LPS激活TLR4后,受体作用于蛋白激酶(receptor-interacting protein kinase,RIPK)1和 RIPK3,导致混合谱系激酶结构域样蛋白(mixed lineage kinase domain-like protein,MLKL)磷酸化和质膜易位,在质膜中形成孔复合物,释放大量促炎损伤相关分子模式发生细胞死亡30, 31。此外,TNF受体被TNF-α激活后在依赖Caspase-8的情况下可诱发细胞凋亡;而在不依赖此酶的情况下仍可激活RIPK1-RIPK3-MLKL途径导致坏死性凋亡;受体激活后还可进一步激活NF-кB途径10。因此,TLR4/NF-кB信号途径激活、TNF受体激活、细胞凋亡和坏死性凋亡间形成恶性循环,可迅速加剧肠组织炎症进展和肠屏障功能损害。

RIPK1抑制剂(R-7-Cl-O-Necrostatin-1,Nec-1s)通过抑制RIPK1磷酸化从上游阻断程序性坏死信号通路传递,减少RIPK3及MLKL表达,抑制坏死性凋亡10。研究发现NEC新生小鼠腹腔注射Nec-1s后能显著抑制促炎细胞因子表达,降低CD4+T细胞比例,改善肠组织损伤、提高存活率32

4.褪黑素抑制NOD样受体蛋白(NOD-like receptor protein,NLRP)3表达:NLRP3是NOD样受体家族中重要的一员,TLR4/NF-кB信号途径激活后NLRP3转录增加,胞质中NLRP3招募凋亡相关斑点样蛋白和Caspase-1前体组成NLRP3炎性小体,被激活的炎性小体促使凋亡相关斑点样蛋白将Caspase-1前体切割成为具有活性的Caspase-1,Caspase-1促进白细胞介素(interleukin,IL)-1β前体与IL-18前体成熟并加剧炎性反应33。活化的Caspase-1还可切割Gasdermin家族蛋白D并释放N端结构域诱导细胞焦亡,该结构域在细胞膜上形成穿孔致细胞破裂,释放胞内容物11

褪黑素在初乳中含量可达28.67 pg/ml,具有抗氧化、抗肿瘤、增强免疫力、保护血管内皮屏障功能等作用34。研究发现,给NEC新生大鼠模型腹腔注射褪黑素,能降低回肠组织NLRP3、TLR4、NF-кB和Caspase-1的表达,抑制炎性反应,降低NEC的严重程度并提高存活率35。此外,血浆中超氧化物歧化酶和谷胱甘肽过氧化物酶水平增高,组织氧化应激反应减弱36,但褪黑素抑制TLR4/NF-κB/NLRP3的具体机制还不清楚。甘草甜素是甘草根部提取物,具有抑制高迁移率族蛋白1释放的功能,后者作为损伤应激相关模式能激活TLR4,促进炎性反应37。近期研究发现给NEC新生大鼠尾静脉注射甘草甜素能有效降低血浆IL-1β、Caspase-1水平和肠组织中TLR4表达,改善肠损伤,削弱TLR4/NF-кB/NLRP3信号途径表达38

三、其他抑制剂

维生素D对多个器官组织中的TLR4表达具有抑制作用,早产儿维生素D缺乏与NEC关系密切39。NEC小鼠补充外源性维生素D可改善肠道屏障功能,提高调节性T细胞/辅助性T细胞17比例,减少氧自由基产生,抑制NF-кB信号途径表达,具体机制尚不清楚39, 40。促红细胞生成素(erythropoietin,EPO)除了促进红细胞分化成熟外,还具有抑制细胞凋亡、控制炎性反应及抗氧化等生物学效应,其机制可能涉及PI3K/PKB/哺乳动物雷帕霉素靶点信号通路和丝裂原活化蛋白激酶/细胞外信号调节激酶信号通路激活,上调Bcl-2基因表达,促进细胞增殖41。一项前瞻性队列研究证实了EPO的肠道保护功能,给NEC患儿肌肉注射EPO 200 IU/kg一周2次,可降低血浆IL-6、TNF-α水平和肠道炎性反应42。益生菌可调节肠道菌群,减少致病性菌群的肠道定植,减少肠细胞TLR4激活,并通过激活TLR2、TLR9和NLRP2表达抑制TLR4激活及下游炎性因子释放43, 44,但其安全性、种类、剂量、应用时机等尚缺乏有力证据。

综上所述,TLR4/NF-κB信号通路激活在促进早产儿NEC进展中具有重要作用,该信号途径抑制剂可抑制瀑式炎性反应,避免程序性细胞死亡,有助于保护肠黏膜屏障功能,维持肠道免疫稳态。目前该通路抑制机制的研究主要涉及TLR4拮抗、信号通路间串扰、坏死性凋亡抑制、NLRP3表达抑制等方面。目前对于各抑制剂与TLR4/ NF-κB信号通路抑制的系统关系仍未完全清楚,抑制剂的优化选择亦未达成共识,希望通过本综述为NEC的防治、诊断、病理机制深入研究提供一定参考和帮助。

引用本文:

张林, 张雨寒, 汪渝, 等. TOLL样受体4/核因子-κB信号通路抑制剂在新生儿坏死性小肠结肠炎中的保护作用[J]. 中华新生儿科杂志, 2023, 38(9): 573-576. DOI: 10.3760/cma.j.issn.2096-2932.2023.09.014.

利益冲突
利益冲突:

所有作者声明无利益冲突。

参考文献
[1]
de JongJ, IjssennaggerN, van MilS. Breast milk nutrients driving intestinal epithelial layer maturation via Wnt and Notch signaling: implications for necrotizing enterocolitis[J]. Biochim Biophys Acta Mol Basis Dis, 2021,1867(11):166229. DOI: 10.1016/j.bbadis.2021.166229.
[2]
中国医师协会新生儿科医师分会循证专业委员会. 新生儿坏死性小肠结肠炎临床诊疗指南(2020)[J].中国当代儿科杂志, 2021,23(1):1-11. DOI: 10.7499/j.issn.1008-8830.2011145.
[3]
DenningNL, PrinceJM. Neonatal intestinal dysbiosis in necrotizing enterocolitis[J]. Mol Med, 2018,24(1):4. DOI: 10.1186/s10020-018-0002-0.
[4]
SampahM, HackamDJ. Prenatal immunity and influences on necrotizing enterocolitis and associated neonatal disorders[J]. Front Immunol, 2021,12:650709. DOI: 10.3389/fimmu.2021.650709.
[5]
MaraMA, GoodM, WeitkampJH. Innate and adaptive immunity in necrotizing enterocolitis[J]. Semin Fetal Neonatal Med, 2018,23(6):394-399. DOI: 10.1016/j.siny.2018.08.002.
[6]
ChoSX, RudloffI, LaoJC, et al. Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities[J]. Nat Commun, 2020,11(1):5794. DOI: 10.1038/s41467-020-19400-w.
[7]
HackamDJ, SodhiCP. Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis[J]. Cell Mol Gastroenterol Hepatol, 2018,6(2):229-238.e1. DOI: 10.1016/j.jcmgh.2018.04.001.
[8]
MihiB, GoodM. Impact of toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science[J]. Clin Perinatol, 2019,46(1):145-157. DOI: 10.1016/j.clp.2018.09.007.
[9]
SunL, SunM, MaK, et al. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-κB signaling pathway[J]. 2020,319(6):C967-C979. DOI: 10.1152/ajpcell.00571.2019.
[10]
LiuT, ZongH, ChenX, et al. Toll-like receptor 4-mediated necroptosis in the development of necrotizing enterocolitis[J]. Pediatr Res, 2022,91(1):73-82. DOI: 10.1038/s41390-021-01457-y.
[11]
ZhangW, He-YangJ, TuW, et al. Sialylated human milk oligosaccharides prevent intestinal inflammation by inhibiting toll like receptor 4/NLRP3 inflammasome pathway in necrotizing enterocolitis rats[J]. Nutr Metab (Lond), 2021,18(1):5. DOI: 10.1186/s12986-020-00534-z.
[12]
KlerkDH, PlöschT, Verkaik-SchakelRN, et al. DNA methylation of TLR4, VEGFA, and DEFA5 is associated with necrotizing enterocolitis in preterm infants[J]. Front Pediatr, 2021,9:630817. DOI: 10.3389/fped.2021.630817.
[13]
DruckerNA, JensenAR, Te WinkelJP, et al. Loss of endothelial nitric oxide synthase exacerbates intestinal and lung injury in experimental necrotizing enterocolitis[J]. J Pediatr Surg, 2018,53(6):1208-1214. DOI: 10.1016/j.jpedsurg.2018.02.087.
[14]
RomerioA, PeriF. Increasing the chemical variety of small-molecule-based TLR4 modulators: an overview[J]. Front Immunol, 2020,11:1210. DOI: 10.3389/fimmu.2020.01210.
[15]
Perrin-CoconL, Aublin-GexA, SestitoSE, et al. TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection[J]. Sci Rep, 2017,7:40791. DOI: 10.1038/srep40791.
[16]
OkadaT, KawakitaF, NishikawaH, et al. Selective toll-like receptor 4 antagonists prevent acute blood-brain barrier disruption after subarachnoid hemorrhage in mice[J]. Mol Neurobiol, 2019,56(2):976-985. DOI: 10.1007/s12035-018-1145-2.
[17]
RehmanSU, AliT, AlamSI, et al. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus[J]. Mol Neurobiol, 2019,56(4):2774-2790. DOI: 10.1007/s12035-018-1280-9.
[18]
ZhangSS, LiuM, LiuDN, et al. TLR4-IN-C34 inhibits lipopolysaccharide-stimulated inflammatory responses via downregulating TLR4/MyD88/NF-κB/NLRP3 signaling pathway and reducing ROS generation in BV2 cells[J]. Inflammation, 2022,45(2):838-850. DOI: 10.1007/s10753-021-01588-8.
[19]
WangXT, LuYX, SunYH, et al. TAK-242 protects against apoptosis in coronary microembolization-induced myocardial injury in rats by suppressing TLR4/NF-κB signaling pathway[J]. Cell Physiol Biochem, 2017,41(4):1675-1683. DOI: 10.1159/000471248.
[20]
YorkDJ, SmazalAL, RobinsonDT, et al. Human milk growth factors and their role in NEC prevention: a narrative review[J]. Nutrients, 2021,13(11):3751. DOI: 10.3390/nu13113751.
[21]
YanX, CaoY, ChenW, et al. Peptide (Tat(48-60)) YVEEL protects against necrotizing enterocolitis through inhibition of toll-like receptor 4-mediated signaling in a phosphatidylinositol 3-kinase/AKT dependent manner[J]. Front Nutr, 2022,9:992145. DOI: 10.3389/fnut.2022.992145.
[22]
HuangD, WangP, ChenJ, et al. Selective targeting of MD2 attenuates intestinal inflammation and prevents neonatal necrotizing enterocolitis by suppressing TLR4 signaling[J]. Front Immunol, 2022,13:995791. DOI: 10.3389/fimmu.2022.995791.
[23]
GomartA, ValléeA, LecarpentierY. Necrotizing enterocolitis: LPS/TLR4-induced crosstalk between canonical TGF-β/Wnt/β-catenin pathways and PPARγ[J]. Front Pediatr, 2021,9:713344. DOI: 10.3389/fped.2021.713344.
[24]
AlmonaemE, AlmotalebG, AlhameedM, et al. Utility of transforming growth factor beta-1 in diagnosis of neonatal necrotizing enterocolitis[J]. J Neonatal Perinatal Med, 2022,15(4):795-801. DOI: 10.3233/NPM-210973.
[25]
DaoDT, Anez-BustillosL, AdamRM, et al. Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration[J]. Am J Pathol, 2018,188(11):2446-2456. DOI: 10.1016/j.ajpath.2018.07.016.
[26]
BaoZK, MiYH, XiongXY, et al. Sulforaphane ameliorates the intestinal injury in necrotizing enterocolitis by regulating the PI3K/Akt/GSK-3β signaling pathway[J]. Can J Gastroenterol Hepatol, 2022,2022:6529842. DOI: 10.1155/2022/6529842.
[27]
GaoR, ZhangR, QianT, et al. A comparison of exosomes derived from different periods breast milk on protecting against intestinal organoid injury[J]. Pediatr Surg Int, 2019,35(12):1363-1368. DOI: 10.1007/s00383-019-04562-6.
[28]
WangC, ZhangM, GuoH, et al. Human milk oligosaccharides protect against necrotizing enterocolitis by inhibiting intestinal damage via increasing the proliferation of crypt cells[J]. Mol Nutr Food Res, 2019,63(18):e1900262. DOI: 10.1002/mnfr.201900262.
[29]
YuZ, JiangN, SuW, et al. Necroptosis: a novel pathway in neuroinflammation[J]. Front Pharmacol, 2021,12:701564. DOI: 10.3389/fphar.2021.701564.
[30]
WertsAD, FultonWB, LaddMR, et al. A novel role for necroptosis in the pathogenesis of necrotizing enterocolitis[J]. Cell Mol Gastroenterol Hepatol, 2020,9(3):403-423. DOI: 10.1016/j.jcmgh.2019.11.002.
[31]
YinY, WuX, PengB, et al. Curcumin improves necrotising microscopic colitis and cell pyroptosis by activating SIRT1/NRF2 and inhibiting the TLR4 signalling pathway in newborn rats[J]. Innate Immun, 2020,26(7):609-617. DOI: 10.1177/1753425920933656.
[32]
CaoL, MuW. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications[J]. Pharmacol Res, 2021,163:105297. DOI: 10.1016/j.phrs.2020.105297.
[33]
DuanC, XuX, LuX, et al. RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis[J]. BMC Gastroenterol, 2022,22(1):137. DOI: 10.1186/s12876-022-02208-x.
[34]
QinY, ShiW, ZhuangJ, et al. Variations in melatonin levels in preterm and term human breast milk during the first month after delivery[J]. Sci Rep, 2019,9(1):17984. DOI: 10.1038/s41598-019-54530-2.
[35]
XiongX, BaoZ, MiY, et al. Melatonin alleviates neonatal necrotizing enterocolitis by repressing the activation of the NLRP3 inflammasome[J]. Gastroenterol Res Pract, 2022,2022:6920577. DOI: 10.1155/2022/6920577.
[36]
YeY, JinT, ZhangX, et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway[J]. Front Cell Neurosci, 2019,13:553. DOI: 10.3389/fncel.2019.00553.
[37]
SunQ, JiYC, WangZL, et al. Sodium butyrate alleviates intestinal inflammation in mice with necrotizing enterocolitis[J]. Mediators Inflamm, 2021,2021:6259381. DOI: 10.1155/2021/6259381.
[38]
YuR, JiangS, TaoY, et al. Inhibition of HMGB1 improves necrotizing enterocolitis by inhibiting NLRP3 via TLR4 and NF-κB signaling pathways[J]. J Cell Physiol, 2019,234(8):13431-13438. DOI: 10.1002/jcp.28022.
[39]
ShiY, LiuT, ZhaoX, et al. Vitamin D ameliorates neonatal necrotizing enterocolitis via suppressing TLR4 in a murine model[J]. Pediatr Res, 2018,83(5):1024-1030. DOI: 10.1038/pr.2017.329.
[40]
LyuC, JiangS, KongM, et al. Vitamin D protects against necrotising enterocolitis in newborn mice by activating the ERK signalling pathway[J]. Mol Med Rep, 2020,22(3):2107-2114. DOI: 10.3892/mmr.2020.11286.
[41]
WangY, SongJ, SunH, et al. Erythropoietin prevents necrotizing enterocolitis in very preterm infants: a randomized controlled trial[J]. J Transl Med, 2020,18(1):308. DOI: 10.1186/s12967-020-02459-w.
[42]
AnanthanA, BalasubramanianH, MohanD, et al. Early erythropoietin for preventing necrotizing enterocolitis in preterm neonates - an updated meta-analysis[J]. Eur J Pediatr, 2022,181(5):1821-1833. DOI: 10.1007/s00431-022-04394-y.
[43]
ShawAG, SimK, RoseG, et al. Premature neonatal gut microbial community patterns supporting an epithelial TLR-mediated pathway for necrotizing enterocolitis[J]. BMC Microbiol, 2021,21(1):225. DOI: 10.1186/s12866-021-02285-0.
[44]
LingN, ZhangX, ForsytheS, et al. Bacteroides fragilis ameliorates Cronobacter malonaticus lipopolysaccharide- induced pathological injury through modulation of the intestinal microbiota[J]. Front Immunol, 2022,13:931871. DOI: 10.3389/fimmu.2022.931871.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词