综述
帕金森病与炎症性肠病关联的研究进展
中华医学杂志, 2024,104(1) : 86-92. DOI: 10.3760/cma.j.cn112137-20230918-00486
摘要

帕金森病是一种常见的神经退行性疾病,而炎症性肠病是一种非特异性的慢性肠道炎性疾病。有研究发现,帕金森病与炎症性肠病在流行病学方面存在相关性,同时也存在相似的病理生理机制,例如遗传因素、肠道炎症、肠道微生物及其代谢产物短链脂肪酸等。肠道微生物及其代谢产物是肠道内重要的功能组分,在帕金森病与炎症性肠病的发生发展中起重要作用。炎症性肠病的部分治疗药物对帕金森病有保护作用,粪菌移植、益生菌等肠道微生态调节方法在炎症性肠病与帕金森病治疗中均有一定前景。本文就帕金森病与炎症性肠病的发病风险、病理生理机制和治疗等进行综述,着重关注肠道微生物及其代谢产物短链脂肪酸在两种疾病中的变化,以期为更好研究帕金森病和炎症性肠病之间的关系提供新思路。

引用本文: 来忆秋, 杨晓东, 肖勤. 帕金森病与炎症性肠病关联的研究进展 [J] . 中华医学杂志, 2024, 104(1) : 86-92. DOI: 10.3760/cma.j.cn112137-20230918-00486.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

帕金森病是一种常见的神经退行性疾病,临床表现为运动迟缓、静止性震颤、肌强直等运动症状,以及自主神经功能障碍、神经精神症状、感觉异常、睡眠障碍等一系列非运动症状。自主神经功能障碍包括流涎、吞咽困难、胃轻瘫、便秘等胃肠道功能障碍,以及膀胱功能障碍、心血管功能障碍等1, 2。炎症性肠病是一种常见的肠道慢性炎症性疾病,主要包括克罗恩病与溃疡性结肠炎,临床常表现为腹泻、腹痛、便血等一系列肠道症状,伴有不同程度的肠外并发症与肠外表现,前者是肠道炎症的直接或间接后遗症,后者则由肠道外的炎症所致,肠外表现可累及关节、皮肤、眼睛,甚至周围和中枢神经系统3, 4, 5。已有研究报道,帕金森病与炎症性肠病间存在关联,本文进一步阐述帕金森病与炎症性肠病的发病风险、病理生理机制和治疗,尤其是肠道微生物及其代谢产物短链脂肪酸(SCFAs)在两种疾病中的变化。

一、帕金森病与炎症性肠病的流行病学

1.炎症性肠病患者中帕金森病的发病风险研究:2016年,中国台湾一项包含41 865例患者(炎症性肠病组8 373例,非炎症性肠病组33 492例)的队列研究发现,炎症性肠病组的帕金森病发病风险高于非炎症性肠病组(HR=1.35,P<0.05)6。2018—2022年间,4项更大型的队列研究结论与上述研究结果一致7, 8, 9, 10。同时另有2项队列研究在校正混杂因素后,发现炎症性肠病组与非炎症性肠病组的帕金森病发病风险间的差异无统计学意义11, 12。2022年,一项包含了9项共涉及12 177 520例患者的荟萃分析发现,炎症性肠病患者的帕金森病发病率较一般人群增高(RR=1.24,P<0.001)13。2023年,另一项荟萃分析结果也证实:和一般人群相比,炎症性肠病患者帕金森病的发病率更高(OR=1.30,P=0.024)14。故流行病学证据支持炎症性肠病患者帕金森病的发病风险较高。该结论的可靠程度有待进一步验证,原因如下:(1)上述研究所采用的原始数据多来自于保险数据库或医院登记,故对疾病的诊断标准可能存在偏差;(2)炎症性肠病患者服用的部分药物例如他克莫司、环孢素等免疫抑制剂可能诱发药源性帕金森综合征,但很少有研究强调排除继发性帕金森综合征;(3)吸烟是一项重要的混杂因素,流行病学显示,吸烟增加克罗恩病的发病风险,降低溃疡性结肠炎及帕金森病的发病风险,但并非每一项研究都将吸烟作为混杂因素进行校正115, 16

2.帕金森病患者中炎症性肠病的发病风险研究:关于帕金森病患者的炎症性肠病发病风险较一般人群是否有差异,现有的研究结论并不一致,目前缺乏足够的流行病学研究。2015年中国台湾一项纳入1 968例帕金森病患者与6 792例对照者的队列研究发现,两组患者间炎症性肠病患病率的差异无统计学意义(P=0.561)17。而2019年瑞典一项纳入39 652例炎症性肠病患者与396 520名对照者的病例对照研究发现,与对照人群相比,炎症性肠病患者诊断为炎症性肠病时即患有帕金森病的可能性较大(OR=1.4,95%CI:1.2~1.8);在克罗恩病(OR=1.6,95%CI:1.1~2.3)和溃疡性结肠炎(OR=1.4,95%CI:1.1~1.9)亚组分析中也存在同样的情况11

3.帕金森病与炎症性肠病的因果关系研究:2019年世界运动障碍协会(MDS)更新的帕金森病前驱期诊断标准认为,炎症性肠病是帕金森病的候选诊断标志物,即目前已存在可靠且病理生理学上可信的证据,但缺乏相应的前瞻性研究证实18。孟德尔随机化(MR)是一种将遗传变异作为工具变量进行因果推定的方法,其中涉及的遗传变异通常来自全基因组关联分析(GWAS)19。近年来,此研究方法用于分析帕金森病与炎症性肠病的因果关系。2022年,对463 372例炎症性肠病相关数据(病例组7 045例,对照组456 327名)及1 474 097例帕金森病相关数据(病例组56 306例,对照组1 417 791例),采用逆方差加权(IVW)法进行MR分析,发现炎症性肠病与帕金森病的发病风险无关(OR= 0.98,P = 0.48)20。同年,对另一项59 957例炎症性肠病相关数据(病例组25 042例,对照组34 915例及同一项帕金森病相关数据),采用五种统计方法进行MR分析,其中两种方法是IVW和Robust Adjusted Profile Score(RAPS),帕金森病患者炎症性肠病的发病风险较对照人群增高(IVW和RAPS的OR值分别=1.062、1.063,均P<0.05),另外3种统计学方法结果为阴性21。2023年,对214 053例炎症性肠病相关数据(病例组3 753例,对照组210 300例)及482 730例帕金森病相关数据(病例组33 674例,对照组449 056例)进行双向MR研究,发现帕金森病中炎症性肠病的发生率(OR = 1.014,95%CI:0.967~1.063,P = 0.573)以及炎症性肠病中帕金森病的发生率(OR = 0.978,95%CI:0.910~1.052,P = 0.549)差异均无统计学意义22。目前缺乏足够的证据证明帕金森病与炎症性肠病间存在直接关联,但这两种疾病在流行病学方面存在一定相关性,提示需要进一步分析帕金森病与炎症性肠病共同的病理生理机制。

二、帕金森病与炎症性肠病共同的病理生理机制研究

1.遗传因素:帕金森病与炎症性肠病(特别是克罗恩病)有一些共同的遗传危险因素。富含亮氨酸重复序列激酶2(LRRK2)基因位于12号染色体,编码LRRK2蛋白。LRRK2基因是帕金森病的重要致病基因之一,同时,该基因也与炎症性肠病相关23。LRRK2基因在外周血单个核细胞(PBMCs)中高表达,可能参与炎性反应过程24。帕金森病患者的LRRK2基因在B细胞、T细胞、CD16+单核细胞等PBMCs中的表达高于健康对照者;而对于克罗恩病患者,γ干扰素的刺激可增加LRRK2基因在免疫细胞中的表达25, 26。LRRK2基因存在许多单核苷酸多态性(SNPs)位点,目前认为N1437H、R1441C/G/H、Y1699C、I2012T、G2019S、I2020T等是帕金森病致病突变位点,M2397T是克罗恩病的风险位点,N2081D是帕金森病和克罗恩病共同的风险位点,而N551K、R1398H是帕金森病和克罗恩病共同的保护位点24。N2081D位于LRRK2基因的激酶结构域,与LRRK2蛋白的激酶活性增加有关。R1398H位于LRRK2基因的Roc(Ras/GTP酶-蛋白复合体)结构域,该位点的突变可通过增加GTP酶的活性,从而使LRRK2蛋白失活。N551K不在LRRK2基因的任何一个结构域中,但有观点认为,N551K与R1398H处于连锁不平衡状态27, 28。由于神经慢性炎症与肠道慢性炎症分别是帕金森病与炎症性肠病重要的病理生理过程,LRRK2基因的突变可能通过影响LRRK2蛋白的激酶和GTP酶活性等介导炎症反应,进而参与帕金森病与炎症性肠病的发病24

除LRRK2基因外,核苷酸的寡聚域2(NOD2)/CARD15基因也可能是帕金森病与炎症性肠病共同的风险基因29。该基因位于16号染色体,编码结合NOD2蛋白30。在克罗恩病与帕金森病患者中发现NOD2/CARD15基因的4个SNPs位点(R702W、G908R、L1007fs、P268S)均高表达2931, 32, 33。但最新一项研究认为,R702W、G908R、L1007fs这3个SNPs与帕金森病无相关性34。目前认为该基因编码的NOD2蛋白在维持肠道稳态性方面起重要作用,其突变可能通过核因子-κB(NF-κB)活化与细胞因子应答等,使相应人群中炎症性肠病的易感性增高35

2.肠道炎症:炎症性肠病的重要病理生理特征是肠道慢性非特异性炎症,常伴随胃肠道黏膜屏障结构和功能紊乱。克罗恩病可影响从口腔到肛门任何黏膜的所有层面,而溃疡性结肠炎通常影响结肠上皮内层。炎症性肠病患者血液中的C反应蛋白是可靠的反映疾病严重程度的生物标志物;其胃肠道中存在肿瘤坏死因子(TNF)-α等细胞因子水平升高;且该类患者粪便中钙卫蛋白(calprotectin)、钙粒蛋白C(calgranulin C,又称S100A12)、乳铁蛋白等与炎症相关蛋白水平升高36。神经炎症是帕金森病的重要病理生理特征之一37,目前已有研究证实帕金森病患者胃肠道中也有典型的炎症发生。帕金森病患者结肠组织中,表达TNF-α、干扰素、白细胞介素(IL)-6和IL-1β等细胞因子的mRNA水平升高;粪便中IL-1α、IL-1β、C反应蛋白、钙卫蛋白等水平升高38。关于肠道炎症如何继发后续的帕金森病,有以下假说:(1)肠道炎症本身可导致α-突触核蛋白(α-syn)在肠道黏膜下神经元中错误折叠和积聚,随后“由下而上”通过迷走神经逆行进入中枢神经系统,在此大量积聚,引起多巴胺能神经元变性坏死;(2)肠道炎症可能通过继发全身炎症反应,进而引起脑部炎症的产生,最终促使α-syn在脑部异常积聚,诱发帕金森病39。上述假说存在以下证据支持:(1)2019年,对8例炎症性肠病患者(克罗恩病4例,溃疡性结肠炎4例)及4名对照者的结肠组织进行免疫组化分析,结果发现克罗恩病患者非炎症区域α-syn水平是对照组的2.07倍,炎症区域是2.35倍40;(2)2014年,对10例帕金森病患者进行尸检,8例患者胃肠道中存在α-syn异常积聚41;(3)2010年,一项研究使用葡聚糖硫酸钠(DSS)构造结肠炎小鼠模型后,向黑质中注射脂多糖,发现结肠炎小鼠较对照组小鼠更早出现运动障碍42;(4)2019年,另一项研究向A53T基因突变小鼠提供含低浓度DSS(0.5%)的饮用水以诱发结肠炎,结果发现,与未服用DSS的对照组小鼠相比,实验组小鼠更早出现运动障碍、α-syn异常积聚和多巴胺能神经元变性43

3.肠道微生物及其代谢产物SCFAs:帕金森病与炎症性肠病患者中均存在肠道微生物失调。2021年,一篇对帕金森病和炎症性肠病患者中肠道微生物的组成变化趋势进行总结的综述指出,两者均存在变形菌门(Proteobacteria)丰度的增高与厚壁菌门(Firmicutes)粪杆菌属(Faecalibacterium)、罗氏菌属(Roseburia)丰度的降低,而后二者被认为是产生SCFAs的主要细菌44。具体如下:帕金森病与炎症性肠病患者中普遍存在变形菌门肠杆菌科(Enterobacteriaceae)等促炎菌丰度的增高,拟杆菌门(Bacteroidota)普雷沃氏菌科(Prevotellaceae)、厚壁菌门毛螺菌科(Lachnospiraceae,包括Roseburia)与Faecalibacterium等产SCFAs的细菌丰度降低,而疣微菌门(Verrucomicrobia)疣微菌科(Verrucomicrobiaceae),包括阿克曼菌属(Akkermansia)、厚壁菌门乳杆菌科(Lactobacillaceae)与放线菌门(Actinobacteria)双歧杆菌属(Bifidobacterium)等抗炎菌的丰度存在异质性。有观点认为,AkkermansiaLactobacillaceaeBifidobacterium等抗炎菌可在炎症环境中生长,其丰度的上升晚于帕金森病与炎症性肠病的“肠道炎症”过程45, 46, 47, 48

肠道微生物的代谢产物如SCFAs在帕金森病与炎症性肠病患者中也存在相似的变化。SCFAs是一类碳原子数≤6的饱和脂肪酸,包括乙酸、丙酸、丁酸、异丁酸、戊酸、异戊酸、己酸、异己酸等,主要在结肠内由肠道微生物发酵膳食纤维而成49。SCFAs通过影响血脑屏障完整性、小胶质细胞功能、神经元自噬和凋亡、肠道屏障完整性以及肠道炎症等,参与帕金森病的发生50。同时,SCFAs通过参与调节固有免疫细胞、适应性免疫细胞分化及调控相关细胞的功能,对炎症性肠病起免疫调节作用51。2022年有研究指出,帕金森病患者粪便中SCFAs减少;而血液、尿液、唾液中的SCFAs增高,可能与SCFAs影响肠道黏膜通透性有关52。截至2023年8月,共有7项研究,对总计436例帕金森病患者及371名健康对照者的粪便样本中的SCFAs进行分析,均发现帕金森病患者粪便中SCFAs下降53, 54, 55, 56, 57, 58, 59。而对于帕金森病患者血液中SCFAs的变化情况,目前共有10项相关研究,共涉及511例帕金森病患者及377名健康对照者,其中有6项研究(帕金森病患者304例,健康对照者228名)发现帕金森病患者血液中SCFAs升高57, 5860, 61, 62, 63;另有3项研究发现帕金森病患者血液中SCFAs下降64, 65, 66;1项研究发现差异无统计学意义67。炎症性肠病患者粪便中SCFAs的变化趋势不同,研究结果也各不相同。2019年,一项荟萃分析纳入12项研究,炎症性肠病患者572例,健康对照者282名,结果发现炎症性肠病患者粪便中乙酸、丙酸、丁酸、戊酸浓度下降;但亚组分析发现克罗恩病与溃疡性结肠炎患者粪便中SCFAs变化情况不同,溃疡性结肠炎患者中乙酸、戊酸和总SCFAs呈下降趋势,克罗恩病患者粪便中乙酸、丁酸、戊酸呈下降趋势;此外,亚组分析发现,溃疡性结肠炎患者的不同疾病阶段,丁酸的浓度会发生变化,活动期低于健康对照者,缓解期增高68。总之,帕金森病与炎症性肠病患者粪便中的SCFAs呈下降趋势,SCFAs可能作为帕金森病与炎症性肠病诊断的生物标志物。故肠道微生物对帕金森病与炎症性肠病发病的影响可能通过微生物本身参与炎症反应的过程,也可能通过微生物的代谢物进而影响炎症反应的过程。

三、炎症性肠病治疗方法对帕金森病的影响

1.药物:治疗炎症性肠病的常用药物包括非生物制剂和生物制剂。经典的非生物制剂包括氨基水杨酸制剂、硫嘌呤类药物、激素等;生物制剂包括抗TNF、IL等细胞因子类药物及作用于特定炎症相关通路的药物等69, 70。5-氨基水杨酸(5-ASA)、抗TNF药物等是治疗炎症性肠病常用的药物。2018年,一项纳入144 018例炎症性肠病患者的横断面研究发现,接受抗TNF药物治疗者比未接受抗TNF药物治疗者帕金森病发病风险低(IRR=0.22,P=0.03)7。2019年,一项纳入20 208 682例患者的研究发现,65岁以下人群使用5-ASA的同时接受抗帕金森病药物治疗的概率低于未使用5-ASA人群(OR=0.28,P=0.0103)71。2023年的一项荟萃分析,其中6项研究包含炎症性肠病药物使用相关数据,结果表明治疗炎症性肠病的药物对帕金森病的发病具有保护作用(RR=0.88)72。上述研究提示,炎症性肠病的部分常见治疗药物可能对于帕金森病的发病有保护作用,为今后帕金森病的治疗及“老药新用”提供了一定的参考依据。但需注意的是,帕金森病好发于老年人群,5-ASA与抗TNF药物常应用于较年轻的炎症性肠病患者,在未来的研究中应当注意年龄等可能造成的潜在偏倚。此外,前文中提及的MR方法可被用于寻找药物靶点。2023年,一项对帕金森病与炎症性肠病进行MR分析的研究认为CXCR4基因是潜在的药物靶点,该基因编码趋化因子受体CXCR4蛋白,黄酮类化合物可能通过抑制CXCR4蛋白,进而成为帕金森病与炎症性肠病潜在的治疗药物73

2.粪菌移植(FMT)与益生菌治疗:FMT通过调节肠道微生物的多样性与丰度,进而调整肠道微生态74。对于炎症性肠病患者,FMT被认为是一种有争议的治疗方法,尽管小规模临床研究发现FMT有助于缓解炎症性肠病患者的症状,但有观点认为,FMT治疗容易发生感染、发热等不良反应75, 76。在帕金森病相关研究中,已有动物实验表明,FMT能改善帕金森病小鼠模型的肠道微生物失调,增加纹状体多巴胺和5-羟色胺水平,通过抑制神经炎症发挥神经系统的保护作用77。另有研究发现,FMT在一定程度上可改善帕金森病患者的运动症状(震颤、运动迟缓等)和非运动症状(便秘、焦虑、抑郁、睡眠障碍等)78, 79。FMT长期疗效有待证实,其涉及供体的筛选及伦理问题,且费用相对较高80。与之相比,益生菌的临床实用性更强,亦可调整肠道微生态81。益生菌尼氏大肠杆菌1917(E.coil Nissle1917)在延缓溃疡性结肠炎的进展方面,与标准的5-ASA治疗一样有效82。而前文中提到的能产生SCFAs的Faecalibacterium prausnitziiAkkermansia muciniphila,未来也有希望被用于治疗炎症性肠病75。动物实验结果显示,每天补充益生菌可改善帕金森病小鼠模型的步态、平衡功能和运动协调性,且长期服用益生菌对多巴胺神经元具有神经保护作用83。随机双盲对照试验发现,益生菌可以帮助缓解帕金森病患者的便秘、腹痛和腹胀等非运动症状,以及统一帕金森病评估量表(UPDRS)总分等84, 85, 86, 87。上述研究提示,肠道微生态调节在帕金森病与炎症性肠病治疗中均具有一定的前景,但总体临床数据不足,需要进行更长期的随机双盲对照试验,以证实FMT与益生菌的临床疗效和安全性。

综上,虽然帕金森病与炎症性肠病为两种不同系统的疾病,但现有研究提示二者在流行病学、病理生理机制上存在一定联系,尤其在肠道微生物及其代谢产物SCFAs等方面。炎症性肠病的治疗对帕金森病有一定保护作用,两者还存在共同的潜在治疗方式即肠道微生态调节。因此,关于炎症性肠病的治疗方案和发病机制的探讨和研究,可能为帕金森病治疗和发病机制研究提供新思路。

·文献速览·

早发性脊柱侧凸的发病率和患病率:一项区域性多中心流行病学研究

引用本文:

来忆秋, 杨晓东, 肖勤. 帕金森病与炎症性肠病关联的研究进展[J]. 中华医学杂志, 2024, 104(1): 86-92. DOI: 10.3760/cma.j.cn112137-20230918-00486.

利益冲突
利益冲突

所有作者声明不存在利益冲突

参考文献
[1]
BalestrinoR, SchapiraA. Parkinson disease[J]. Eur J Neurol, 2020, 27(1):27-42. DOI: 10.1111/ene.14108.
[2]
SchapiraA, ChaudhuriKR, JennerP. Non-motor features of Parkinson disease[J]. Nat Rev Neurosci, 2017, 18(7):435-450. DOI: 10.1038/nrn.2017.62.
[3]
FlynnS, EisensteinS. Inflammatory bowel disease presentation and diagnosis[J]. Surg Clin North Am, 2019, 99(6):1051-1062. DOI: 10.1016/j.suc.2019.08.001.
[4]
RoglerG, SinghA, KavanaughA, et al. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management[J]. Gastroenterology, 2021, 161(4):1118-1132. DOI: 10.1053/j.gastro.2021.07.042.
[5]
FerroJM, Oliveira SantosM. Neurology of inflammatory bowel disease[J]. J Neurol Sci, 2021, 424:117426. DOI: 10.1016/j.jns.2021.117426.
[6]
LinJC, LinCS, HsuCW, et al. Association between Parkinson′s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study[J]. Inflamm Bowel Dis, 2016, 22(5):1049-1055. DOI: 10.1097/MIB.0000000000000735.
[7]
PeterI, DubinskyM, BressmanS, et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease[J]. JAMA Neurol, 2018, 75(8):939-946. DOI: 10.1001/jamaneurol.2018.0605.
[8]
VillumsenM, AznarS, PakkenbergB, et al. Inflammatory bowel disease increases the risk of Parkinson′s disease: a Danish nationwide cohort study 1977-2014[J]. Gut, 2019, 68(1):18-24. DOI: 10.1136/gutjnl-2017-315666.
[9]
ParkS, KimJ, ChunJ, et al. Patients with inflammatory bowel disease are at an increased risk of Parkinson′s disease: a South Korean nationwide population-based study[J]. J Clin Med, 2019, 8(8):1191. DOI: 10.3390/jcm8081191.
[10]
KimGH, LeeYC, KimTJ, et al. Risk of neurodegenerative diseases in patients with inflammatory bowel disease: a nationwide population-based cohort study[J]. J Crohns Colitis, 2022, 16(3):436-443. DOI: 10.1093/ecco-jcc/jjab162.
[11]
WeimersP, HalfvarsonJ, SachsMC, et al. Inflammatory bowel disease and Parkinson′s disease: a nationwide swedish cohort study[J]. Inflamm Bowel Dis, 2019, 25(1):111-123. DOI: 10.1093/ibd/izy190.
[12]
CoatesMD, BaDM, LiuG, et al. Revisiting the association between inflammatory bowel disease and Parkinson′s disease[J]. Inflamm Bowel Dis, 2022, 28(6):850-854. DOI: 10.1093/ibd/izab175.
[13]
ZhuY, YuanM, LiuY, et al. Association between inflammatory bowel diseases and Parkinson′s disease: systematic review and meta-analysis[J]. Neural Regen Res, 2022, 17(2):344-353. DOI: 10.4103/1673-5374.317981.
[14]
LiM, WanJ, XuZ, et al. The association between Parkinson′s disease and autoimmune diseases: a systematic review and meta-analysis[J]. Front Immunol, 2023, 14:1103053. DOI: 10.3389/fimmu.2023.1103053.
[15]
López-SendónJ, MenaMA, de YébenesJG. Drug-induced parkinsonism[J]. Expert Opin Drug Saf, 2013, 12(4):487-496. DOI: 10.1517/14740338.2013.787065.
[16]
BaumgartDC, CardingSR. Inflammatory bowel disease: cause and immunobiology[J]. Lancet, 2007, 369(9573):1627-1640. DOI: 10.1016/S0140-6736(07)60750-8.
[17]
HsuYT, LiaoCC, ChangSN, et al. Increased risk of depression in patients with parkinson disease: a nationwide cohort study[J]. Am J Geriatr Psychiatry, 2015, 23(9):934-940. DOI: 10.1016/j.jagp.2014.10.011.
[18]
HeinzelS, BergD, GasserT, et al. Update of the MDS research criteria for prodromal Parkinson′s disease[J]. Mov Disord, 2019, 34(10):1464-1470. DOI: 10.1002/mds.27802.
[19]
BowdenJ, HolmesMV. Meta-analysis and Mendelian randomization: a review[J]. Res Synth Methods, 2019, 10(4):486-496. DOI: 10.1002/jrsm.1346.
[20]
FreuerD, MeisingerC. Association between inflammatory bowel disease and Parkinson′s disease: a Mendelian randomization study[J]. NPJ Parkinsons Dis, 2022, 8(1):55. DOI: 10.1038/s41531-022-00318-7.
[21]
CuiG, LiS, YeH, et al. Are neurodegenerative diseases associated with an increased risk of inflammatory bowel disease? A two-sample Mendelian randomization study[J]. Front Immunol, 2022, 13:956005. DOI: 10.3389/fimmu.2022.956005.
[22]
ZengR, WangJ, ZhengC, et al. Lack of causal associations of inflammatory bowel disease with Parkinson′s disease and other neurodegenerative disorders[J]. Mov Disord, 2023, 38(6):1082-1088. DOI: 10.1002/mds.29386.
[23]
LewisPA. Leucine rich repeat kinase 2: a paradigm for pleiotropy[J]. J Physiol, 2019, 597(14):3511-3521. DOI: 10.1113/JP276163.
[24]
HerrickMK, TanseyMG. Is LRRK2 the missing link between inflammatory bowel disease and Parkinson′s disease?[J]. NPJ Parkinsons Dis, 2021, 7(1):26. DOI: 10.1038/s41531-021-00170-1.
[25]
CookDA, KannarkatGT, CintronAF, et al. LRRK2 levels in immune cells are increased in Parkinson′s disease[J]. NPJ Parkinsons Dis, 2017, 3:11. DOI: 10.1038/s41531-017-0010-8.
[26]
GardetA, BenitaY, LiC, et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens[J]. J Immunol, 2010, 185(9):5577-5585. DOI: 10.4049/jimmunol.1000548.
[27]
HuiKY, Fernandez-HernandezH, HuJ, et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn′s disease and Parkinson′s disease[J]. Sci Transl Med, 2018, 10(423):eaai7795. DOI: 10.1126/scitranslmed.aai7795.
[28]
GopalaiAA, LimJL, LiHH, et al. LRRK2 N551K and R1398H variants are protective in Malays and Chinese in Malaysia: a case-control association study for Parkinson′s disease[J]. Mol Genet Genomic Med, 2019, 7(11):e604. DOI: 10.1002/mgg3.604.
[29]
BialeckaM, KurzawskiM, Klodowska-DudaG, et al. CARD15 variants in patients with sporadic Parkinson′s disease[J]. Neurosci Res, 2007, 57(3):473-476. DOI: 10.1016/j.neures.2006.11.012.
[30]
McGovernDP, van HeelDA, AhmadT, et al. NOD2 (CARD15), the first susceptibility gene for Crohn′s disease[J]. Gut, 2001, 49(6):752-754. DOI: 10.1136/gut.49.6.752.
[31]
LesageS, ZoualiH, CézardJP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease[J]. Am J Hum Genet, 2002, 70(4):845-857. DOI: 10.1086/339432.
[32]
LvC, YangX, ZhangY, et al. Confirmation of three inflammatory bowel disease susceptibility loci in a Chinese cohort[J]. Int J Colorectal Dis, 2012, 27(11):1465-1472. DOI: 10.1007/s00384-012-1450-6.
[33]
MaQ, AnX, LiZ, et al. P268S in NOD2 associates with susceptibility to Parkinson′s disease in Chinese population[J]. Behav Brain Funct, 2013, 9:19. DOI: 10.1186/1744-9081-9-19.
[34]
AppenzellerS, ThierS, PapengutF, et al. No association between NOD2 variants and Parkinson′s disease[J]. Mov Disord, 2012, 27(9):1191-1192. DOI: 10.1002/mds.25059.
[35]
TrindadeBC, ChenGY. NOD1 and NOD2 in inflammatory and infectious diseases[J]. Immunol Rev, 2020, 297(1):139-161. DOI: 10.1111/imr.12902.
[36]
LiuD, SaikamV, SkradaKA, et al. Inflammatory bowel disease biomarkers[J]. Med Res Rev, 2022, 42(5):1856-1887. DOI: 10.1002/med.21893.
[37]
TanseyMG, WallingsRL, HouserMC, et al. Inflammation and immune dysfunction in Parkinson disease[J]. Nat Rev Immunol, 2022, 22(11):657-673. DOI: 10.1038/s41577-022-00684-6.
[38]
ChapeletG, Leclair-VisonneauL, ClairembaultT, et al. Can the gut be the missing piece in uncovering PD pathogenesis?[J]. Parkinsonism Relat Disord, 2019, 59:26-31. DOI: 10.1016/j.parkreldis.2018.11.014.
[39]
Rolli-DerkinderenM, Leclair-VisonneauL, BourreilleA, et al. Is Parkinson′s disease a chronic low-grade inflammatory bowel disease?[J]. J Neurol, 2020, 267(8):2207-2213. DOI: 10.1007/s00415-019-09321-0.
[40]
PrigentA, LionnetA, DurieuE, et al. Enteric alpha-synuclein expression is increased in Crohn′s disease[J]. Acta Neuropathol, 2019, 137(2):359-361. DOI: 10.1007/s00401-018-1943-7.
[41]
GelpiE, Navarro-OtanoJ, TolosaE, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders[J]. Mov Disord, 2014, 29(8):1010-1018. DOI: 10.1002/mds.25776.
[42]
VillaránRF, Espinosa-OlivaAM, SarmientoM, et al. Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson′s disease[J]. J Neurochem, 2010, 114(6):1687-1700. DOI: 10.1111/j.1471-4159.2010.06879.x.
[43]
KishimotoY, ZhuW, HosodaW, et al. Chronic mild gut inflammation accelerates brain neuropathology and motor dysfunction in α-synuclein mutant mice[J]. Neuromolecular Med, 2019, 21(3):239-249. DOI: 10.1007/s12017-019-08539-5.
[44]
李阳红, 周小霞, 唐北沙. 帕金森病与炎性肠病在遗传学和肠道微生物方面的关联研究进展[J]. 中华神经科杂志, 2021, 54(7):734-742. DOI: 10.3760/cma.j.cn113694-20201028-00817.
[45]
WangQ, LuoY, Ray ChaudhuriK, et al. The role of gut dysbiosis in Parkinson′s disease: mechanistic insights and therapeutic options[J]. Brain, 2021, 144(9):2571-2593. DOI: 10.1093/brain/awab156.
[46]
RomanoS, SavvaGM, BedarfJR, et al. Meta-analysis of the Parkinson′s disease gut microbiome suggests alterations linked to intestinal inflammation[J]. NPJ Parkinsons Dis, 2021, 7(1):27. DOI: 10.1038/s41531-021-00156-z.
[47]
MetwalyA, ReitmeierS, HallerD. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(6):383-397. DOI: 10.1038/s41575-022-00581-2.
[48]
OliveiraE, QuaglioA, MagroDO, et al. Intestinal Microbiota and miRNA in IBD: a narrative review about discoveries and perspectives for the future[J]. Int J Mol Sci, 2023, 24(8):7176. DOI: 10.3390/ijms24087176.
[49]
DalileB, Van OudenhoveL, VervlietB, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8):461-478. DOI: 10.1038/s41575-019-0157-3.
[50]
荣璐, 吴娜, 刘振国. 短链脂肪酸在帕金森病发病机制中的作用研究进展[J]. 中华神经科杂志, 2023, 56(4):453-458. DOI: 10.3760/cma.j.cn113694-20220711-00535.
[51]
GonçalvesP, AraújoJR, Di SantoJP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease[J]. Inflamm Bowel Dis, 2018, 24(3):558-572. DOI: 10.1093/ibd/izx029.
[52]
ChenSJ, LinCH. Gut microenvironmental changes as a potential trigger in Parkinson′s disease through the gut-brain axis[J]. J Biomed Sci, 2022, 29(1):54. DOI: 10.1186/s12929-022-00839-6.
[53]
UngerMM, SpiegelJ, DillmannKU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson′s disease and age-matched controls[J]. Parkinsonism Relat Disord, 2016, 32:66-72. DOI: 10.1016/j.parkreldis.2016.08.019.
[54]
AhoV, HouserMC, PereiraP, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson′s disease[J]. Mol Neurodegener, 2021, 16(1):6. DOI: 10.1186/s13024-021-00427-6.
[55]
HuangT, ShiH, XuY, et al. The gut microbiota metabolite propionate ameliorates intestinal epithelial barrier dysfunction-mediated Parkinson′s disease via the AKT signaling pathway[J]. Neuroreport, 2021, 32(3):244-251. DOI: 10.1097/WNR.0000000000001585.
[56]
TanAH, ChongCW, LimSY, et al. Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics[J]. Ann Neurol, 2021, 89(3):546-559. DOI: 10.1002/ana.25982.
[57]
ChenSJ, ChenCC, LiaoHY, et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease[J]. Neurology, 2022, 98(8):e848-e858. DOI: 10.1212/WNL.0000000000013225.
[58]
YangX, AiP, HeX, et al. Parkinson′s disease is associated with impaired gut-blood barrier for short-chain fatty acids[J]. Mov Disord, 2022, 37(8):1634-1643. DOI: 10.1002/mds.29063.
[59]
De Pablo-FernandezE, GebeyehuGG, FlainL, et al. The faecal metabolome and mycobiome in Parkinson′s disease[J]. Parkinsonism Relat Disord, 2022, 95:65-69. DOI: 10.1016/j.parkreldis.2022.01.005.
[60]
ShinC, LimY, LimH, et al. Plasma short-chain fatty acids in patients with Parkinson′s disease[J]. Mov Disord, 2020, 35(6):1021-1027. DOI: 10.1002/mds.28016.
[61]
ToczylowskaB, ZieminskaE, MichałowskaM, et al. Changes in the metabolic profiles of the serum and putamen in Parkinson′s disease patients-In vitro and in vivo NMR spectroscopy studies[J]. Brain Res, 2020, 1748:147118. DOI: 10.1016/j.brainres.2020.147118.
[62]
HeX, QianY, XuS, et al. Plasma short-chain fatty acids differences in multiple system atrophy from Parkinson′s disease[J]. J Parkinsons Dis, 2021, 11(3):1167-1176. DOI: 10.3233/JPD-212604.
[63]
KimCH, JungJ, LeeYU, et al. Comparison of metabolites and gut microbes between patients with Parkinson′s disease and healthy individuals-a pilot clinical observational study (STROBE compliant)[J]. Healthcare (Basel), 2022, 10(2):302. DOI: 10.3390/healthcare10020302.
[64]
AhmedSS, SantoshW, KumarS, et al. Metabolic profiling of Parkinson′s disease: evidence of biomarker from gene expression analysis and rapid neural network detection[J]. J Biomed Sci, 2009, 16(1):63. DOI: 10.1186/1423-0127-16-63.
[65]
ZhaoH, WangC, ZhaoN, et al. Potential biomarkers of Parkinson′s disease revealed by plasma metabolic profiling[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1081-1082101-108. DOI: 10.1016/j.jchromb.2018.01.025.
[66]
WuG, JiangZ, PuY, et al. Serum short-chain fatty acids and its correlation with motor and non-motor symptoms in Parkinson′s disease patients[J]. BMC Neurol, 2022, 22(1):13. DOI: 10.1186/s12883-021-02544-7.
[67]
VoigtRM, WangZ, BrownJM, et al. Gut microbial metabolites in Parkinson′s disease: association with lifestyle, disease characteristics, and treatment status[J]. Neurobiol Dis, 2022, 170:105780. DOI: 10.1016/j.nbd.2022.105780.
[68]
ZhuangX, LiT, LiM, et al. Systematic review and meta-analysis: short-chain fatty acid characterization in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2019, 25(11):1751-1763. DOI: 10.1093/ibd/izz188.
[69]
MagroF, CordeiroG, DiasAM, et al. Inflammatory bowel disease-non-biological treatment[J]. Pharmacol Res, 2020, 160:105075. DOI: 10.1016/j.phrs.2020.105075.
[70]
叶玉兰, 胡彤, 徐丽娟, . 血浆白细胞介素9对生物制剂治疗后炎性肠病患者黏膜愈合的诊断及评估价值[J]. 中华医学杂志, 2023, 103(19):1483-1489. DOI: 10.3760/cma.j.cn112137-20221009-02110.
[71]
Pinel RíosJ, Madrid NavarroCJ, Pérez NavarroMJ, et al. Association of Parkinson′s disease and treatment with aminosalicylates in inflammatory bowel disease: a cross-sectional study in a Spain drug dispensation records[J]. BMJ Open, 2019, 9(6):e025574. DOI: 10.1136/bmjopen-2018-025574.
[72]
LiHX, ZhangC, ZhangK, et al. Inflammatory bowel disease and risk of Parkinson′s disease: evidence from a meta-analysis of 14 studies involving more than 13.4 million individuals[J]. Front Med (Lausanne), 2023, 10:1137366. DOI: 10.3389/fmed.2023.1137366.
[73]
DograN, Jakhmola-ManiR, PotshangbamAM, et al. CXCR4 as possible druggable target linking inflammatory bowel disease and Parkinson′s disease[J]. Metab Brain Dis, 2023, 38(3):1079-1096. DOI: 10.1007/s11011-022-01155-6.
[74]
BorodyTJ, EslickGD, ClancyRL. Fecal microbiota transplantation as a new therapy: from Clostridioides difficile infection to inflammatory bowel disease, irritable bowel syndrome, and colon cancer[J]. Curr Opin Pharmacol, 2019, 49:43-51. DOI: 10.1016/j.coph.2019.04.017.
[75]
LiM, YangL, MuC, et al. Gut microbial metabolome in inflammatory bowel disease: from association to therapeutic perspectives[J]. Comput Struct Biotechnol J, 2022, 20:2402-2414. DOI: 10.1016/j.csbj.2022.03.038.
[76]
ImdadA, PanditNG, ZamanM, et al. Fecal transplantation for treatment of inflammatory bowel disease[J]. Cochrane Database Syst Rev, 2023, 4(4):CD012774. DOI: 10.1002/14651858.CD012774.pub3.
[77]
SunMF, ZhuYL, ZhouZL, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson′s disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway[J]. Brain Behav Immun, 2018, 70:48-60. DOI: 10.1016/j.bbi.2018.02.005.
[78]
HuangH, XuH, LuoQ, et al. Fecal microbiota transplantation to treat Parkinson′s disease with constipation: a case report[J]. Medicine (Baltimore), 2019, 98(26):e16163. DOI: 10.1097/MD.0000000000016163.
[79]
XueLJ, YangXZ, TongQ, et al. Fecal microbiota transplantation therapy for Parkinson′s disease: a preliminary study[J]. Medicine (Baltimore), 2020, 99(35):e22035. DOI: 10.1097/MD.0000000000022035.
[80]
MettaV, LetaV, MrudulaKR, et al. Gastrointestinal dysfunction in Parkinson′s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation[J]. J Neurol, 2022, 269(3):1154-1163. DOI: 10.1007/s00415-021-10567-w.
[81]
CrookN, FerreiroA, GasparriniAJ, et al. Adaptive strategies of the candidate probiotic E.coli Nissle in the mammalian gut[J]. Cell Host Microbe, 2019, 25(4):499-512.e8. DOI: 10.1016/j.chom.2019.02.005.
[82]
KruisW, FricP, PokrotnieksJ, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine[J]. Gut, 2004, 53(11):1617-1623. DOI: 10.1136/gut.2003.037747.
[83]
TeranM, Perez VisñukD, Savoy de GioriG, et al. Neuroprotective effect of thiamine-producing lactic acid bacteria in a murine Parkinsonian model[J]. Food Funct, 2022, 13(15):8056-8067. DOI: 10.1039/d2fo01195f.
[84]
GeorgescuD, AncusaOE, GeorgescuLA, et al. Nonmotor gastrointestinal disorders in older patients with Parkinson′s disease: is there hope?[J]. Clin Interv Aging, 2016, 11:1601-1608. DOI: 10.2147/CIA.S106284.
[85]
TamtajiOR, TaghizadehM, Daneshvar KakhakiR, et al. Clinical and metabolic response to probiotic administration in people with Parkinson′s disease: a randomized, double-blind, placebo-controlled trial[J]. Clin Nutr, 2019, 38(3):1031-1035. DOI: 10.1016/j.clnu.2018.05.018.
[86]
TanAH, LimSY, ChongKK, et al. Probiotics for Constipation in Parkinson disease: a randomized placebo-controlled study[J]. Neurology, 2021, 96(5):e772-e782. DOI: 10.1212/WNL.0000000000010998.
[87]
YangX, HeX, XuS, et al. Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson′s disease[J]. Food Funct, 2023, 14(15):6828-6839. DOI: 10.1039/d3fo00728f.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词