专家论坛
间充质干细胞移植治疗膝关节软骨损伤及骨关节炎的现况与未来
中华医学杂志, 2024,104(17) : 1445-1452. DOI: 10.3760/cma.j.cn112137-20231007-00664
摘要

关节软骨损伤、骨关节炎(OA)的患病率高,波及人群广。软骨组织自身修复能力差,一旦损伤将不可逆转地发展为OA。间充质干细胞在再生医学领域扮演重要角色,被认为是实现软骨的修复与再生中最具希望的种子细胞之一。本文结合国内外最新临床研究成果,对临床中应用间充质干细胞治疗软骨损伤或OA的理论依据,治疗目的、意义,间充质干细胞的来源、特点,临床实施方案及疗效进行论述,同时对间充质干细胞临床应用中面临的问题,以及未来需要攻克的方向进行论述和探讨。

引用本文: 蒋青, 张雨. 间充质干细胞移植治疗膝关节软骨损伤及骨关节炎的现况与未来 [J] . 中华医学杂志, 2024, 104(17) : 1445-1452. DOI: 10.3760/cma.j.cn112137-20231007-00664.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

关节软骨损伤、骨关节炎(OA)的治疗一直是骨科领域的难点和热点。近年来,随着运动理念的推崇和社会老年化的进程加快,关节软骨损伤和OA的发病率明显增高1, 2。由于关节软骨有限的自愈能力,随着病情进展,最终发展为OA3, 4,需进行人工关节置换以改善关节功能5。OA发病患者基数增长较快,截至2020年已成为全球第四大致死或致残的重大疾病6。因此,关节软骨损伤后,及时治疗促进软骨修复与再生,对阻止OA的发生至关重要。间充质干细胞(MSCs)具有多向分化潜能,营养和免疫调节作用,在软骨损伤、OA方面,MSCs实现了从基础研究逐步走向临床治疗7, 8, 9。本文聚焦在临床中MSCs移植治疗关节软骨损伤、OA的临床研究内容,分别从其治疗理论依据,MSCs的来源及其特点,应用方案和治疗效果,以及面临的困境和未来需要突破的难点等方面进行总结论述,并进行深入探讨。

一、MSCs治疗OA的依据,细胞来源和特性
(一)MSCs具有分化成软骨细胞,控制炎症和免疫调节作用

在一定条件下,MSCs能够被诱导分化成软骨细胞实现软骨再生,如添加转化生长因子(TGF)-β3、骨形态发生蛋白(BMP)等软骨分化诱导因子,低氧环境、三维立体(支架或微载体)10, 11。MSCs也可分泌大量细胞因子或生长因子,通过旁分泌作用于软骨细胞促进细胞增殖,并分泌更多软骨细胞外基质12, 13, 14

MSCs具有炎症或免疫调节作用,有研究发现,关节腔内注射骨髓MSCs(BMSCs)治疗OA,膝关节内炎性细胞和白细胞介素(IL)-12水平明显更低,这与MSCs分泌一些生长因子或细胞因子发挥炎症或免疫调节作用密切相关,如干扰素γ(IFN-γ)、IL-10、肝细胞生长因子(HGF)、前列腺素E2(PGE2)、TGF-β1、一氧化氮等15, 16,通过这些因子缓解局部炎症反应,维持微环境稳态,从而达到缓解疼痛等症状的目的。

(二)MSCs来源丰富

用于治疗OA的MSCs来源丰富,按组织来源可分为BMSCs16, 17, 18, 19, 20, 21、脂肪MSCs(ADMSCs)22, 23, 24, 25, 26、滑膜MSCs(SMSCs)27、外周血MSCs(PBMSCs)28, 29以及脐带MSCs(UCMSCs)和胎盘MSCs(PMSCs)等30, 31。根据是否为同种异体来源,又分为自体或同种异体MSCs711

临床中用于治疗软骨损伤或OA的MSCs以自体细胞为主,多为骨髓血和脂肪组织来源,少量报道来自同种异体骨髓血32, 33、脂肪组织2634或围产期组织3135, 36, 37。不同组织来源的MSCs具有各自的优缺点。自体MSCs不会带来疾病传播的风险,患者接受程度好,安全性好。但是,获取比较麻烦,从分离到获取治疗量的MSCs用时较长(约20 d),供体损伤,且细胞的活性可能受到健康状态及年龄的影响738。研究认为,MSCs的特性和再生潜能会受到心血管疾病的影响39,体外多次传代扩增后,细胞的代谢、分化和分泌功能会发生改变40。由于MSCs低表达HLA-Ⅰ型抗原,不表达HLA-Ⅱ型抗原,具有免疫源逃避的能力,同种异体MSCs多为商业化产品(如Stempeucel32、Allojoin26、ELIXCYTE41),随用随取,使用方便、经济。尽管MSCs免疫原性更低,但并不具有免疫豁免能力42。一项研究发现,在马的关节腔内注射等量的自体和同种异体BMSCs,第一次临床治疗效果无明显差异,而在第二次注射时出现了明显的不良反应和严重的炎症反应43

对于不同组织来源的MSCs也各具特点。骨髓来源MSCs是临床中较常见的细胞来源,但对有血液系统或骨髓疾病的患者是不适合的,且常需要多个穿刺点方可获取足量骨髓血,否则会混合较多的外周血,导致获取效率下降。脂肪来源MSCs具有脂肪组织来源丰富,单次可获取足量MSCs,同样供区也会带来新的损伤或不良并发症,如伤口感染等。滑膜组织来源自体MSCs被证实具有很好的软骨再生潜能且不易分化成骨2744。外周血中提取MSCs比较方便,获取部位损伤小,但是MSCs获取率低28。围产期组织,如胎盘、羊膜或脐带,来源丰富,为产后废弃组织,为临床提供很好的MSCs资源,也被认为较成体组织更年轻,分离的MSCs具有更高的活性和多项分化潜能3145, 46, 47, 48。但是,目前尚未建立个人围产期组织库,临床中围产期组织来源干细胞均为同种异体细胞,具有潜在的疾病传播风险。

因此,细胞的来源选择除了考虑细胞自身特性外,还需根据患者的健康状况综合考虑,进行个体化权衡。对于年轻患者,无其他基础疾病,自体来源的原代MSCs可能是更好的选择。对于老年患者,且合并有心血管或其他系统疾病,应用同种异体MSCs,可以减少对患者自身带来的损害,同时规避自身来源干细胞生物学特性不佳的顾虑。合并有血液系统疾病的患者,不宜从骨髓或外周血中提取MSCs。至于,不同组织来源的MSCs在治疗软骨损伤或OA的潜能缺乏全面系统的比较,很难判断优劣,需要进一步研究证实。

二、MSCs在治疗关节软骨损伤或OA的临床研究设计
(一)临床研究设计类型及样本特征

关于MSCs治疗软骨损伤或OA的临床研究多以随机对照设计为主,还涉及队列研究或回顾性研究等,遍布全球近20个国家,其中以来自美国、意大利、韩国、中国的文章居多,其中美国开展较早。纳入样本量多为15~50例,50例以上研究约占29%,患者年龄平均在50岁左右(18~80岁),无未成年人参与49。患者不宜过胖,体质指数(BMI)约25 kg/m2,不超过35 kg/m2。膝关节病损情况以轻中度为主,以Kellgren-Lawrence(K-L)Ⅱ~Ⅲ级患者为主,少量纳入K-L Ⅳ级OA患者50

(二)MSCs的临床干预方案

1.细胞剂量和频次:主要以混悬液注射到关节腔内。单次注射为主,仅4项临床研究在2个时间点分别注射1751, 52, 53。MSCs的混悬剂以生理盐水、磷酸盐缓冲溶液或细胞培养基为主。单次注射细胞剂量多数为(20~50)×106[50,低至3.4×104个原代自体细胞54,高达400×106个扩增细胞55,悬液一般在5 ml,最多不超过10 ml。对于MSCs的单次注射剂量或注射次数对治疗效果是否有明显依赖关系,不同研究结果不一。有研究认为,治疗效果与细胞数量的增多无明显相关性,甚至高浓度的细胞悬液会引起更多的不良反应,如关节肿痛。在两项应用同种异体BMSCs的研究中,均为低剂量组(分别为25×106和50×106)获得更好的疼痛缓解和软骨修复,且高剂量组(150×106)发生更多的不良反应3256。在两项应用同种异体ADMSCs的研究中,低剂量组(分别3.9×106和10×106)获得更好的疼痛和关节功能改善2657。而在自体MSCs的研究中获得的结果差异更大。在6项研究中2项得出高剂量组(分别为自体BMSCs>400×106和ADMSCs 100×106)获得更好的疼痛缓解和软骨修复5558,1项研究得出低剂量组(ADMSCs 2×106)观察到明显的疼痛缓解和功能改善59,1项研究在中等剂量组(ADMSCs 20×106)观察到最好的软骨修复和膝关节的功能改善53,另外2项研究发现,高剂量和低剂量组均获得很好的膝关节功能评分,如自体血管基质组分剂量为15×106和30×106的治疗效果无明显差异60,自体BMSCs剂量为10×106和100×106在12个月随访时,高剂量组影像学改善更明显,在4年随访时低剂量组疼痛缓解更佳61

可见,对于同种异体MSCs来说,低剂量可获得更好的临床治疗效果,高剂量的异体细胞可能带来更多不良反应。对于自体MSCs来说最佳剂量差异较大,影响这些结果的原因可能是多方面的,包括细胞的组织来源不同,制备处理工艺不统一,还有患者自身基础健康状况等。

2.细胞注射部位:除了关节腔内注射,也有学者进行软骨下骨注射。一项研究将骨髓浓聚成分(MSCs、骨髓造血干细胞和细胞因子、生长因子等)注射在膝关节软骨下骨位置,与关节腔内注射相比,其能够很好地修复软骨下骨髓损伤,随访15年,软骨下骨组全膝关节置换率更低(20%比70%),较对照组平均延迟10年进行全膝关节置换术62。另一项将PBMSCs联合透明质酸(HA)进行软骨下骨注射治疗膝关节股骨髁软骨损伤,随访24个月,获得更明显的临床症状缓解和影像学改善29。如果关节腔内注射MSCs能够不同程度地修复损伤的软骨,软骨下骨注射是对损伤的软骨下骨进行修复,可见关节软骨或软骨下骨的修复均能一定程度上缓解OA临床症状,延迟关节置换时间。

3.附加干预措施:除了关节腔内注射MSCs,根据患者具体病情会相应增加针对性的干预措施。如关节腔注射MSCs前,应用关节镜进行关节腔清理63, 64, 65, 66,韧带重建或修复治疗膝关节韧带损伤,胫骨高位截骨纠正关节外畸形3867, 68,半月板成型或缝合术治疗半月板损伤69,软骨损伤处行微骨折处理24, 25。有研究将MSCs与HA或富血小板血浆(PRP)混合后进行关节腔注射,结果发现MSCs联合其他成分较单独治疗获得更好的治疗效果2028, 29616870, 71, 72, 73

4.术后康复措施:关节腔注射MSCs的治疗当天限制活动,以后可进行正常日常活动。但避免过度或剧烈的负重活动,以避免修复软骨的进一步损害。关节的非负重活动可促进软骨组织内部营养物质的交换,促进细胞的代谢活动,有利于软骨的修复74。若联合其他外科操作,如韧带重建、微骨折术及高位胫骨截骨等,需要根据具体操作调整康复计划,通常术后4~6周内行非负重等张股四头肌肌力和活动范围训练,4~6周后开始部分负重和本体感觉训练,以后逐渐恢复全部负重和基本生活256367, 68

三、临床疗效评价
(一)随访时间及评价工具

临床随访多在术后1~2年结束随访,仅少量研究随访至5年以上476275, 76。数据内容包括功能评分和影像学检查,个别研究包含二次关节镜探查或组织学染色。具体内容包括:疼痛评分、Lysholm评分、Tegner运动评分、国际膝关节文献委员会(IKDC)评分、健康状况调查简表(SF-36)、膝关节损伤与骨关节炎评分(KOOS)、下肢功能量表(LEFS)评分和WOMAC评分,以及X线、MRI检查和关节镜探查取材活检等。

(二)临床疗效

1.临床症状有效缓解:从现有的临床研究证据可见,与口服NSAID类非甾体抗炎药,关节腔注射糖皮质激素,生理盐水,HA,或PRP相比,关节腔内注射MSCs能够很好地减轻关节疼痛,改善关节活动度,提高患者生活质量101847

2.损伤软骨的修复与再生证据不足:对于MSCs到达关节腔内能否实现软骨修复或再生的证据不足577。在纳入的60项临床研究中,只有不到1/3的研究随访中观察到软骨损伤处有明显的组织填充或软骨生成。Kuroda等64将自体BMSCs与胶原水凝胶混合后移植在1位运动员的内侧股骨髁全层软骨缺损处,术后7个月关节镜观察及组织学染色可见透明样软骨再生。Jo等58纳入18例患者行关节腔内注射自体ADMSCs,术后半年行关节镜二次探查和组织学染色,发现高剂量组(1×108)软骨缺损处部分被透明样软骨填充。Koh等24报道,将ADMSCs联合微骨折术治疗膝关节软骨缺损,2年后行关节镜和组织学染色发现软骨缺损处有较好的修复,组织学染色评分更优。Park等47将同种异体UCMSCs与HA混合关节腔注射治疗K-L Ⅲ级OA患者,术后1年组织学观察可见透明样软骨生成。Kim等67通过胫骨高位截骨(HTO)术联合关节腔注射自体ADMSCs治疗OA,术后2年关节镜检查发现获得明显的软骨再生。

关节腔注射MSCs是否能够获得软骨的修复与再生是个很重要的问题,需要更多客观严谨的评价手段。二次关节镜探查和(或)组织学染色能够提供很好的证据,但是迫于临床研究伦理问题,这方面的证据稀缺,这些研究多联合其他治疗手段联合干预,很难定量MSCs在软骨修复与再生方面做出多大贡献。MRI技术检测简单无创,患者接受度高。但是,不同次MRI检测参数前后很难一致,不同级别机器的精度也有差异,层面很难前后严格匹配,不同的阅片医师读片也存在差异,它们所带来的误差不可忽略,影像学证据强度较弱。缺损处的新生组织是通过MSCs的营养作用促进自体细胞增殖修复,或是MSCs分化为软骨细胞实现的再生,也需要更深入的研究。

3.不良反应少,安全性高:关节腔内注射MSCs多无明显不良反应,少数报道注射部位疼痛和关节肿胀为主,其中疼痛发生率为2%~82%,关节肿胀为2%~53%37。有少数报道,术后出现关节僵硬,腰疼,深静脉血栓和髌前滑囊炎等28577078。分析关节痛和肿胀的原因,可能与穿刺技术,MSCs剂量或浓度高,或关节腔内细胞死亡而引起的炎症反应相关32。而关节僵硬和深静脉血栓形成可能因合并胫骨截骨矫形或微骨折等,导致术后关节制动时间较长,局部加压包扎过紧所致。总之,关节腔内注射MSCs治疗软骨损伤,安全性好,无严重不良反应。

四、展望

1.MSCs治疗关节软骨损伤或OA临床应用前景:MSCs治疗关节软骨损伤或OA具有明确的基础研究理论依据,在临床试验中,也证实能够很好地缓解关节疼痛,改善膝关节功能,但缺乏有力证据能够获得透明软骨的再生。在细胞来源方面,以自体骨髓和脂肪为主,围产期组织来源的MSCs在细胞生物特性上更具优势,资源更丰富,未来具有更大的开发应用前景。在给药剂量和频次上变异较大,一般来说同种异体MSCs单次剂量不宜过大,单次注射为宜,大剂量或多频次可能带来更多的不良反应。而自体MSCs因受患者健康状况等多种因素影响,最佳治疗剂量波动范围较大。除关节腔内注射MSCs,软骨下骨注射也被证实具有良好的治疗作用,并能够明显延缓关节置换时间,但相关研究较少,需要更多研究加以证实。术后康复中,关节腔内注射MSCs后,多以休息为主,避免过度负重或剧烈运动。对于合并其他手术操作的需要根据具体术式制定个性化康复计划,以保证良好的治疗效果。在不良反应方面,主要为局部关节肿胀、疼痛,但多能自我康复,无需其他干预措施。

2.MSCs治疗关节软骨损伤或OA的挑战:未来关节腔内注射MSCs治疗软骨损伤或OA仍面临诸多挑战。需要系统地比较,选择最佳的MSCs来源。探索和制定出应用于临床的安全的规范的MSCs提取、扩增和培养操作标准。MSCs应用于临床治疗软骨损伤或OA的标准方案,包括适应证的选择、注射部位、剂量和频次、术后康复计划、不良反应的处置、科学客观的临床疗效评价技术等。另外,需要深入研究和明确关节腔内MSCs的生物学行为,如何将关节腔内注射的MSCs从无目的、随性的,转向定向迁移至软骨损伤处进行靶向修复的高效治疗轨道上,实现自主修复和再生透明软骨。

3.MSCs的衍生成分或生物材料的临床应用前景:关于MSCs的衍生成分或生物材料辅助治疗OA或修复软骨损伤方面也开展了大量的基础研究,并展现了较好的应用前景。MSCs来源的细胞因子、生长因子或外泌体发挥治疗效应,能够促进软骨细胞增殖、迁移,或抑制软骨细胞退变、凋亡等作用,同时能避免细胞带来的免疫排斥等不良反应,对软骨修复具有很重要的应用价值。但是,由于细胞分泌的活性成分与细胞本身活性和代谢状态紧密相关,如不能很好地控制细胞良好的生理状态,其分泌或产生的活性成分也受到极大的影响,影响生物效应的发挥。生物材料在再生医学中扮演着重要的角色,能够作为细胞或外泌体的载体,或提供一定的空间结构和力学支持,将它们定向移植至软骨损伤处,促进细胞的增殖和黏附,同时能够延长有效的作用时间79,有望将MSCs或其衍生成分在OA的治疗上推向更高水平。

综上,随着对干细胞研究的逐渐深入,渐渐揭开更多OA的发病机制,结合分子生物学、生物材料学、计算机及生物医学工程等多学科的发展,未来对OA的治疗策略应该是多维度、多层次、多手段的个性化体系。在软骨损伤或OA患者的临床治疗中,仍以最大限度推迟或避免关节置换手术为阶段性的推进举措,以实现软骨修复和再生为永不止歇的追求目标。

引用本文:

蒋青, 张雨. 间充质干细胞移植治疗膝关节软骨损伤及骨关节炎的现况与未来[J]. 中华医学杂志, 2024, 104(17): 1445-1452. DOI: 10.3760/cma.j.cn112137-20231007-00664.

利益冲突
利益冲突

所有作者声明不存在利益冲突

参考文献
[1]
BrodyLT. Knee osteoarthritis: clinical connections to articular cartilage structure and function[J]. Phys Ther Sport, 2015, 16(4):301-316. DOI: 10.1016/j.ptsp.2014.12.001.
[2]
蒋青, 张雨. 新形势下运动损伤特点及细胞生物治疗的应用前景和挑战[J]. 北京大学学报(医学版), 2021, 53(5):828-831. DOI: 10.19723/j.issn.1671-167X.2021.05.003.
[3]
KiełbowskiK, HerianM, BakinowskaE, et al. The role of genetics and epigenetic regulation in the pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2023, 24(14):11655. DOI: 10.3390/ijms241411655.
[4]
GibbsAJ, GrayB, WallisJA, et al. Recommendations for the management of hip and knee osteoarthritis: a systematic review of clinical practice guidelines[J]. Osteoarthritis Cartilage, 2023, 31(10):1280-1292. DOI: 10.1016/j.joca.2023.05.015.
[5]
ZhangZH, QiYS, WeiBG, et al. Application strategy of finite element analysis in artificial knee arthroplasty[J]. Front Bioeng Biotechnol, 2023, 11:1127289. DOI: 10.3389/fbioe.2023.1127289.
[6]
SilverwoodV, Blagojevic-BucknallM, JinksC, et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2015, 23(4):507-515. DOI: 10.1016/j.joca.2014.11.019.
[7]
KimSH, HaCW, ParkYB, et al. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials[J]. Arch Orthop Trauma Surg, 2019, 139(7):971-980. DOI: 10.1007/s00402-019-03140-8.
[8]
LopaS, ColombiniA, MorettiM, et al. Injective mesenchymal stem cell-based treatments for knee osteoarthritis: from mechanisms of action to current clinical evidences[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(6):2003-2020. DOI: 10.1007/s00167-018-5118-9.
[9]
OrozcoL, MunarA, SolerR, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study[J]. Transplantation, 2013, 95(12):1535-1541. DOI: 10.1097/TP.0b013e318291a2da.
[10]
JonesIA, TogashiR, WilsonML, et al. Intra-articular treatment options for knee osteoarthritis[J]. Nat Rev Rheumatol, 2019, 15(2):77-90. DOI: 10.1038/s41584-018-0123-4.
[11]
MamidiMK, DasAK, ZakariaZ, et al. Mesenchymal stromal cells for cartilage repair in osteoarthritis[J]. Osteoarthritis Cartilage, 2016, 24(8):1307-1316. DOI: 10.1016/j.joca.2016.03.003.
[12]
Chariyev-PrinzF, SzojkaA, NetoN, et al. An assessment of the response of human MSCs to hydrostatic pressure in environments supportive of differential chondrogenesis[J]. J Biomech, 2023, 154:111590. DOI: 10.1016/j.jbiomech.2023.111590.
[13]
TheodoridisK, AggelidouE, ManthouME, et al. Hypoxia promotes cartilage regeneration in cell-seeded 3D-printed bioscaffolds cultured with a bespoke 3D culture device[J]. Int J Mol Sci, 2023, 24(7):6040. DOI: 10.3390/ijms24076040.
[14]
ZhangY, GuoW, WangM, et al. Co-culture systems-based strategies for articular cartilage tissue engineering[J]. J Cell Physiol, 2018, 233(3):1940-1951. DOI: 10.1002/jcp.26020.
[15]
ChangYH, LiuHW, WuKC, et al. Mesenchymal stem cells and their clinical applications in osteoarthritis[J]. Cell Transplant, 2016, 25(5):937-950. DOI: 10.3727/096368915X690288.
[16]
ChahalJ, Gómez-AristizábalA, ShestopaloffK, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation[J]. Stem Cells Transl Med, 2019, 8(8):746-757. DOI: 10.1002/sctm.18-0183.
[17]
Al-NajarM, KhalilH, Al-AjlouniJ, et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: a phase Ⅰ/Ⅱ study[J].J Orthop Surg Res, 2017, 12(1):190. DOI: 10.1186/s13018-017-0689-6.
[18]
ChahlaJ, DeanCS, MoatsheG, et al. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: a systematic review of outcomes[J]. Orthop J Sports Med, 2016, 4(1):2325967115625481. DOI: 10.1177/2325967115625481.
[19]
EmadedinM, LabibzadehN, LiastaniMG, et al. Intra-articular implantation of autologous bone marrow-derived mesenchymal stromal cells to treat knee osteoarthritis: a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial[J]. Cytotherapy, 2018, 20(10):1238-1246. DOI: 10.1016/j.jcyt.2018.08.005.
[20]
HaleemAM, SingergyAA, SabryD, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results[J]. Cartilage, 2010, 1(4):253-261. DOI: 10.1177/1947603510366027.
[21]
HauserRA, OrlofskyA. Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: a case series[J]. Clin Med Insights Arthritis Musculoskelet Disord, 2013, 6:65-72. DOI: 10.4137/CMAMD.S10951.
[22]
KimKI, LeeMC, LeeJH, et al. Clinical efficacy and safety of the intra-articular injection of autologous adipose-derived mesenchymal stem cells for knee osteoarthritis: a phase Ⅲ, randomized, double-blind, placebo-controlled trial[J]. Am J Sports Med, 2023, 51(9):2243-2253. DOI: 10.1177/03635465231179223.
[23]
KohYG, ChoiYJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis[J]. Knee, 2012, 19(6):902-907. DOI: 10.1016/j.knee.2012.04.001.
[24]
KohYG, KwonOR, KimYS, et al. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial[J]. Arthroscopy, 2016, 32(1):97-109. DOI: 10.1016/j.arthro.2015.09.010.
[25]
QiaoZ, TangJ, YueB, et al. Human adipose-derived mesenchymal progenitor cells plus microfracture and hyaluronic acid for cartilage repair: a Phase Ⅱa trial[J]. Regen Med, 2020, 15(1):1193-1214. DOI: 10.2217/rme-2019-0068.
[26]
LuL, DaiC, DuH, et al. Intra-articular injections of allogeneic human adipose-derived mesenchymal progenitor cells in patients with symptomatic bilateral knee osteoarthritis: a phase Ⅰ pilot study[J]. Regen Med, 2020, 15(5):1625-1636. DOI: 10.2217/rme-2019-0106.
[27]
AkgunI, UnluMC, ErdalOA, et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study[J]. Arch Orthop Trauma Surg, 2015, 135(2):251-263. DOI: 10.1007/s00402-014-2136-z.
[28]
SawKY, AnzA, Siew-Yoke JeeC, et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial[J]. Arthroscopy, 2013, 29(4):684-694. DOI: 10.1016/j.arthro.2012.12.008.
[29]
SawKY, AnzAW, NgRC, et al. Arthroscopic subchondral drilling followed by injection of peripheral blood stem cells and hyaluronic acid showed improved outcome compared to hyaluronic acid and physiotherapy for massive knee chondral defects: a randomized controlled trial[J]. Arthroscopy, 2021, 37(8):2502-2517. DOI: 10.1016/j.arthro.2021.01.067.
[30]
ZhangP, DongB, YuanP, et al. Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: a systematic review[J]. J Orthop Surg Res, 2023, 18(1):639. DOI: 10.1186/s13018-023-04131-7.
[31]
Khalifeh SoltaniS, ForoghB, AhmadbeigiN, et al. Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: a pilot study[J]. Cytotherapy, 2019, 21(1):54-63. DOI: 10.1016/j.jcyt.2018.11.003.
[32]
GuptaPK, ChullikanaA, RengasamyM, et al. Efficacy and safety of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells (Stempeucel®): preclinical and clinical trial in osteoarthritis of the knee joint[J]. Arthritis Res Ther, 2016, 18(1):301. DOI: 10.1186/s13075-016-1195-7.
[33]
VegaA, Martín-FerreroMA, Del CantoF, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial[J]. Transplantation, 2015, 99(8):1681-1690. DOI: 10.1097/TP.0000000000000678.
[34]
SadriB, TamimiA, NouraeinS, et al. Clinical and laboratory findings following transplantation of allogeneic adipose-derived mesenchymal stromal cells in knee osteoarthritis, a brief report[J]. Connect Tissue Res, 2022, 63(6):663-674. DOI: 10.1080/03008207.2022.2074841.
[35]
ShahK, SumerH. Outcome of safety and efficacy of allogeneic mesenchymal stromal cell derived from umbilical cord for the treatment of osteoarthritis in a randomized blinded placebo-controlled trial[J]. Ann Transl Med, 2019, 7(Suppl 3):S154. DOI: 10.21037/atm.2019.06.39.
[36]
AoYN, DuanJJ, XiongN, et al. Repeated intra-articular injections of umbilical cord-derived mesenchymal stem cells for knee osteoarthritis: a phase Ⅰ, single-arm study[J]. BMC Musculoskelet Disord, 2023, 24(1):488. DOI: 10.1186/s12891-023-06555-y.
[37]
DilogoIH, CanintikaAF, HanityaAL, et al. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: a single-arm, open-label study[J]. Eur J Orthop Surg Traumatol, 2020, 30(5):799-807. DOI: 10.1007/s00590-020-02630-5.
[38]
WongKL, LeeKB, TaiBC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years′ follow-up[J]. Arthroscopy, 2013, 29(12):2020-2028. DOI: 10.1016/j.arthro.2013.09.074.
[39]
van Rhijn-BrouwerF, GremmelsH, FledderusJO, et al. Mesenchymal stromal cell characteristics and regenerative potential in cardiovascular disease: implications for cellular therapy[J]. Cell Transplant, 2018, 27(5):765-785. DOI: 10.1177/0963689717738257.
[40]
CharifN, LiYY, TargaL, et al. Aging of bone marrow mesenchymal stromal/stem cells: implications on autologous regenerative medicine[J]. Biomed Mater Eng, 2017, 28(s1):S57-S63. DOI: 10.3233/BME-171624.
[41]
ChenCF, HuCC, WuCT, et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®: a phase Ⅰ/Ⅱ, randomized, active-control, single-blind, multiple-center clinical trial[J]. Stem Cell Res Ther, 2021, 12(1):562. DOI: 10.1186/s13287-021-02631-z.
[42]
AnkrumJA, OngJF, KarpJM. Mesenchymal stem cells: immune evasive, not immune privileged[J]. Nat Biotechnol, 2014, 32(3):252-260. DOI: 10.1038/nbt.2816.
[43]
JoswigAJ, MitchellA, CummingsKJ, et al. Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model[J]. Stem Cell Res Ther, 2017, 8(1):42. DOI: 10.1186/s13287-017-0503-8.
[44]
Paul NeybeckerP, HenrionnetC, PapeE, et al. Respective stemness and chondrogenic potential of mesenchymal stem cells isolated from human bone marrow, synovial membrane, and synovial fluid[J]. Stem Cell Res Ther, 2020, 11(1):316. DOI: 10.1186/s13287-020-01786-5.
[45]
ZhangY, LiuS, GuoW, et al. Coculture of hWJMSCs and pACs in oriented scaffold enhances hyaline cartilage regeneration in vitro[J]. Stem Cells Int, 2019, 2019:5130152. DOI: 10.1155/2019/5130152.
[46]
ZhangY, LiuS, GuoW, et al. Human umbilical cord Wharton′s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model[J]. Osteoarthritis Cartilage, 2018, 26(7):954-965. DOI: 10.1016/j.joca.2018.01.019.
[47]
ParkYB, HaCW, LeeCH, et al. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up[J]. Stem Cells Transl Med, 2017, 6(2):613-621. DOI: 10.5966/sctm.2016-0157.
[48]
熊依林, 雷光华. 骨关节炎的生物治疗年度进展2022[J]. 中华医学杂志, 2023, 103(16): 1247-1252. DOI: 10.3760/cma.j.cn112137-20221220-02683.
[49]
CarneiroDC, AraújoLT, SantosGC, et al. Clinical trials with mesenchymal stem cell therapies for osteoarthritis: challenges in the regeneration of articular cartilage[J]. Int J Mol Sci, 2023, 24(12):9939. DOI: 10.3390/ijms24129939.
[50]
WeiP, BaoR. Intra-articular mesenchymal stem cell injection for knee osteoarthritis: mechanisms and clinical evidence[J]. Int J Mol Sci, 2022, 24(1):59. DOI: 10.3390/ijms24010059.
[51]
LuLJ, DaiCX, ZhangZW, et al. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase Ⅱb clinical trial[J]. Stem Cell Res Ther, 2019, 10(1):143. DOI: 10.1186/s13287-019-1248-3.
[52]
FreitagJ, BatesD, WickhamJ, et al. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial[J]. Regen Med, 2019, 14(3):213-230. DOI: 10.2217/rme-2018-0161.
[53]
SongY, DuH, DaiC, et al. Human adipose-derived mesenchymal stem cells for osteoarthritis: a pilot study with long-term follow-up and repeated injections[J]. Regen Med, 2018, 13(3):295-307. DOI: 10.2217/rme-2017-0152.
[54]
ShapiroSA, ArthursJR, HeckmanMG, et al. Quantitative T2 MRI mapping and 12-month follow-up in a randomized, blinded, placebo controlled trial of bone marrow aspiration and concentration for osteoarthritis of the knees[J]. Cartilage, 2019, 10(4):432-443. DOI: 10.1177/1947603518796142.
[55]
CentenoC, PittsJ, Al-SayeghH, et al. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft[J]. Biomed Res Int, 2014, 2014:370621. DOI: 10.1155/2014/370621.
[56]
VangsnessCT, FarrJ, BoydJ, et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study[J]. J Bone Joint Surg Am, 2014, 96(2):90-98. DOI: 10.2106/JBJS.M.00058.
[57]
KuahD, SivellS, LongworthT, et al. Safety, tolerability and efficacy of intra-articular Progenza in knee osteoarthritis: a randomized double-blind placebo-controlled single ascending dose study[J]. J Transl Med, 2018, 16(1):49. DOI: 10.1186/s12967-018-1420-z.
[58]
JoCH, LeeYG, ShinWH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial[J]. Stem Cells, 2014, 32(5):1254-1266. DOI: 10.1002/stem.1634.
[59]
PersYM, RackwitzL, FerreiraR, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase Ⅰ dose-escalation trial[J]. Stem Cells Transl Med, 2016, 5(7):847-856. DOI: 10.5966/sctm.2015-0245.
[60]
GarzaJR, CampbellRE, TjoumakarisFP, et al. Clinical efficacy of intra-articular mesenchymal stromal cells for the treatment of knee osteoarthritis: a double-blinded prospective randomized controlled clinical trial[J]. Am J Sports Med, 2020, 48(3):588-598. DOI: 10.1177/0363546519899923.
[61]
Lamo-EspinosaJM, MoraG, BlancoJF, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: long-term follow up of a multicenter randomized controlled clinical trial (phase Ⅰ/Ⅱ)[J]. J Transl Med, 2018, 16(1):213. DOI: 10.1186/s12967-018-1591-7.
[62]
HernigouP, BouthorsC, BastardC, et al. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study[J]. Int Orthop, 2021, 45(2):391-399. DOI: 10.1007/s00264-020-04687-7.
[63]
CattaneoG, De CaroA, NapoliF, et al. Micro-fragmented adipose tissue injection associated with arthroscopic procedures in patients with symptomatic knee osteoarthritis[J]. BMC Musculoskelet Disord, 2018, 19(1):176. DOI: 10.1186/s12891-018-2105-8.
[64]
KurodaR, IshidaK, MatsumotoT, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells[J]. Osteoarthritis Cartilage, 2007, 15(2):226-231. DOI: 10.1016/j.joca.2006.08.008.
[65]
LiuHC, LiuTT, LiuYL, et al. Atelocollagen-embedded chondrocyte precursors as a treatment for grade-4 cartilage defects of the femoral condyle: a case series with up to 9-year follow-up[J]. Biomolecules, 2021, 11(7):942. DOI: 10.3390/biom11070942.
[66]
ZhouYQ, LiHB, XiangD, et al. The clinical efficacy of arthroscopic therapy with knee infrapatellar fat pad cell concentrates in treating knee cartilage lesion: a prospective, randomized, and controlled study[J]. J Orthop Surg Res, 2021, 16(1):87. DOI: 10.1186/s13018-021-02224-9.
[67]
KimJH, KimKI, YoonWK, et al. Intra-articular injection of mesenchymal stem cells after high tibial osteotomy in osteoarthritic knee: two-year follow-up of randomized control trial[J]. Stem Cells Transl Med, 2022, 11(6):572-585. DOI: 10.1093/stcltm/szac023.
[68]
KohYG, KwonOR, KimYS, et al. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study[J]. Arthroscopy, 2014, 30(11):1453-1460. DOI: 10.1016/j.arthro.2014.05.036.
[69]
RussoA, CondelloV, MadonnaV, et al. Autologous and micro-fragmented adipose tissue for the treatment of diffuse degenerative knee osteoarthritis[J]. J Exp Orthop, 2017, 4(1):33. DOI: 10.1186/s40634-017-0108-2.
[70]
BastosR, MathiasM, AndradeR, et al. Intra-articular injections of expanded mesenchymal stem cells with and without addition of platelet-rich plasma are safe and effective for knee osteoarthritis[J]. Knee Surg Sports Traumatol Arthrosc, 2018, 26(11):3342-3350. DOI: 10.1007/s00167-018-4883-9.
[71]
MehranfarS, RadIA, MostafavE, et al. The use of stromal vascular fraction (SVF), platelet-rich plasma (PRP) and stem cells in the treatment of osteoarthritis: an overview of clinical trials[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):882-890. DOI: 10.1080/21691401.2019.1576710.
[72]
PintatJ, SilvestreA, MagalonG, et al. Intra-articular injection of mesenchymal stem cells and platelet-rich plasma to treat patellofemoral osteoarthritis: preliminary results of a long-term pilot study[J]. J Vasc Interv Radiol, 2017, 28(12):1708-1713. DOI: 10.1016/j.jvir.2017.08.004.
[73]
SánchezM, DelgadoD, SánchezP, et al. Combination of intra-articular and intraosseous injections of platelet rich plasma for severe knee osteoarthritis: a pilot study[J]. Biomed Res Int, 2016, 2016:4868613. DOI: 10.1155/2016/4868613.
[74]
GrahamBT, MooreAC, BurrisDL, et al. Sliding enhances fluid and solute transport into buried articular cartilage contacts[J]. Osteoarthritis Cartilage, 2017, 25(12):2100-2107. DOI: 10.1016/j.joca.2017.08.014.
[75]
SarisT, de WindtTS, KesterEC, et al. Five-year outcome of 1-stage cell-based cartilage repair using recycled autologous chondrons and allogenic mesenchymal stromal cells: a first-in-human clinical trial[J]. Am J Sports Med, 2021, 49(4):941-947. DOI: 10.1177/0363546520988069.
[76]
DavatchiF, Sadeghi AbdollahiB, MohyeddinM, et al. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients[J]. Int J Rheum Dis, 2016, 19(3):219-225. DOI: 10.1111/1756-185X.12670.
[77]
PasHI, WintersM, HaismaHJ, et al. Stem cell injections in knee osteoarthritis: a systematic review of the literature[J]. Br J Sports Med, 2017, 51(15):1125-1133. DOI: 10.1136/bjsports-2016-096793.
[78]
RoatoI, BelisarioDC, CompagnoM, et al. Concentrated adipose tissue infusion for the treatment of knee osteoarthritis: clinical and histological observations[J]. Int Orthop, 2019, 43(1):15-23. DOI: 10.1007/s00264-018-4192-4.
[79]
ChenM, WangQ, WangY, et al. Biomaterials-assisted exosomes therapy in osteoarthritis[J]. Biomed Mater, 2022, 17(2). DOI: 10.1088/1748-605X/ac4c8c.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词