综述
STING信号通路在肿瘤免疫微环境中的作用及研究进展
中华医学杂志, 2024,104(18) : 1649-1653. DOI: 10.3760/cma.j.cn112137-20240103-00023
摘要

肿瘤具有复杂的免疫微环境,干扰素刺激基因(STING)信号通路不仅介导天然免疫应答以抵抗感染,还能感知肿瘤来源的DNA而产生抗肿瘤免疫应答,且对多种免疫细胞具有调节作用。本文综述了STING信号通路在T细胞、树突细胞(DC)、自然杀伤细胞(NK细胞)等诸多免疫细胞及免疫治疗中的作用,并对近年来STING信号通路在癌症免疫治疗中的研究进展及临床应用进行总结归纳。

引用本文: 徐秋丽, 李兵兵, 蒋贝, 等.  STING信号通路在肿瘤免疫微环境中的作用及研究进展 [J] . 中华医学杂志, 2024, 104(18) : 1649-1653. DOI: 10.3760/cma.j.cn112137-20240103-00023.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

肿瘤微环境(TME)由肿瘤细胞、免疫细胞、间质细胞、血管细胞等细胞和非细胞成分组成。研究表明,可以通过激活先天免疫系统来逆转非炎症性冷肿瘤的免疫状态,将冷肿瘤转化为热肿瘤,是充分发挥免疫治疗抗肿瘤作用的关键1, 2

研究表明,激活天然信号通路干扰素刺激基因(STING)是颇有前途的一种癌症免疫治疗的方法,该信号通路不仅在宿主抵抗微生物感染的防御环节中起着关键作用,还被证明参与了抗肿瘤免疫反应。STING通路激活的强度和时间与抗肿瘤免疫反应的状态息息相关,且对肿瘤免疫循环的众多阶段和多种免疫细胞都发挥着重要的调节作用3, 4, 5。本文将STING信号通路及其在肿瘤免疫中的作用进行总结归纳,重点介绍STING信号通路在各类免疫细胞中的作用及其在癌症治疗中的策略,以便全面地了解STING信号通路在TME不同组分中所发挥的功能,为进一步精准治疗提供方向。

一、STING信号通路在肿瘤免疫中的作用概况

1. STING信号通路的正向调节作用:STING信号通路的抗肿瘤作用已被广泛研究,主要途径是激活多种免疫细胞的免疫功能,最常见的方式是通过诱导干扰素(IFN)及炎性细胞因子的产生,从而激活细胞毒性CD8+T细胞来促进适应性免疫应答6;还可影响TME中干细胞样CD8+T细胞的分化。此外,STING还参与调节免疫微环境中的众多其他免疫细胞,如CD4+T细胞、树突细胞(DC)、自然杀伤(NK)细胞等,一同发挥杀伤肿瘤的作用,详细内容将在后面章节阐述。

2. STING信号通路的负向调节作用:据报道STING信号慢性激活引起的炎症反应也可诱发肿瘤形成7;Hong等8发现STING信号的失活可选择性抑制乳腺癌细胞的存活;STING信号还被发现促进肿瘤细胞转移,可能与STING下游信号失衡有关9。并且,STING在T细胞中过度激活会导致钙稳态破坏,从而诱导应激、细胞周期停滞和死亡3510。也有研究表明,STING通路的激活可抑制T细胞的增殖,促进调节性T细胞(Tregs)的分化和髓系来源的抑制细胞(MDSC)的浸润,诱导免疫耐受,导致肿瘤生长11, 12

二、STING信号对各类免疫细胞的调节作用

1. T细胞:T细胞通常被认为是抗肿瘤免疫的主要参与者,STING通路在T细胞启动和激活的调节中起着关键作用,但该信号通路激活的强度和时机可能具有相反的作用。

研究表明,STING的激活与CD4+和CD8+T细胞的效应功能有关13, 14。CD8+T细胞中的STING信号通路激活可以增强该细胞的扩增并维持其干性,这对持久的抗肿瘤反应至关重要13;STING激活还可促进幼稚CD4+T细胞向辅助T细胞(Th)1和Th9细胞的分化,从而增强CD4+T细胞的效应功能14。据报道,环状GMP-AMP合成酶(cyclic GMP-AMP synthase,cGAS)激动剂锰(Mn2+15、低剂量的STING激动剂如ADU-S1004、DT-diaphorase抑制剂(DMXAA)16和STING-V155M17都具有增强细胞毒性淋巴T细胞(CTL)活性的能力,从而产生持久的抗肿瘤免疫。STING的缺乏会降低小鼠的CD8+T细胞活性18,对小鼠体内T细胞进行特异性STING敲除,发现肿瘤加速生长,且小鼠的生存率显著降低19。除了影响T细胞的功能,STING通路的激活还可通过增加T细胞趋化因子的表达和肿瘤血管的正常化,促进T细胞至肿瘤的运输及浸润620, 21

2. DC细胞:研究表明激活STING可促进DC细胞的成熟,随后促进肿瘤抗原与细胞毒性CD8+T细胞的交叉呈递22, 23。将STING激动剂全身性递送至DC细胞显著增加Ⅰ型IFN分泌,甚至在冷肿瘤中也能产生强有力的免疫刺激24。此外,Ⅰ型IFN分泌可促进CD8α+DC细胞内抗原的持久性,增强CD8α+DC对抗原的交叉呈递25。在动物模型中,STING激动剂通过促进DC细胞的活化和抗原呈递,增强程序性细胞死亡配体1(PD-L1)的抗肿瘤功效26。此外,STING信号传导可诱导肿瘤内三级淋巴样结构的形成,使得DC细胞跳过迁移至肿瘤引流淋巴结的需求,直接激活T细胞20。缺乏STING的DC细胞失去对肿瘤来源DNA的应答,进而导致肿瘤死亡受限。在STING缺陷小鼠的放疗过程中,DC细胞无法激活T细胞,导致放疗作用骤减27

3. NK细胞:研究表明,在宿主免疫细胞和肿瘤细胞中激活STING可产生趋化因子,进而介导NK细胞的浸润和活化28。此外,STING激动剂还增强了NK细胞与嵌合抗原受体NK细胞的迁移和杀伤能力,提高了患者来源的器官型肿瘤球状体的治疗活性29。NK细胞选择性针对肿瘤细胞很大程度上取决于非肿瘤细胞的STING激活,并最终动员强烈的NK细胞反应来排斥肿瘤。

4. 免疫抑制性肿瘤相关免疫细胞:免疫抑制性肿瘤相关免疫细胞,包括肿瘤相关巨噬细胞(TAM)、MDSC和Tregs,这些细胞可通过直接或间接抑制T细胞的免疫应答功能和培养免疫抑制生态位来促进免疫逃逸30。TAM经常对刺激因素做出表型极化,分别引起肿瘤的免疫应答(M1型)或免疫逃逸(M2型),激活STING不仅使TAM向M1型巨噬细胞极化,而且促使M2型巨噬细胞重编程为M1巨噬细胞31。研究发现,MDSC内固有STING信号的激活诱导其自身产生髓系归巢趋化因子,促进其重新编程并转化为髓系细胞,从而抑制MDSC的免疫抑制功能,将大量免疫细胞如单核细胞、巨噬细胞和T细胞募集到肿瘤部位32, 33,发挥抗肿瘤免疫功能。此外,STING激活可降低TME的Tregs水平11。这些发现强调了STING信号在逆转肿瘤相关免疫细胞免疫抑制作用中的重要性,为使用STING激动剂重塑TME提供了理论依据。

5. B细胞:研究显示,STING信号激活会导致调节性B(Breg)细胞亚群扩增。在机制上,B细胞内的STING激活导致IL35+Breg细胞的发展,进而诱导免疫抑制性TME形成,促进肿瘤生长34。此外,STING信号的激活也被证明可以促进正常B细胞的凋亡35

三、STING激动剂的研究进展

1. 天然环二核苷酸(cyclic dinucleotides,CDN):CDN主要包含经典CDN(c-di-GMP,c-di-AMP,cGAMP)与衍生CDN(ADU-S100、SB-11285、MK-1454等36, 37, 38),与免疫检查点抑制剂(ICI)联合使用可有效增强抗肿瘤效果36, 37, 38, 39, 40。ADU-S100联合PD-L1调节剂可有效激活先天免疫,克服抗原免疫耐受40,ADU-S100与程序性死亡受体(PD-1)抑制剂Spartalizumab在PD-1难治性晚期/转移性癌症患者中耐受性良好36。SB-11285作为新一代的CDN,可刺激肿瘤驻留的抗原提呈细胞、NK细胞、肿瘤抗原特异性CD8+T细胞从外周向TME的转运37。MK-1454与PD-1抑制剂Pembrolizumab联合使用对单剂抗PD-1治疗部分反应或无反应的肿瘤患者均产生了令人鼓舞的疗效38

2. 非CDN类药物:非CDN类药物目前主要包括 E-7766,MK-2118,MSA-2等。E-7766(Eisai Co.,中国)的临床疗效在Ⅰ/Ⅰb期临床试验中进行了评估,被视为晚期实体瘤或淋巴瘤患者(NCT04144140)、非肌肉浸润性膀胱癌患者(NCT04109092)的单药治疗手段39。MK-2118在晚期实体瘤或淋巴瘤患者中(NCT03249792)也进行了评估,瘤内或皮下给药、单独或与Pembrolizumab联合给药的疗效均进行了探索41。MSA-2与抗转化生长因子β/PD-L1双特异性抗体YM101协同可增强初始T细胞活化42,上调肿瘤浸润淋巴细胞的数量和活性。

除了上述STING激动剂外,各类携带STING激动剂的载体药物被研发,如抗体药物偶联、纳米颗粒递送、外泌体及工程菌等43, 44, 45,期望新递送途径发挥更好的疗效(表1)。

点击查看表格
表1

STING激动剂药物汇总

表1

STING激动剂药物汇总

类型药物给药方式实验动物肿瘤类型
CDNADU-S100IT小鼠结肠癌腹膜癌、鼠脑肿瘤胶质母细胞瘤
MK-1454IT结肠腺癌荷瘤小鼠
SB11285IT小鼠结肠癌
TAK-676IV小鼠结肠癌
BMS-986301IT小鼠结直肠癌
非CDNMK-2118IT/SC小鼠黑色素瘤
E7766IT小鼠膀胱癌、小鼠皮下和肝脏肿瘤
MSA-2PO/SC小鼠结直肠癌
SNX-281IV小鼠大肠肿瘤
SR-717IT/PO小鼠黑色素瘤、结直肠腺癌小鼠模型
其他类型XMT-2056IV小鼠结直肠癌
CRD5500IT小鼠结直肠癌
ONM-501IT小鼠淋巴瘤、结肠癌、黑色素瘤

注:IT为瘤内注射;IV为静脉注射;SC为皮下注射;PO为口服

四、STING激动剂在肿瘤免疫治疗中的研究进展

1. STING激动剂ICI联合应用:由于“免疫冷肿瘤”缺乏CTL的浸润,对ICI反应不佳。因此,使用联合疗法以克服免疫缺陷,将冷肿瘤转化为热肿瘤至关重要。联合应用STING激动剂和ICI治疗肿瘤成为新兴的治疗手段。

事实证明,在黑色素瘤、肺癌和结肠癌模型中,STING激动剂Mn2+与PD-1抗体联合使用可显著提高抗肿瘤疗效,减少PD-1抗体剂量。一项Ⅰ期临床试验也显示出该方案对免疫治疗的恢复反应15。同样的,MSA-2联合PD-1抗体可协同克服免疫治疗耐药42。在黑色素瘤和结肠癌模型中,一种包含ADU-S100制剂的脂质体纳米颗粒,在单独或与PD-L1抗体联合治疗中都发挥显著的抗肿瘤疗效24。在黑色素瘤模型中,STING激动剂cGAMP与PD-L1抗体联合治疗比单独治疗具有更强的抗肿瘤作用26。脂质体LP-cGAMP和PD-L1抗体联合使用也显示出更强、更持久的疗效44。在乳腺癌模型中,STING激动剂ADU-S100可有效启动抗原特异性CD8+T细胞反应,诱导肿瘤消退40。在口腔癌模型中,瘤内注射ADU-S100联合PD-1和CTLA-4抗体,使71%的肿瘤持续消退,疗效高于单独使用PD-1抗体46

2. STING激动剂联合嵌合抗原受体T细胞(CAR-T)治疗:研究表明,在乳腺癌模型中,给予STING激动剂可显著增强CAR-T细胞的杀伤,但只有在联合PD-1单抗的情况下,肿瘤的持续消退才能实现,这可能是由于PD-1抗体逆转了CAR-T细胞的耗竭47。在胰腺导管癌模型中,能够递送STING激动剂cdGMP的CAR-T显示出极好的肿瘤抑制效果48,为STING激动剂联合CAR-T的临床转化提供支持。

3. STING激动剂与吲哚胺2,3-双加氧酶(IDO)抑制剂的联合应用:STING通路的激活促进了免疫渗透的同时也上调了免疫抑制因子IDO的表达。因此,在小鼠结直肠癌模型中,STING激动剂diABZI与IDO抑制剂1-MT联合显著抑制肿瘤生长,促进CTL的募集并抑制MDSC的浸润49。在乳腺癌模型中,STING激动剂DMXAA与IDO抑制剂NLG919显著抑制了肿瘤负荷45

除了上述各类动物实验的开展,STING激动剂联合各种免疫制剂的临床研究也在进行中(表2)。

点击查看表格
表2

STING激动剂联合免疫疗法的临床试验汇总

表2

STING激动剂联合免疫疗法的临床试验汇总

药物联合应用临床研究编号研究进展(期)肿瘤类型试验结果招募人数(名)给药方式
ADU-S100IpilimumabNCT02675439晚期/转移性实体瘤或淋巴瘤1例部分应答(PR)47ADU-S100(200 μg;IT)和Ipilimumab(3 mg/kg;IV)
SpartalizumabNCT03172936Ⅰb晚期/转移性实体瘤或淋巴瘤试验中止66PDR28(IV)和MIW15(ADU-S28;IT)
PembrolizumabNCT03937141头颈部鳞状细胞癌试验中止16Pembrolizumab(IV)和ADU-S100(IT)
MK-1454PembrolizumabNCT03010176晚期实体瘤或淋巴瘤初步试验表明联合用药效果显著25MK-1454(递增;IT)和Pembrolizumab(200 mg;IV)
PembrolizumabNCT04220866转移性或不可切除的复发性头颈部鳞癌临床结果尚未公开18MK-1454(540 μg;IT)和Pembrolizumab(200 mg;IV)
MK-2118PembrolizumabNCT03249792实体瘤或淋巴瘤临床结果尚未公开140MK2118(IT)和Pembrolizumab(IV)
SB11285AtezolizumabNCT04096638Ⅰa/Ⅰb晚期实体瘤具有良好的耐受性146SB11285(递增;IV)和 Atezolizumab(1 680 mg;IV)
GSK37417JemperliNCT03843359复发/难治性实体瘤进行中97GSK3745417(递增;IV)和 Jemperli(递增;IV)
BMS-986301Nivolumab+IpilimumabNCT03956680晚期实体瘤进行中190BMS-986301(IT/IM/IV)和Nivolumab(IV)和Ipilimumab(IV)
TAK500PembrolizumabNCT05070247晚期实体瘤进行中118TAK500(IV)和Pembrolizumab(IV;200 mg)
TAK-676PembrolizumabNCT04420884Ⅰb/Ⅱ晚期转移性实体瘤进行中368TAK-676(IV)和Pembrolizumab(IV)
SNX281PembrolizumabNCT04609579晚期/转移性实体瘤或淋巴瘤进行中27SNX281(IV)和Pembrolizumab(IV)
IMSA101ICINCT04020185Ⅰb/Ⅱ晚期或转移性实体瘤恶性肿瘤临床结果尚未公开40IMSA101(IT)和ICI(IV)

注:ICI为免疫检查点抑制剂;IT为瘤内注射;IV为静脉注射

五、总结与展望

肿瘤的发生发展与免疫系统的功能密切相关,而免疫系统的衰弱打破了两者之间的平衡。各种免疫细胞都不同程度地受到STING的调控,使得STING成为肿瘤免疫治疗的一个颇有前途的治疗靶点。目前,STING单药治疗具有药物结构、给药系统不稳定和耐药性等问题,并且STING通路激活的强度与持续时间会影响其在TME中的作用。因此,考虑肿瘤免疫应答与肿瘤免疫逃避之间的平衡、治疗窗口期、可能的不良反应,进一步优化STING激动剂,改进其使用尤为重要。同时,除了开发更优良的STING激动剂,联合治疗无论是从降低免疫治疗剂量、节约患者成本,还是从减少免疫单抗的治疗毒性或避免单独使用大剂量STING激动剂的不良反应角度来说都意义非凡。此外,在不断增长的抗癌药物库中,未来STING激动剂也有望在克服耐药的领域前景中施展拳脚。总之,笔者认为STING通路及STING激动剂在肿瘤免疫治疗中具有广阔的应用前景。

引用本文:

徐秋丽, 李兵兵, 蒋贝, 等. STING信号通路在肿瘤免疫微环境中的作用及研究进展[J]. 中华医学杂志, 2024, 104(18): 1649-1653. DOI: 10.3760/cma.j.cn112137-20240103-00023.

利益冲突
利益冲突

所有作者声明不存在利益冲突

参考文献
[1]
陈睿, 魏军民. cGAS-STING信号通路在肿瘤免疫调控和临床应用中的研究进展[J]. 国际免疫学杂志, 2023, 46(3):318-323. DOI: 10.3760/cma.j.issn.1673-4394.2023.03.015.
[2]
ZhangJ, HuangD, SawPE, et al. Turning cold tumors hot: from molecular mechanisms to clinical applications[J]. Trends Immunol, 2022, 43(7):523-545. DOI: 10.1016/j.it.2022.04.010.
[3]
WuJ, DobbsN, YangK, et al. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion[J]. Immunity, 2020, 53(1):115-126.e5. DOI: 10.1016/j.immuni.2020.06.009.
[4]
SivickKE, DesbienAL, GlickmanLH, et al. Magnitude of therapeutic STING activation determines CD8(+) T cell-mediated anti-tumor immunity[J]. Cell Rep, 2018, 25(11):3074-3085.e5. DOI: 10.1016/j.celrep.2018.11.047.
[5]
WuJ, ChenYJ, DobbsN, et al. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death[J]. J Exp Med, 2019, 216(4):867-883. DOI: 10.1084/jem.20182192.
[6]
AnastasiouM, NewtonGA, KaurK, et al. Endothelial STING controls T cell transmigration in an IFNI-dependent manner[J]. JCI Insight, 2021, 6(15):e149346. DOI: 10.1172/jci.insight.149346.
[7]
AhnJ, XiaT, KonnoH, et al. Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5:5166. DOI: 10.1038/ncomms6166.
[8]
HongC, SchubertM, TijhuisAE, et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers[J]. Nature, 2022, 607(7918):366-373. DOI: 10.1038/s41586-022-04847-2.
[9]
ChenQ, BoireA, JinX, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 2016, 533(7604):493-498. DOI: 10.1038/nature18268.
[10]
CerboniS, JeremiahN, GentiliM, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes[J]. J Exp Med, 2017, 214(6):1769-1785. DOI: 10.1084/jem.20161674.
[11]
SchumacherN, FernandesL, de Lima ZollnerR. Aqueous extract of Passifloraalata leaves modulates in vitro the indoleamine 2, 3-dioxygenase (IDO) and CD86 expression in bone marrow-derived professional antigen-presenting cells polarizing NOD mice T cells to a Treg profile[J]. Cytokine, 2022, 152:155832. DOI: 10.1016/j.cyto.2022.155832.
[12]
LemosH, MohamedE, HuangL, et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation[J]. Cancer Res, 2016, 76(8):2076-2081. DOI: 10.1158/0008-5472.CAN-15-1456.
[13]
LiW, LuL, LuJ, et al. cGAS-STING-mediated DNA sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy[J]. Sci Transl Med, 2020, 12(549):eaay9013. DOI: 10.1126/scitranslmed.aay9013.
[14]
Benoit-LizonI, JacquinE, Rivera VargasT, et al. CD4 T cell-intrinsic STING signaling controls the differentiation and effector functions of T(H)1 and T(H)9 cells[J]. J Immunother Cancer, 2022, 10(1):e003459. DOI: 10.1136/jitc-2021-003459.
[15]
LvM, ChenM, ZhangR, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy[J]. Cell Res, 2020, 30(11):966-979. DOI: 10.1038/s41422-020-00395-4.
[16]
LiA, YiM, QinS, et al. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy[J]. J Hematol Oncol, 2019, 12(1):35. DOI: 10.1186/s13045-019-0721-x.
[17]
TseSW, McKinneyK, WalkerW, et al. mRNA-encoded, constitutively active STING(V155M) is a potent genetic adjuvant of antigen-specific CD8(+) T cell response[J]. Mol Ther, 2021, 29(7):2227-2238. DOI: 10.1016/j.ymthe.2021.03.002.
[18]
ZhouL, XuQ, HuangL, et al. Host stimulator of interferon genes is essential for the efficacy of anti-programmed cell death protein 1 inhibitors in non-small cell lung cancer[J]. Immunology, 2022, 167(4):495-507. DOI: 10.1111/imm.13549.
[19]
ImanishiT, UnnoM, KobayashiW, et al. Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function[J]. Life Sci Alliance, 2019, 2(1):e201800282. DOI: 10.26508/lsa.201800282.
[20]
ChelvanambiM, FecekRJ, TaylorJL, et al. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment[J]. J Immunother Cancer, 2021, 9(2):e001906. DOI: 10.1136/jitc-2020-001906.
[21]
VieiraRS, NascimentoMS, NoronhaIH, et al. STING signaling drives production of innate cytokines, generation of CD8(+) T cells and enhanced protection against trypanosoma cruzi Infection[J]. Front Immunol, 2021, 12:775346. DOI: 10.3389/fimmu.2021.775346.
[22]
LaursenMF, ChristensenE, DegnL, et al. CD11c-targeted delivery of DNA to dendritic cells leads to cGAS-and STING-dependent maturation[J]. J Immunother, 2018, 41(1):9-18. DOI: 10.1097/CJI.0000000000000195.
[23]
de Mingo PulidoÁ, HänggiK, CeliasDP, et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake[J]. Immunity, 2021, 54(6):1154-1167.e7. DOI: 10.1016/j.immuni.2021.04.019.
[24]
DoshiAS, CantinS, PrickettLB, et al. Systemic nano-delivery of low-dose STING agonist targeted to CD103+dendritic cells for cancer immunotherapy[J]. J Control Release, 2022, 345:721-733. DOI: 10.1016/j.jconrel.2022.03.054.
[25]
LorenziS, MatteiF, SistiguA, et al. Type Ⅰ IFNs control antigen retention and survival of CD8α(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming[J]. J Immunol, 2011, 186(9):5142-5150. DOI: 10.4049/jimmunol.1004163.
[26]
WangH, HuS, ChenX, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade[J]. Proc Natl Acad Sci U S A, 2017, 114(7):1637-1642. DOI: 10.1073/pnas.1621363114.
[27]
DengL, LiangH, XuM, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type Ⅰ interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5):843-852. DOI: 10.1016/j.immuni.2014.10.019.
[28]
MarcusA, MaoAJ, Lensink-VasanM, et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response[J]. Immunity, 2018, 49(4):754-763.e4. DOI: 10.1016/j.immuni.2018.09.016.
[29]
KnelsonEH, IvanovaEV, TarannumM, et al. Activation of tumor-cell STING primes NK-cell therapy[J]. Cancer Immunol Res, 2022, 10(8):947-961. DOI: 10.1158/2326-6066.CIR-22-0017.
[30]
TangS, NingQ, YangL, et al. Mechanisms of immune escape in the cancer immune cycle[J]. Int Immunopharmacol, 2020, 86:106700. DOI: 10.1016/j.intimp.2020.106700.
[31]
WangQ, BergholzJS, DingL, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer[J]. Nat Commun, 2022, 13(1):3022. DOI: 10.1038/s41467-022-30568-1.
[32]
ChengH, XuQ, LuX, et al. Activation of STING by cGAMP regulates MDSCS to suppress tumor metastasis via reversing epithelial-mesenchymal transition[J]. Front Oncol, 2020, 10:896. DOI: 10.3389/fonc.2020.00896.
[33]
ZhangCX, YeSB, NiJJ, et al. STING signaling remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cell expansion[J]. Cell Death Differ, 2019, 26(11):2314-2328. DOI: 10.1038/s41418-019-0302-0.
[34]
LiS, MirlekarB, JohnsonBM, et al. STING-induced regulatory B cells compromise NK function in cancer immunity[J]. Nature, 2022, 610(7931):373-380. DOI: 10.1038/s41586-022-05254-3.
[35]
TansakulM, Thim-UamA, SaethangT, et al. Deficiency of STING promotes collagen-specific antibody production and B cell survival in collagen-induced arthritis[J]. Front Immunol, 2020, 11:1101. DOI: 10.3389/fimmu.2020.01101.
[36]
Meric-BernstamF, SweisRF, KasperS, et al. Combination of the STING agonist MIW815 (ADU-S100) and PD-1 inhibitor spartalizumab in advanced/metastatic solid tumors or lymphomas: an open-label, multicenter, phase Ⅰb study[J]. Clin Cancer Res, 2023, 29(1):110-121. DOI: 10.1158/1078-0432.CCR-22-2235.
[37]
LukeJJ, JankuF, StraussJ, et al. A phase Ⅰ/Ⅰb dose-escalation study of intravenously administered SB 11285 alone and in combination with nivolumab in patients with advanced solid tumours[J]. Annals Oncol, 2020, 31:S500-S500.DOI: 10.1016/j.annonc.2020.08.712.
[38]
HarringtonKJ, WilliamWN, KhilnaniA, et al. Phase Ⅱ study of intratumoral MK-1 454 plus pembrolizumab compared with pembrolizumab monotherapy as first-line treatment for metastatic or unresectable, recurrent head and neck squamous cell carcinoma[J].Annals Oncol, 2020, 31:S683-S683.DOI: 10.1016/j.annonc.2020.08.1087.
[39]
GogoiH, MansouriS, JinL. The age of cyclic dinucleotide vaccine adjuvants[J]. Vaccines (Basel), 2020, 8(3):453. DOI: 10.3390/vaccines8030453.
[40]
FooteJB, KokM, LeathermanJM, et al. A STING agonist given with OX40 receptor and PD-L1 modulators primes immunity and reduces tumor growth in tolerized mice[J]. Cancer Immunol Res, 2017, 5(6):468-479. DOI: 10.1158/2326-6066.CIR-16-0284.
[41]
SasakiN, HommeM, KitajimaS. Targeting the loss of cGAS/STING signaling in cancer[J]. Cancer Sci, 2023, 114(10):3806-3815. DOI: 10.1111/cas.15913.
[42]
YiM, NiuM, WuY, et al. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors[J]. J Hematol Oncol, 2022, 15(1):142. DOI: 10.1186/s13045-022-01363-8.
[43]
JangSC, EconomidesKD, MonizRJ, et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance[J]. Commun Biol, 2021, 4(1):497. DOI: 10.1038/s42003-021-02004-5.
[44]
LiK, YeY, LiuL, et al. The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma[J]. Biomater Sci, 2021, 9(3):765-773. DOI: 10.1039/d0bm00870b.
[45]
MohapatraA, MondalJ, SathiyamoorthyP, et al. Thermosusceptible nitric-oxide-releasing nitrogel for strengthening antitumor immune responses with tumor collagen diminution and deep tissue delivery during NIR laser-assisted photoimmunotherapy[J]. ACS Appl Mater Interfaces, 2023. DOI: 10.1021/acsami.3c01896.
[46]
Dorta-EstremeraS, HegdeVL, SlayRB, et al. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV(+) oral cancer[J]. J Immunother Cancer, 2019, 7(1):252. DOI: 10.1186/s40425-019-0728-4.
[47]
XuN, PalmerDC, RobesonAC, et al. STING agonist promotes CAR T cell trafficking and persistence in breast cancer[J]. J Exp Med, 2021, 218(2):e20200844. DOI: 10.1084/jem.20200844.
[48]
SmithTT, MoffettHF, StephanSB, et al. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors[J]. J Clin Invest, 2017, 127(6):2176-2191. DOI: 10.1172/JCI87624.
[49]
ShiJ, LiuC, LuoS, et al. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer[J]. Cell Immunol, 2021, 366:104384. DOI: 10.1016/j.cellimm.2021.104384.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词