述评
中国血管外科的基础研究进展
中华血管外科杂志(中英文), 2024,09(2) : 79-86. DOI: 10.3760/cma.j.cn101411-20240405-00033
摘要

血管外科作为新兴的独立学科,在我国经过多年发展,临床诊治已经取得了巨大的进步。同时,我国血管外科的基础研究也取得了一定的成果,在下肢动脉硬化闭塞症、主动脉夹层、动脉瘤、深静脉血栓形成等疾病的基础研究中,做出了许多创新性的发现,为深入认识和治疗这些疾病提供了新的思路。本文拟通过总结我国血管外科学者在基础科研领域的研究现状,展示目前所取得的成绩和存在的不足,并指出未来基础研究的潜在方向。

引用本文: 李梓伦, 常光其. 中国血管外科的基础研究进展 [J] . 中华血管外科杂志(中英文), 2024, 09(2) : 79-86. DOI: 10.3760/cma.j.cn101411-20240405-00033.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

血管外科是20世纪才逐渐发展起来的新兴学科,我国血管外科起步于20世纪50年代后期,直至1987年,全国血管外科专题座谈会于烟台召开,中国血管外科才正式成为一个独立学科1。我国血管外科起步虽然较晚,但发展迅速,在主动脉夹层、主动脉瘤、颈动脉狭窄、内脏动脉瘤、下肢动脉硬化闭塞症及下肢深静脉血栓形成(deep vein thrombosis,DVT)等疾病的临床诊治方面取得了巨大的进步,在累及主动脉弓部分支及内脏分支的主动脉疾病的医工结合研究领域,更是百花齐放,取得了让人瞩目的成绩。相比之下,我国血管外科的基础研究取得了一些成绩,但同时存在着科研底子薄、人才储备不足及高水平研究较少等问题,亟需进一步加强和提升。结合我国常见的血管外科病种,本文围绕动脉粥样硬化及其密切相关的主动脉夹层、动脉瘤、下肢动脉闭塞症、下肢静脉曲张及下肢DVT等疾病,查阅了我国血管外科学者在近15年发表的基础方向SCI论文并进行筛选,对目前中国血管外科基础研究的现状进行了初步的汇总与综述。

一、动脉粥样硬化

动脉粥样硬化是外周血管疾病最核心的病理生理机制之一2。随着国人生活水平不断提高和老龄化加剧,肥胖、高血压和糖尿病等基础疾病日益增多,我国动脉粥样硬化所致阻塞性或扩张性周围动脉疾病显著增加3。动脉粥样硬化是一种慢性、进行性的血管疾病,其发病机制复杂,涉及细胞学、免疫学和代谢生理学等,我国血管外科学者围绕可能机制及相应治疗方向开展了系列研究工作。

在细胞学方面,血管内皮细胞和平滑肌细胞一直是近年的研究重点。复旦大学附属中山医院Xue等4研究发现含C-C基序的趋化因子配体8通过NADPH氧化酶2/ROS轴诱导内皮细胞通透性增加促进动脉粥样硬化。中国医学科学院阜外医院Yang等5证实miR-520b通过抑制NF-κB/p65/VCAM1轴活化改善血管内皮炎症。北京大学人民医院Zhang等6发现趋化素样因子1,南方医科大学南方医院Liu等7发现CCN4,中国医学科学院阜外医院Ren等8发现长链非编码RNA TPRG1-AS1,以及郑州大学附属第一医院Miao等9发现circARHGAP12均参与了平滑肌细胞增殖和迁移的调控。而华中科技大学同济医学院附属协和医院Zheng等10发现TAK1/自噬轴,上海交通大学医学院附属仁济医院Ye等发现circCOL1A1/miR-30a-5p轴11及β-TRCP/REST/Kv1.3轴12均促进了平滑肌细胞的表型转换。

在免疫学方面,炎症反应在动脉粥样硬化的发展中发挥了重要作用,巨噬细胞出现炎症反应并转化为泡沫细胞是导致动脉粥样硬化的关键环节。中山大学附属第一医院Zheng等13发现巨噬细胞受到不同时机的相同浓度氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)干预可表现出不同的自噬焦亡表型,提示脂质在动脉粥样硬化的不同病程中存在时序效应。北京大学人民医院Tang等14发现DNA甲基转移酶1/ Kruppel样因子4轴和华中科技大学同济医学院附属协和医院Pi等15发现P2RY12/自噬轴是泡沫细胞形成的新通路。南方医科大学南方医院Wang等16发现ox-LDL通过激活NF-κB活性促进单核巨噬细胞的白细胞介素(interleukin,IL)-6分泌,而广州医科大学广州妇女儿童医疗中心Dong等17新发现的长链非编码RNA RP11-728F11.4则可通过促进炎症加重小鼠的动脉粥样硬化。

在代谢生理学方面,脂质代谢紊乱一直是动脉粥样硬化的核心机制之一。中山大学附属第一医院Shi等18发现葡萄籽原花青素通过miR-96/自噬通路抑制小鼠脂代谢紊乱。上海交通大学医学院附属仁济医院Liu等19研究发现桑葚提取物通过调控胆固醇代谢有效抑制泡沫细胞形成。南方医科大学南方医院Hu等20证实VNN1通过促进巨噬细胞及肝脏脂代谢加重高脂高胆固醇饮食下的小鼠动脉粥样硬化。在上游的机制探索中,中山大学附属第一医院Li等21发现血管紧张素转换酶2(angiotensin converting enzyme 2,ACE2)是调控血管脂质代谢及糖代谢的重要靶点,通过新发现的ACE2变构激活剂醋甲唑胺及伊马替尼,可通过ACE2依赖的方式改善血管内皮脂代谢及炎症反应,并进一步建立基于特定靶点及通路的生物信息学高通量筛药方法22

除了上述机制研究,我国学者还针对动脉粥样硬化的治疗开展了系列研究。结果显示,南京鼓楼医院Wang等23所研究的冬凌草甲素,广西医科大学附属第一医院Lin等24所研究的五味子乙素及华中科技大学同济医学院附属协和医院Li等25所研究的柯里拉京等植物来源小分子化合物可通过不同途径治疗动脉粥样硬化。而华中科技大学同济医学院附属协和医院Hu等26发现缺氧诱导因子(hypoxia-inducible factor,HIF)1α抑制剂PX-478则通过激活巨噬细胞自噬并抑制铁死亡改善动脉粥样硬化,中山大学附属第一医院Huang等27发现甘氨熊脱氧胆酸可通过抑制巨噬细胞脂质摄取并改善肠道菌群治疗动脉粥样硬化。在新型治疗方法方面,南京鼓楼医院Wu等28证实构建β-环糊精/L-精氨酸/金的纳米马达可通过多种途径调控动脉粥样硬化斑块的微环境治疗动脉粥样硬化。

二、主动脉夹层

主动脉夹层是一种严重的心血管急症,其特征是主动脉内膜发生撕裂,导致血液进入主动脉壁内,形成真假两个血管腔。这一疾病不仅发病急,而且病死率高,因此其基础研究具有重要意义29。近年来,我国血管外科针对主动脉夹层的基础研究取得了一些进展。

在细胞和分子机制方面,中国人民解放军总医院第一医学中心Zhang等30发现H3.3B组蛋白变异控制血管平滑肌细胞表型转变及炎症反应,从而促进主动脉夹层的进展。而北京大学人民医院Chen等31发现LOXhigh纤维细胞亚群与平滑肌细胞的相互作用失调促进主动脉夹层的发病。同时,北京大学人民医院Lian等32发现巨噬细胞通过HIF1α-ADAM17通路的代谢重编程导致主动脉夹层的进展。上海长海医院Xiao等33发现miR-22通过靶向p38MAPKα抑制血管平滑肌细胞的凋亡改善主动脉夹层。上海长海医院Sun等34发现miR-27a通过靶向内皮细胞的凋亡和与血管平滑肌细胞的相互作用调控血管重塑,miR-27a的激活是主动脉夹层的潜在治疗手段;其团队还发现平滑肌22蛋白下调会导致主动脉平滑肌细胞增生,是主动脉夹层血管重构过程的潜在靶点35

在遗传学研究方面,中国医学科学院阜外医院Zhu等36发现LTBP3基因突变与主动脉夹层及动脉瘤等主动脉疾病易感性有关。云南省阜外心血管病医院Yang等37对1 095例主动脉夹层及动脉瘤患者进行测序发现一系列的潜在致病基因变异。

在治疗研究方面,北京大学人民医院Yang等38发现低尿酸,同中心Zhou等39发现雷帕霉素,上海长海医院Zhang等40发现糖皮质激素,青岛大学附属医院Liu等41发现甲泼尼龙药涂支架和山东大学第二医院Guo等42发现IL-1β抗体可有效治疗主动脉夹层。

三、主动脉瘤

主动脉瘤特征是动脉壁的薄弱和局部扩张。这种扩张可能导致动脉壁破裂,造成死亡等严重后果43。近年来,我国学者对动脉瘤的基础研究取得了显著进展。

在病理生理机制方面,北京协和医院Lei等44发现上调FAM3A,全球多中心合作发现上调ARHGAP1845及白细胞介素IL-1946等靶点可抑制主动脉瘤。而复旦大学附属中山医院Yue等47发现激活circCBFB/miR-28-5p轴,上海长海医院Wang等48发现硒缺乏,云南省阜外心血管病医院Li等49发现赖氨酸羟化酶1蛋白敲除以及上海长海医院Ma等50发现circRNA hsa_circ_0087352等可促进主动脉瘤发生发展。上海交通大学医学院附属仁济医院Yang等51发现中性粒细胞胞外诱捕网通过激活平滑肌细胞Hippo-YAP,该中心Chen等52发现间充质干细胞来源外泌体通过抑制中性粒细胞胞外诱捕网,可以改善腹主动脉瘤,而北京大学第三医院Dang等53发现T淋巴细胞来源的外泌体通过激活巨噬细胞脂质过氧化可促进腹主动脉瘤发生。中国医学科学院阜外医院Zhu等36的遗传学研究发现LTBP3基因突变和中国人民解放军总医院Wei等54的研究发现染色体9p21.3区域的rs10757278及rs1333049单核苷酸多态性与动脉瘤易感性相关。

在治疗方面,我国学者对药物治疗进行了一些探索。中山大学附属第一医院Cai等55发现紫檀花,北京协和医院Ren等56发现小剂量硼替佐米,中南大学湘雅医院Liu等57发现亚精胺,郑州大学附属第一医院Sun等58发现程序性死亡受体-1抗体及抑制剂和青岛大学附属医院Liu等59发现α-酮戊二酸可治疗实验性腹主动脉瘤。华中科技大学同济医学院附属协和医院Chen等60发现雌激素也可通过TROVE2蛋白途径发挥抗炎作用从而改善腹主动脉瘤。

在腹主动脉瘤疾病模型方面,北京协和医院Ren等61证实ApoE敲除及野生型CD57BL/6J小鼠具有相似的蛋白组学变化。中国人民解放军总医院第一医学中心Zhang等62新近报道了一种以钙磷盐为诱导剂的新型小鼠腹主动脉瘤模型。

四、下肢动脉硬化闭塞症与支架内再狭窄

下肢动脉硬化闭塞症主要由动脉粥样硬化等病理机制引起下肢动脉狭窄甚至闭塞,导致下肢缺血63。近年来,围绕该疾病的基础研究主要是通过刺激血管新生等途径改善下肢缺血,以及支架内再狭窄的发病机制。

在改善下肢缺血方面,北京大学第三医院Song等64发现CD34+细胞分化的成纤维细胞与巨噬细胞相互作用,并通过OSM-ANGPTL信号轴改善下肢缺血。而上海交通大学医学院附属仁济医院Wu等65发现敲除骨多糖蛋白可通过血管内皮生长因子(vascular endothelial growth factor,VEGF)/VEGF受体2(VEGF receptor 2,VEGFR2)通路改善下肢缺血;郑州大学附属第一医院Bai等66发现过表达Aurora激酶A可通过VEGFR2/PI3K/AKT通路改善下肢缺血。南京鼓楼医院Zhao等67发现冬凌草甲素通过调节Nrf2介导的氧化应激和NLRP3相关炎症来减轻下肢缺血再灌注损伤;中山大学附属第一医院Fan等68发现白藜芦醇可通过FOXO1依赖的方式促进血管新生。而利用纳米颗粒及高分子材料构建的局部治疗方法中,北京医院Gui等69报道ROS-响应性纳米颗粒载药的CYP2J2质粒,复旦大学附属中山医院Yuan等70报道锶/硅生物活性水凝胶,南昌大学附属第二医院Zhang等71报道pH/热敏双响应载药褪黑素水凝胶,北京医院Chen等72报道装载锌离子的ROS-响应纳米颗粒和北京协和医院Li等73报道血小板膜包被的IL-10纳米颗粒均可治疗严重下肢缺血。中山大学附属第一医院Long等74发现过表达VEGF及血红素氧合酶-1的内皮祖细胞可促进大鼠肢体缺血模型的下肢血管新生。

干细胞疗法是目前通过诱导血管新生减轻肢体缺血的重要研究方向。北京大学第一医院Yao等75发现骨髓间充质干细胞诱导分化的内皮细胞,上海交通大学医学院附属仁济医院Ye等76发现人诱导多能干细胞分化出的内皮细胞所产生的外泌体和首都医科大学宣武医院Gao等77发现人诱导多能干细胞分化出的平滑肌细胞可促进下肢动脉闭塞症的血管新生。而首都医科大学宣武医院Guo等78报道miR-544可通过调节YY1/TET2信号轴,发挥促进干细胞衍生的内皮样细胞成熟和抗氧化的作用。此外,首都医科大学附属北京安贞医院Lin等79开发了可用于制造人类多能干细胞衍生的血管平滑肌细胞的工程化微环境,并进一步建立了一套应用低成本设备,一体化生成诱导多能干细胞的方法80,综合实现了高效可扩展的人类多能干细胞诱导内皮细胞的生物工艺81

在支架再狭窄研究中,中国医学科学院阜外医院Duan等82发现CKLF1通过PI3K/AKT/NF-κB信号通路抑制血管平滑肌细胞凋亡,加剧新生内膜增生。北京协和医院Yang等83发现褪黑素可减轻烟草烟雾所诱导的大鼠颈动脉球囊损伤血管再狭窄模型;Rong等84发现SLC6A6则通过Wnt/β-Catenin抑制平滑肌细胞增殖迁移并抑制内膜新生。中山大学附属第一医院zhou等85发现甲基转移酶SMYKD通过与Myocardin结合,抑制血管平滑肌细胞表型转化并抑制新生内膜形成南京鼓楼医院Tang等86报道用纳米马达装载紫杉醇的药物涂层球囊可更有效地抑制支架内狭窄。而上海交通大学医学院附属瑞金医院Xu等87发现从间充质干细胞分化得到的内皮样细胞可以减轻血管损伤后的新生内膜增生。中山大学附属第一医院Zhu等88发现miR-140-3p通过靶向C-Myb和BCL-2参与支架再狭窄。北京协和医院Li等89报道血小板包被纳米颗粒可用于抑制血管再狭窄。

五、静脉曲张、脉管畸形与血栓形成

静脉曲张的特征是下肢静脉功能退化,出现异常扩张和伸长,常伴有疼痛和不适90。上海长海医院Fu等91研究FBN1基因突变与静脉曲张的关联,揭示了遗传因素在该疾病中的作用。而南京医科大学附属苏州医院Huang等92报道miR-202及温州医科大学附属第二医院Ai等93报道miR-411参与了静脉曲张的发生发展。郑州大学附属第一医院Zhang等94证实FOXC2-AS1在曲张大隐静脉中升高,体外过表达可促进平滑肌细胞表型、增殖和迁移。

脉管畸形是一组涉及血管系统结构异常的疾病,包括静脉、动脉、淋巴管或它们的组合。这些疾病可能先天出现或后天发展。近年来,血管外科学界对该病研究较少,中山大学附属第五医院Pang等95发现DDX24变异是导致内脏血管畸形遗传病的基因靶点,后续研究表明DDX24通过结合FANCA mRNA调控血管发育过程的血管平滑肌96

血栓形成的基础研究主要包括遗传因素、分子机制及新型疗法等。遗传多态性方面,首都医科大学附属北京友谊医院Li等97报道PAI-1基因的4G/5G多态性,南方医科大学南方医院Qian等98报道凝血酶可激活纤溶酶抑制蛋白的遗传多态性及山东大学齐鲁医院Jiang等99报道深静脉血栓中的其他遗传多态性,与DVT的风险相关。分子机制方面,南京鼓楼医院Du等报道miR-150100和miR-21101分别通过Akt途径和靶向FASLG影响内皮祖细胞分化,从而发挥治疗作用。中山大学附属第一医院Huang等102发现肠菌产物2-甲基丁基-L-肉碱通过结合整合素蛋白α2β1促进血栓形成;同中心的Yang等103发现甘氨熊脱氧胆酸可通过抑制血小板二酰甘油激酶活性改善血栓形成。在治疗方面,南京鼓楼医院Guo等发现褪黑素104和地奥司明105在DVT动物模型中具有缓解静脉功能障碍和肌肉损伤的作用。中山大学附属第一医院Ye等106发现血浆中组织因子阳性外泌体升高与DVT再发风险呈正相关。而在动物模型研究中,南京市第一医院Shi等107比较了单纯结扎髂总静脉和分别结扎髂总静脉及髂外静脉,并提出后者具有更好的模拟作用。

六、总结与展望

综上所述,我国血管外科研究者在基础研究领域进行了系列研究,并取得了较为突出的成绩。然而,与国内心血管内外科相比,血管外科开展动脉粥样硬化相关研究的时间较晚,高水平研究较少。针对下肢动脉硬化闭塞症这一最为常见的周围血管疾病,研究仍不够深入,缺乏重大成果。而针对主动脉夹层与动脉瘤这两种较为凶险的疾病,目前尚未成功研发出可明确缩小其直径,延缓甚至抑制其破裂的药物。同时,针对静脉与血栓疾病的基础研究投入较为匮乏。为解决上述问题,血管外科的研究团队需要跨学科合作,与细胞生物学、分子遗传学、免疫学、代谢学和药理学等多个领域专家合作,通过建立合作组对特定疾病及核心课题进行攻关。

总而言之,伴随我国血管外科近40年的快速发展,我们在基础研究领域取得了一定的成果,然而更多的是未知与挑战。我们需要不断加强基础研究,对重点与难点问题进行协作攻坚,以促进我国乃至全球血管外科的进一步发展。

引用本文:

李梓伦, 常光其. 中国血管外科的基础研究进展[J]. 中华血管外科杂志(中英文), 2024, 9(2): 79-86. DOI: 10.3760/cma.j.cn101411-20240405-00033.

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
王茂华, 金星. 新中国血管外科发展简史[J]. 中华医史杂志, 2018, 48(6): 355-358. DOI: 10.3760/cma.j.issn.0255-7053.2018.06.006.
[2]
AronowHD, BeckmanJA. Parsing atherosclerosis: the unnatural history of peripheral artery disease[J]. Circulation, 2016, 134(6): 438-440. DOI: 10.1161/circulationaha.116.022971.
[3]
中国心血管病报告编写组. 《中国心血管病报告2016》概要[J]. 中国循环杂志, 2017, 32(6): 521-530. DOI: 10.3969/j.issn.1000-3614.2017.06.001.
[4]
XueS, TangH, ZhaoG, et al. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase[J]. Free Radic Biol Med, 2021, 167: 181-192. DOI: 10.1016/j.freeradbiomed.2021.02.022.
[5]
YangB, YangH, LuX, et al. MiR-520b inhibits endothelial activation by targeting NF-κB p65-VCAM1 axis[J]. Biochem Pharmacol, 2021, 188: 114540. DOI: 10.1016/j.bcp.2021.114540.
[6]
ZhangT, ZhangX, YuW, et al. Effects of chemokine-like factor 1 on vascular smooth muscle cell migration and proliferation in vascular inflammation[J]. Atherosclerosis, 2013, 226(1): 49-57. DOI: 10.1016/j.atherosclerosis.2012.09.023.
[7]
LiuH, DongW, LinZ, et al. CCN4 regulates vascular smooth muscle cell migration and proliferation[J]. Mol Cells, 2013, 36(2): 112-118. DOI: 10.1007/s10059-013-0012-2.
[8]
RenX, ZhuH, DengK, et al. Long noncoding RNA TPRG1-AS1 suppresses migration of vascular smooth muscle cells and attenuates atherogenesis via interacting with MYH9 protein[J]. Arterioscler Thromb Vasc Biol, 2022, 42(11): 1378-1397. DOI: 10.1161/atvbaha.122.318158.
[9]
MiaoR, QiC, FuY, et al. Silencing of circARHGAP12 inhibits the progression of atherosclerosis via miR-630/EZH2/TIMP2 signal axis[J]. J Cell Physiol, 2022, 237(1): 1057-1069. DOI: 10.1002/jcp.30598.
[10]
ZhengX, YuQ, ShangD, et al. TAK1 accelerates transplant arteriosclerosis in rat aortic allografts by inducing autophagy in vascular smooth muscle cells[J]. Atherosclerosis, 2022, 343: 10-19. DOI: 10.1016/j.atherosclerosis.2022.01.009.
[11]
YeM, NiQ, WangH, et al. CircRNA circCOL1A1 acts as a sponge of miR-30a-5p to promote vascular smooth cell phenotype switch through regulation of Smad1 expression[J]. Thromb Haemost, 2023, 123(1): 97-107. DOI: 10.1055/s-0042-1757875.
[12]
YeM, GuoX, WangH, et al. Mutual regulation between β-TRCP mediated REST protein degradation and Kv1.3 expression controls vascular smooth muscle cell phenotype switch[J]. Atherosclerosis, 2020, 313: 102-110. DOI: 10.1016/j.atherosclerosis.2020.08.018.
[13]
ZhengL, XuH, ZhengF, et al. Intervention time decides the status of autophagy, NLRP3 activity and apoptosis in macrophages induced by ox-LDL[J]. Lipids Health Dis, 2022, 21(1): 107. DOI: 10.1186/s12944-022-01714-x.
[14]
TangRZ, ZhuJJ, YangFF, et al. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis[J]. J Mol Cell Cardiol, 2019, 128: 11-24. DOI: 10.1016/j.yjmcc.2019.01.009.
[15]
PiS, MaoL, ChenJ, et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis[J]. Autophagy, 2021, 17(4): 980-1000. DOI: 10.1080/15548627.2020.1741202.
[16]
WangYC, HuYW, ShaYH, et al. Ox-LDL upregulates IL-6 expression by enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages[J]. Inflammation, 2015, 38(6): 2116-2123. DOI: 10.1007/s10753-015-0194-1.
[17]
DongXH, LuZF, KangCM, et al. The long noncoding RNA RP11-728F11.4 promotes atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(3): 1191-1204. DOI: 10.1161/atvbaha.120.315114.
[18]
ShiY, JiaM, XuL, et al. MiR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice[J]. Phytother Res, 2019, 33(4): 1222-1232. DOI: 10.1002/ptr.6318.
[19]
LiuY, WangK, YangS, et al. Mulberry extract upregulates cholesterol efflux and inhibits p38 MAPK-NLRP3-mediated inflammation in foam cells[J]. Food Sci Nutr, 2023, 11(6): 3141-3153. DOI: 10.1002/fsn3.3296.
[20]
HuYW, WuSG, ZhaoJJ, et al. VNN1 promotes atherosclerosis progression in apoE-/- mice fed a high-fat/high-cholesterol diet[J]. J Lipid Res, 2016, 57(8): 1398-1411. DOI: 10.1194/jlr.M065565.
[21]
LiZ, PengM, ChenP, et al. Imatinib and methazolamide ameliorate COVID-19-induced metabolic complications via elevating ACE2 enzymatic activity and inhibiting viral entry[J]. Cell Metab, 2022, 34(3): 424-440.e7. DOI: 10.1016/j.cmet.2022.01.008.
[22]
ChenP, LiuC, ZhangZ, et al. Protocol for high-throughput screening of ACE2 enzymatic activators to treat COVID-19-induced metabolic complications[J]. STAR Protoc, 2022, 3(3): 101641. DOI: 10.1016/j.xpro.2022.101641.
[23]
WangL, ZhaoX, DingJ, et al. Oridonin attenuates the progression of atherosclerosis by inhibiting NLRP3 and activating Nrf2 in apolipoprotein E-deficient mice[J]. Inflammopharmacology, 2023, 31(4): 1993-2005. DOI: 10.1007/s10787-023-01161-9.
[24]
LinQ, QinX, ShiM, et al. Schisandrin B inhibits LPS-induced inflammatory response in human umbilical vein endothelial cells by activating Nrf2[J]. Int Immunopharmacol, 2017, 49: 142-147. DOI: 10.1016/j.intimp.2017.05.032.
[25]
LiY, WangY, ChenY, et al. Corilagin ameliorates atherosclerosis in peripheral artery disease via the Toll-like receptor-4 signaling pathway in vitro and in vivo[J]. Front Immunol, 2020, 11: 1611. DOI: 10.3389/fimmu.2020.01611.
[26]
HuG, YuanZ, WangJ. Autophagy inhibition and ferroptosis activation during atherosclerosis: hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages[J]. Biomed Pharmacother, 2023, 161: 114333. DOI: 10.1016/j.biopha.2023.114333.
[27]
HuangK, LiuC, PengM, et al. Glycoursodeoxycholic acid ameliorates atherosclerosis and alters gut microbiota in apolipoprotein E-deficient mice[J]. J Am Heart Assoc, 2021, 10(7): e019820. DOI: 10.1161/jaha.120.019820.
[28]
WuZ, WuR, LiX, et al. Multi-pathway microenvironment regulation for atherosclerosis therapy based on Beta-Cyclodextrin/L-Arginine/Au nanomotors with dual-mode propulsion[J]. Small, 2022, 18(9): e2104120. DOI: 10.1002/smll.202104120.
[29]
HameedI, CifuAS, VallabhajosyulaP. Management of thoracic aortic dissection[J]. JAMA-J Am Med Assoc, 2023, 329(9): 756-757. DOI: 10.1001/jama.2023.0265.
[30]
ZhangX, CheY, MaoL, et al. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation[J]. Genomics, 2023, 115(5): 110685. DOI: 10.1016/j.ygeno.2023.110685.
[31]
ChenY, ZhangT, YaoF, et al. Dysregulation of interaction between LOXhigh fibroblast and smooth muscle cells contributes to the pathogenesis of aortic dissection[J]. Theranostics, 2022, 12(2): 910-928. DOI: 10.7150/thno.66059.
[32]
LianG, LiX, ZhangL, et al. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway[J]. EBioMedicine, 2019, 49: 291-304. DOI: 10.1016/j.ebiom.2019.09.041.
[33]
XiaoY, SunY, MaX, et al. MicroRNA-22 inhibits the apoptosis of vascular smooth muscle cell by targeting p38MAPKα in vascular remodeling of aortic dissection[J]. Mol Ther Nucleic Acids, 2020, 22: 1051-1062. DOI: 10.1016/j.omtn.2020.08.018.
[34]
SunY, XiaoY, SunH, et al. MiR-27a regulates vascular remodeling by targeting endothelial cells' apoptosis and interaction with vascular smooth muscle cells in aortic dissection[J]. Theranostics, 2019, 9(25): 7961-7975. DOI: 10.7150/thno.35737.
[35]
SunY, ZhaoZ, HouL, et al. The regulatory role of smooth muscle 22 on the proliferation of aortic smooth muscle cells participates in the development of aortic dissection[J]. J Vasc Surg, 2017, 66(3): 875-882. DOI: 10.1016/j.jvs.2016.02.063.
[36]
ZhuG, LuoM, ChenQ, et al. Novel LTBP3 mutations associated with thoracic aortic aneurysms and dissections[J]. Orphanet J Rare Dis, 2021, 16(1): 513. DOI: 10.1186/s13023-021-02143-2.
[37]
YangH, ShenH, ZhuG, et al. Molecular characterization and clinical investigation of patients with heritable thoracic aortic aneurysm and dissection[J]. J Thorac Cardiovasc Surg, 2023, 166(6): 1594-1603.e5. DOI: 10.1016/j.jtcvs.2022.11.004.
[38]
YangL, WuH, LuoC, et al. Urate-lowering therapy inhibits thoracic aortic aneurysm and dissection formation in mice[J]. Arterioscler Thromb Vasc Biol, 2023, 43(6): e172-e189. DOI: 10.1161/atvbaha.122.318788.
[39]
ZhouB, LiW, ZhaoG, et al. Rapamycin prevents thoracic aortic aneurysm and dissection in mice[J]. J Vasc Surg, 2019, 69(3): 921-932.e3. DOI: 10.1016/j.jvs.2018.05.246.
[40]
ZhangL, ZhouJ, JingZ, et al. Glucocorticoids regulate the vascular remodeling of aortic dissection via the p38 MAPK-HSP27 pathway mediated by soluble TNF-RII[J]. EBioMedicine, 2018, 27: 247-257. DOI: 10.1016/j.ebiom.2017.12.002.
[41]
LiuJ, ZhuH, PeiY, et al. A methylprednisolone-loaded and core-shell nanofiber-covered stent-graft to prevent inflammation and reduce degradation in aortic dissection[J]. Biomater Res, 2022, 26(1): 15. DOI: 10.1186/s40824-022-00259-5.
[42]
GuoLL, WuMT, ZhangLW, et al. Blocking interleukin-1 beta reduces the evolution of thoracic aortic dissection in a rodent model[J]. Eur J Vasc Endovasc Surg, 2020, 60(6): 916-924. DOI: 10.1016/j.ejvs.2020.08.032.
[43]
GolledgeJ. Abdominal aortic aneurysm: update on pathogenesis and medical treatments[J]. Nat Rev Cardiol, 2019, 16(4): 225-242. DOI: 10.1038/s41569-018-0114-9.
[44]
LeiC, KanH, XianX, et al. FAM3A reshapes VSMC fate specification in abdominal aortic aneurysm by regulating KLF4 ubiquitination[J]. Nat Commun, 2023, 14(1): 5360. DOI: 10.1038/s41467-023-41177-x.
[45]
LiuR, LoL, LayAJ, et al. ARHGAP18 protects against thoracic aortic aneurysm formation by mitigating the synthetic and proinflammatory smooth muscle cell phenotype[J]. Circ Res, 2017, 121(5): 512-524. DOI: 10.1161/circresaha.117.310692.
[46]
TanakaH, XuB, XuanH, et al. Recombinant interleukin-19 suppresses the formation and progression of experimental abdominal aortic aneurysms[J]. J Am Heart Assoc, 2021, 10(17): e022207. DOI: 10.1161/jaha.121.022207.
[47]
YueJ, ZhuT, YangJ, et al. CircCBFB-mediated miR-28-5p facilitates abdominal aortic aneurysm via LYPD3 and GRIA4[J]. Life Sci, 2020, 253: 117533. DOI: 10.1016/j.lfs.2020.117533.
[48]
WangJ, SunH, FengJ, et al. Selenium deficiency promotes dilatation of the aorta by increasing expression and activity of vascular smooth muscle cell derived matrix metalloproteinase-2[J]. Eur J Vasc Endovasc Surg, 2024,67(4):663-671. DOI: 10.1016/j.ejvs.2023.10.018.
[49]
LiH, XuH, WenH, et al. Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm[J]. Theranostics, 2021, 11(19): 9587-9604. DOI: 10.7150/thno.65277.
[50]
MaX, XuJ, LuQ, et al. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p[J]. Int Immunopharmacol, 2022, 107: 108691. DOI: 10.1016/j.intimp.2022.108691.
[51]
YangS, ChenL, WangZ, et al. Neutrophil extracellular traps induce abdominal aortic aneurysm formation by promoting the synthetic and proinflammatory smooth muscle cell phenotype via Hippo-YAP pathway[J]. Transl Res, 2023, 255: 85-96. DOI: 10.1016/j.trsl.2022.11.010.
[52]
ChenL, LiuY, WangZ, et al. Mesenchymal stem cell-derived extracellular vesicles protect against abdominal aortic aneurysm formation by inhibiting NET-induced ferroptosis[J]. Exp Mol Med, 2023, 55(5): 939-951. DOI: 10.1038/s12276-023-00986-2.
[53]
DangG, LiT, YangD, et al. T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2[J]. Redox Biol, 2022, 50: 102257. DOI: 10.1016/j.redox.2022.102257.
[54]
WeiY, XiongJ, ZuoS, et al. Association of polymorphisms on chromosome 9p21.3 region with increased susceptibility of abdominal aortic aneurysm in a Chinese Han population[J]. J Vasc Surg, 2014, 59(4): 879-885. DOI: 10.1016/j.jvs.2013.10.095.
[55]
CaiH, HuangL, WangM, et al. Pterostilbene alleviates abdominal aortic aneurysm via inhibiting macrophage pyroptosis by activating the miR-146a-5p/TRAF6 axis[J]. Food Funct, 2024,15(1):139-157. DOI: 10.1039/d3fo01235b.
[56]
RenH, LiF, TianC, et al. Inhibition of proteasome activity by low-dose bortezomib attenuates angiotensin II-induced abdominal aortic aneurysm in Apo E(-/-) mice[J]. Sci Rep, 2015, 5: 15730. DOI: 10.1038/srep15730.
[57]
LiuS, HuangT, LiuR, et al. Spermidine suppresses development of experimental abdominal aortic aneurysms[J]. J Am Heart Assoc, 2020, 9(8): e014757. DOI: 10.1161/jaha.119.014757.
[58]
SunP, ZhangL, GuY, et al. Immune checkpoint programmed death-1 mediates abdominal aortic aneurysm and pseudoaneurysm progression[J]. Biomed Pharmacother, 2021, 142: 111955. DOI: 10.1016/j.biopha.2021.111955.
[59]
LiuJ, LiuM, FengJ, et al. Alpha-ketoglutarate ameliorates abdominal aortic aneurysm via inhibiting PXDN/HOCL/ERK signaling pathways[J]. J Transl Med, 2022, 20(1): 461. DOI: 10.1186/s12967-022-03659-2.
[60]
ChenS, ZhaoY, JinH, et al. TROVE2 strengthens the anti-inflammatory effect via macrophage polarization by estrogen induction in abdominal aortic aneurysm[J]. Life Sci, 2020, 242: 117207. DOI: 10.1016/j.lfs.2019.117207.
[61]
RenJ, WuL, WuJ, et al. The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE(-/-) and CD57BL/6J mice[J]. J Proteomics, 2022, 268: 104702. DOI: 10.1016/j.jprot.2022.104702.
[62]
ZhangS, CaiZ, ZhangX, et al. A calcium phosphate-induced mouse abdominal aortic aneurysm model[J]. J Vis Exp, 2022(189). DOI: 10.3791/64173.
[63]
FowkesFG, AboyansV, FowkesFJ, et al. Peripheral artery disease: epidemiology and global perspectives[J]. Nat Rev Cardiol, 2017, 14(3): 156-170. DOI: 10.1038/nrcardio.2016.179.
[64]
SongY, YangJ, LiT, et al. CD34+ cell-derived fibroblast-macrophage cross-talk drives limb ischemia recovery through the OSM-ANGPTL signaling axis[J]. Sci Adv, 2023, 9(15): eadd2632. DOI: 10.1126/sciadv.add2632.
[65]
WuQH, MaY, RuanCC, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway[J]. Cardiovasc Res, 2017, 113(1): 70-80. DOI: 10.1093/cvr/cvw220.
[66]
BaiT, LiM, LiuY, et al. The promotion action of AURKA on post-ischemic angiogenesis in diabetes-related limb ischemia[J]. Mol Med, 2023, 29(1): 39. DOI: 10.1186/s10020-023-00635-4.
[67]
ZhaoX, LiuY, WangL, et al. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2- mediated oxidative stress and NLRP3-mediated inflammation[J]. J Ethnopharmacol, 2022, 292: 115206. DOI: 10.1016/j.jep.2022.115206.
[68]
FanD, LiuC, GuoZ, et al. Resveratrol promotes angiogenesis in a FoxO1-dependent manner in hind limb ischemia in mice[J]. Molecules, 2021, 26(24):7528. DOI: 10.3390/molecules26247528.
[69]
GuiL, ChenY, DiaoY, et al. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia[J]. Mater Today Bio, 2022, 13: 100192. DOI: 10.1016/j.mtbio.2021.100192.
[70]
YuanY, ZhangZ, MoF, et al. A biomaterial-based therapy for lower limb ischemia using Sr/Si bioactive hydrogel that inhibits skeletal muscle necrosis and enhances angiogenesis[J]. Bioact Mater, 2023, 26: 264-278. DOI: 10.1016/j.bioactmat.2023.02.027.
[71]
ZhangT, OuyangH, LiuS, et al. pH/Thermosensitive dual-responsive hydrogel based sequential delivery for site-specific acute limb ischemia treatment[J]. J Mater Chem B, 2022, 10(38): 7836-7846. DOI: 10.1039/d2tb00474g.
[72]
ChenZ, DuanJ, DiaoY, et al. ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia[J]. Bioact Mater, 2021, 6(1): 1-11. DOI: 10.1016/j.bioactmat.2020.07.013.
[73]
LiF, RongZ, ChenT, et al. Glycosylation-engineered platelet membrane-coated interleukin 10 nanoparticles for targeted inhibition of vascular restenosis[J]. Int J Nanomedicine, 2023, 18: 5011-5030. DOI: 10.2147/ijn.S423186.
[74]
LongJ, WangS, ZhangY, et al. The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model[J]. J Vasc Surg, 2013, 58(3): 756-765.e2. DOI: 10.1016/j.jvs.2012.11.096.
[75]
YaoZ, LiuH, YangM, et al. Bone marrow mesenchymal stem cell-derived endothelial cells increase capillary density and accelerate angiogenesis in mouse hindlimb ischemia model[J]. Stem Cell Res Ther, 2020, 11(1): 221. DOI: 10.1186/s13287-020-01710-x.
[76]
YeM, NiQ, QiH, et al. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs[J]. Int J Biol Sci, 2019, 15(1): 158-168. DOI: 10.7150/ijbs.28392.
[77]
GaoX, GaoM, GoreckaJ, et al. Human-induced pluripotent stem-cell-derived smooth muscle cells increase angiogenesis to treat hindlimb ischemia[J]. Cells, 2021, 10(4):792. DOI: 10.3390/cells10040792.
[78]
GuoJ, XiangQ, XinY, et al. MiR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis[J]. Cell Commun Signal, 2020, 18(1): 35. DOI: 10.1186/s12964-019-0504-6.
[79]
LinH, QiuX, DuQ, et al. Engineered microenvironment for manufacturing human pluripotent stem cell-derived vascular smooth muscle cells[J]. Stem Cell Reports, 2019, 12(1): 84-97. DOI: 10.1016/j.stemcr.2018.11.009.
[80]
LinH, LiQ, DuQ, et al. Integrated generation of induced pluripotent stem cells in a low-cost device[J]. Biomaterials, 2019, 189: 23-36. DOI: 10.1016/j.biomaterials.2018.10.027.
[81]
LinH, DuQ, LiQ, et al. A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-derived endothelial cells[J]. Stem Cell Reports, 2018, 11(2): 454-469. DOI: 10.1016/j.stemcr.2018.07.001.
[82]
DuanY, ZhangY, QuC, et al. CKLF1 aggravates neointimal hyperplasia by inhibiting apoptosis of vascular smooth muscle cells through PI3K/AKT/NF-κB signaling[J]. Biomed Pharmacother, 2019, 117: 108986. DOI: 10.1016/j.biopha.2019.108986.
[83]
YangGH, LiYC, WangZQ, et al. Protective effect of melatonin on cigarette smoke-induced restenosis in rat carotid arteries after balloon injury[J]. J Pineal Res, 2014, 57(4): 451-458. DOI: 10.1111/jpi.12185.
[84]
RongZ, LiF, ZhangR, et al. Ant-neointimal formation effects of SLC6A6 in preventing vascular smooth muscle cell proliferation and migration via Wnt/β-catenin signaling[J]. Int J Mol Sci, 2023, 24(3):3018. DOI: 10.3390/ijms24033018.
[85]
ZhouY, SharmaS, SunX, et al. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin[J].Cell Mol Life Sci, 2023, 80(9):264. DOI: 10.1007/s00018-023-04883-9.
[86]
TangX, ChenL, WuZ, et al. Lipophilic NO-driven nanomotors as drug balloon coating for the treatment of atherosclerosis[J]. Small, 2023, 19(13): e2203238. DOI: 10.1002/smll.202203238.
[87]
XuJ, WuD, YangY, et al. Endothelial-like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury[J]. Mol Med Rep, 2016, 14(5): 4830-4836. DOI: 10.3892/mmr.2016.5799.
[88]
ZhuZR, HeQ, WuWB, et al. MiR-140-3p is Involved in in-stent restenosis by targeting C-Myb and BCL-2 in peripheral artery disease[J]. J Atheroscler Thromb, 2018, 25(11): 1168-1181. DOI: 10.5551/jat.44024.
[89]
LiF, RongZ, ZhangR, et al. Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization[J]. iScience, 2022, 25(10): 105147. DOI: 10.1016/j.isci.2022.105147.
[90]
EberhardtRT, RaffettoJD. Chronic venous insufficiency[J]. Circulation, 2014, 130(4): 333-346. DOI: 10.1161/circulationaha.113.006898.
[91]
FuQ, LiuP, LuQ, et al. Novel mutation in FBN1 causes ectopia lentis and varicose great saphenous vein in one Chinese autosomal dominant family[J]. Mol Vis, 2014, 20: 812-821.
[92]
HuangX, LiuZ, ShenL, et al. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator- activated receptor-γ coactivator-1α[J]. J Cell Biochem, 2019, 120(6): 10031-10042. DOI: 10.1002/jcb.28287.
[93]
AiP, ShenB, PanH, et al. MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1α[J]. J Thromb Thrombolysis, 2018, 45(2): 264-273. DOI: 10.1007/s11239-017-1596-8.
[94]
ZhangC, LiH, GuoX. FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells[J]. Biol Res, 2019, 52(1): 59. DOI: 10.1186/s40659-019-0266-z.
[95]
PangP, HuX, ZhouB, et al. DDX24 mutations associated with malformations of major vessels to the viscera[J]. Hepatology, 2019, 69(2): 803-816. DOI: 10.1002/hep.30200.
[96]
GongY, LiangY, LiuJ, et al. DDX24 is essential for cell cycle regulation in vascular smooth muscle cells during vascular development via binding to FANCA mRNA[J]. Arterioscler Thromb Vasc Biol, 2023, 43(9): 1653-1667. DOI: 10.1161/atvbaha.123.319505.
[97]
LiW, CaoS, LiuB, et al. Influence of the 4G/5G polymorphism of plasminogen activator inhibitor-1 gene in acute unprovoked deep vein thrombosis and residual vein thrombosis[J]. J Vasc Surg Venous Lymphat Disord, 2023, 11(4): 748-753. DOI: 10.1016/j.jvsv.2023.02.007.
[98]
QianK, XuJ, WanH, et al. Impact of genetic polymorphisms in thrombin activatable fibrinolysis inhibitor (TAFI) on venous thrombosis disease: a meta-analysis[J]. Gene, 2015, 569(2): 173-181. DOI: 10.1016/j.gene.2015.06.014.
[99]
JiangJ, JiaoY, DingX, et al. Association between genetic polymorphisms and deep vein thrombosis in a Chinese population[J]. Thromb Res, 2015, 136(3): 687-689. DOI: 10.1016/j.thromres.2015.07.010.
[100]
DuX, HuN, YuH, et al. MiR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution[J]. Stem Cell Res Ther, 2020, 11(1): 354. DOI: 10.1186/s13287-020-01871-9.
[101]
DuX, HongL, SunL, et al. MiR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis[J]. J Transl Med, 2019, 17(1): 270. DOI: 10.1186/s12967-019-2015-z.
[102]
HuangK, LiZ, HeX, et al. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1[J]. Cell Metab, 2024, 36(3): 598-616.e9. DOI: 10.1016/j.cmet.2024.01.014.
[103]
YangW, FengR, PengG, et al. Glycoursodeoxycholic acid alleviates arterial thrombosis via suppressing diacylglycerol kinases activity in platelet[J]. Arterioscler Thromb Vasc Biol, 2024. DOI: 10.1161/atvbaha.124.320728.
[104]
GuoZ, DuX, ZhouY, et al. Melatonin alleviates venous dysfunction in a mouse model of iliac vein occlusion[J]. Front Immunol, 2022, 13: 870981. DOI: 10.3389/fimmu.2022.870981.
[105]
GuoZ, DuX, ZhangY, et al. Diosmin alleviates venous injury and muscle damage in a mouse model of iliac vein stenosis[J]. Front Cardiovasc Med, 2021, 8: 785554. DOI: 10.3389/fcvm.2021.785554.
[106]
YeR, YeC, HuangY, et al. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis[J]. Thromb Res, 2012, 130(2): 253-258. DOI: 10.1016/j.thromres.2011.10.014.
[107]
ShiWY, HuLY, WuS, et al. Two swine models of iliac vein occlusion: which form most contributes to venous thrombosis?[J]. Thromb Res, 2015, 135(6): 1172-1178. DOI: 10.1016/j.thromres.2015.03.006.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词