参考文献[1]
王茂华, 金星. 新中国血管外科发展简史[J]. 中华医史杂志, 2018, 48(6): 355-358. .
[2]
AronowHD, BeckmanJA. Parsing atherosclerosis: the unnatural history of peripheral artery disease[J]. Circulation, 2016, 134(6): 438-440. .
[3]
中国心血管病报告编写组. 《中国心血管病报告2016》概要[J]. 中国循环杂志, 2017, 32(6): 521-530. .
[4]
XueS, TangH, ZhaoG, et al. C-C motif ligand 8 promotes atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial permeability increase[J]. Free Radic Biol Med, 2021, 167: 181-192. .
[5]
YangB, YangH, LuX, et al. MiR-520b inhibits endothelial activation by targeting NF-κB p65-VCAM1 axis[J]. Biochem Pharmacol, 2021, 188: 114540. .
[6]
ZhangT, ZhangX, YuW, et al. Effects of chemokine-like factor 1 on vascular smooth muscle cell migration and proliferation in vascular inflammation[J]. Atherosclerosis, 2013, 226(1): 49-57. .
[7]
LiuH, DongW, LinZ, et al. CCN4 regulates vascular smooth muscle cell migration and proliferation[J]. Mol Cells, 2013, 36(2): 112-118. .
[8]
RenX, ZhuH, DengK, et al. Long noncoding RNA TPRG1-AS1 suppresses migration of vascular smooth muscle cells and attenuates atherogenesis via interacting with MYH9 protein[J]. Arterioscler Thromb Vasc Biol, 2022, 42(11): 1378-1397. .
[9]
MiaoR, QiC, FuY, et al. Silencing of circARHGAP12 inhibits the progression of atherosclerosis via miR-630/EZH2/TIMP2 signal axis[J]. J Cell Physiol, 2022, 237(1): 1057-1069. .
[10]
ZhengX, YuQ, ShangD, et al. TAK1 accelerates transplant arteriosclerosis in rat aortic allografts by inducing autophagy in vascular smooth muscle cells[J]. Atherosclerosis, 2022, 343: 10-19. .
[11]
YeM, NiQ, WangH, et al. CircRNA circCOL1A1 acts as a sponge of miR-30a-5p to promote vascular smooth cell phenotype switch through regulation of Smad1 expression[J]. Thromb Haemost, 2023, 123(1): 97-107. .
[12]
YeM, GuoX, WangH, et al. Mutual regulation between β-TRCP mediated REST protein degradation and Kv1.3 expression controls vascular smooth muscle cell phenotype switch[J]. Atherosclerosis, 2020, 313: 102-110. .
[13]
ZhengL, XuH, ZhengF, et al. Intervention time decides the status of autophagy, NLRP3 activity and apoptosis in macrophages induced by ox-LDL[J]. Lipids Health Dis, 2022, 21(1): 107. .
[14]
TangRZ, ZhuJJ, YangFF, et al. DNA methyltransferase 1 and Krüppel-like factor 4 axis regulates macrophage inflammation and atherosclerosis[J]. J Mol Cell Cardiol, 2019, 128: 11-24. .
[15]
PiS, MaoL, ChenJ, et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis[J]. Autophagy, 2021, 17(4): 980-1000. .
[16]
WangYC, HuYW, ShaYH, et al. Ox-LDL upregulates IL-6 expression by enhancing NF-κB in an IGF2-dependent manner in THP-1 macrophages[J]. Inflammation, 2015, 38(6): 2116-2123. .
[17]
DongXH, LuZF, KangCM, et al. The long noncoding RNA RP11-728F11.4 promotes atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021, 41(3): 1191-1204. .
[18]
ShiY, JiaM, XuL, et al. MiR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice[J]. Phytother Res, 2019, 33(4): 1222-1232. .
[19]
LiuY, WangK, YangS, et al. Mulberry extract upregulates cholesterol efflux and inhibits p38 MAPK-NLRP3-mediated inflammation in foam cells[J]. Food Sci Nutr, 2023, 11(6): 3141-3153. .
[20]
HuYW, WuSG, ZhaoJJ, et al. VNN1 promotes atherosclerosis progression in apoE-/- mice fed a high-fat/high-cholesterol diet[J]. J Lipid Res, 2016, 57(8): 1398-1411. .
[21]
LiZ, PengM, ChenP, et al. Imatinib and methazolamide ameliorate COVID-19-induced metabolic complications via elevating ACE2 enzymatic activity and inhibiting viral entry[J]. Cell Metab, 2022, 34(3): 424-440.e7. .
[22]
ChenP, LiuC, ZhangZ, et al. Protocol for high-throughput screening of ACE2 enzymatic activators to treat COVID-19-induced metabolic complications[J]. STAR Protoc, 2022, 3(3): 101641. .
[23]
WangL, ZhaoX, DingJ, et al. Oridonin attenuates the progression of atherosclerosis by inhibiting NLRP3 and activating Nrf2 in apolipoprotein E-deficient mice[J]. Inflammopharmacology, 2023, 31(4): 1993-2005. .
[24]
LinQ, QinX, ShiM, et al. Schisandrin B inhibits LPS-induced inflammatory response in human umbilical vein endothelial cells by activating Nrf2[J]. Int Immunopharmacol, 2017, 49: 142-147. .
[25]
LiY, WangY, ChenY, et al. Corilagin ameliorates atherosclerosis in peripheral artery disease via the Toll-like receptor-4 signaling pathway in vitro and in vivo[J]. Front Immunol, 2020, 11: 1611. .
[26]
HuG, YuanZ, WangJ. Autophagy inhibition and ferroptosis activation during atherosclerosis: hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages[J]. Biomed Pharmacother, 2023, 161: 114333. .
[27]
HuangK, LiuC, PengM, et al. Glycoursodeoxycholic acid ameliorates atherosclerosis and alters gut microbiota in apolipoprotein E-deficient mice[J]. J Am Heart Assoc, 2021, 10(7): e019820. .
[28]
WuZ, WuR, LiX, et al. Multi-pathway microenvironment regulation for atherosclerosis therapy based on Beta-Cyclodextrin/L-Arginine/Au nanomotors with dual-mode propulsion[J]. Small, 2022, 18(9): e2104120. .
[29]
HameedI, CifuAS, VallabhajosyulaP. Management of thoracic aortic dissection[J]. JAMA-J Am Med Assoc, 2023, 329(9): 756-757. .
[30]
ZhangX, CheY, MaoL, et al. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation[J]. Genomics, 2023, 115(5): 110685. .
[31]
ChenY, ZhangT, YaoF, et al. Dysregulation of interaction between LOXhigh fibroblast and smooth muscle cells contributes to the pathogenesis of aortic dissection[J]. Theranostics, 2022, 12(2): 910-928. .
[32]
LianG, LiX, ZhangL, et al. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway✰[J]. EBioMedicine, 2019, 49: 291-304. .
[33]
XiaoY, SunY, MaX, et al. MicroRNA-22 inhibits the apoptosis of vascular smooth muscle cell by targeting p38MAPKα in vascular remodeling of aortic dissection[J]. Mol Ther Nucleic Acids, 2020, 22: 1051-1062. .
[34]
SunY, XiaoY, SunH, et al. MiR-27a regulates vascular remodeling by targeting endothelial cells' apoptosis and interaction with vascular smooth muscle cells in aortic dissection[J]. Theranostics, 2019, 9(25): 7961-7975. .
[35]
SunY, ZhaoZ, HouL, et al. The regulatory role of smooth muscle 22 on the proliferation of aortic smooth muscle cells participates in the development of aortic dissection[J]. J Vasc Surg, 2017, 66(3): 875-882. .
[36]
ZhuG, LuoM, ChenQ, et al. Novel LTBP3 mutations associated with thoracic aortic aneurysms and dissections[J]. Orphanet J Rare Dis, 2021, 16(1): 513. .
[37]
YangH, ShenH, ZhuG, et al. Molecular characterization and clinical investigation of patients with heritable thoracic aortic aneurysm and dissection[J]. J Thorac Cardiovasc Surg, 2023, 166(6): 1594-1603.e5. .
[38]
YangL, WuH, LuoC, et al. Urate-lowering therapy inhibits thoracic aortic aneurysm and dissection formation in mice[J]. Arterioscler Thromb Vasc Biol, 2023, 43(6): e172-e189. .
[39]
ZhouB, LiW, ZhaoG, et al. Rapamycin prevents thoracic aortic aneurysm and dissection in mice[J]. J Vasc Surg, 2019, 69(3): 921-932.e3. .
[40]
ZhangL, ZhouJ, JingZ, et al. Glucocorticoids regulate the vascular remodeling of aortic dissection via the p38 MAPK-HSP27 pathway mediated by soluble TNF-RII[J]. EBioMedicine, 2018, 27: 247-257. .
[41]
LiuJ, ZhuH, PeiY, et al. A methylprednisolone-loaded and core-shell nanofiber-covered stent-graft to prevent inflammation and reduce degradation in aortic dissection[J]. Biomater Res, 2022, 26(1): 15. .
[42]
GuoLL, WuMT, ZhangLW, et al. Blocking interleukin-1 beta reduces the evolution of thoracic aortic dissection in a rodent model[J]. Eur J Vasc Endovasc Surg, 2020, 60(6): 916-924. .
[43]
GolledgeJ. Abdominal aortic aneurysm: update on pathogenesis and medical treatments[J]. Nat Rev Cardiol, 2019, 16(4): 225-242. .
[44]
LeiC, KanH, XianX, et al. FAM3A reshapes VSMC fate specification in abdominal aortic aneurysm by regulating KLF4 ubiquitination[J]. Nat Commun, 2023, 14(1): 5360. .
[45]
LiuR, LoL, LayAJ, et al. ARHGAP18 protects against thoracic aortic aneurysm formation by mitigating the synthetic and proinflammatory smooth muscle cell phenotype[J]. Circ Res, 2017, 121(5): 512-524. .
[46]
TanakaH, XuB, XuanH, et al. Recombinant interleukin-19 suppresses the formation and progression of experimental abdominal aortic aneurysms[J]. J Am Heart Assoc, 2021, 10(17): e022207. .
[47]
YueJ, ZhuT, YangJ, et al. CircCBFB-mediated miR-28-5p facilitates abdominal aortic aneurysm via LYPD3 and GRIA4[J]. Life Sci, 2020, 253: 117533. .
[48]
WangJ, SunH, FengJ, et al. Selenium deficiency promotes dilatation of the aorta by increasing expression and activity of vascular smooth muscle cell derived matrix metalloproteinase-2[J]. Eur J Vasc Endovasc Surg, 2024,67(4):663-671. .
[49]
LiH, XuH, WenH, et al. Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm[J]. Theranostics, 2021, 11(19): 9587-9604. .
[50]
MaX, XuJ, LuQ, et al. Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p[J]. Int Immunopharmacol, 2022, 107: 108691. .
[51]
YangS, ChenL, WangZ, et al. Neutrophil extracellular traps induce abdominal aortic aneurysm formation by promoting the synthetic and proinflammatory smooth muscle cell phenotype via Hippo-YAP pathway[J]. Transl Res, 2023, 255: 85-96. .
[52]
ChenL, LiuY, WangZ, et al. Mesenchymal stem cell-derived extracellular vesicles protect against abdominal aortic aneurysm formation by inhibiting NET-induced ferroptosis[J]. Exp Mol Med, 2023, 55(5): 939-951. .
[53]
DangG, LiT, YangD, et al. T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2[J]. Redox Biol, 2022, 50: 102257. .
[54]
WeiY, XiongJ, ZuoS, et al. Association of polymorphisms on chromosome 9p21.3 region with increased susceptibility of abdominal aortic aneurysm in a Chinese Han population[J]. J Vasc Surg, 2014, 59(4): 879-885. .
[55]
CaiH, HuangL, WangM, et al. Pterostilbene alleviates abdominal aortic aneurysm via inhibiting macrophage pyroptosis by activating the miR-146a-5p/TRAF6 axis[J]. Food Funct, 2024,15(1):139-157. .
[56]
RenH, LiF, TianC, et al. Inhibition of proteasome activity by low-dose bortezomib attenuates angiotensin II-induced abdominal aortic aneurysm in Apo E(-/-) mice[J]. Sci Rep, 2015, 5: 15730. .
[57]
LiuS, HuangT, LiuR, et al. Spermidine suppresses development of experimental abdominal aortic aneurysms[J]. J Am Heart Assoc, 2020, 9(8): e014757. .
[58]
SunP, ZhangL, GuY, et al. Immune checkpoint programmed death-1 mediates abdominal aortic aneurysm and pseudoaneurysm progression[J]. Biomed Pharmacother, 2021, 142: 111955. .
[59]
LiuJ, LiuM, FengJ, et al. Alpha-ketoglutarate ameliorates abdominal aortic aneurysm via inhibiting PXDN/HOCL/ERK signaling pathways[J]. J Transl Med, 2022, 20(1): 461. .
[60]
ChenS, ZhaoY, JinH, et al. TROVE2 strengthens the anti-inflammatory effect via macrophage polarization by estrogen induction in abdominal aortic aneurysm[J]. Life Sci, 2020, 242: 117207. .
[61]
RenJ, WuL, WuJ, et al. The molecular mechanism of Ang II induced-AAA models based on proteomics analysis in ApoE(-/-) and CD57BL/6J mice[J]. J Proteomics, 2022, 268: 104702. .
[62]
ZhangS, CaiZ, ZhangX, et al. A calcium phosphate-induced mouse abdominal aortic aneurysm model[J]. J Vis Exp, 2022(189). .
[63]
FowkesFG, AboyansV, FowkesFJ, et al. Peripheral artery disease: epidemiology and global perspectives[J]. Nat Rev Cardiol, 2017, 14(3): 156-170. .
[64]
SongY, YangJ, LiT, et al. CD34+ cell-derived fibroblast-macrophage cross-talk drives limb ischemia recovery through the OSM-ANGPTL signaling axis[J]. Sci Adv, 2023, 9(15): eadd2632. .
[65]
WuQH, MaY, RuanCC, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway[J]. Cardiovasc Res, 2017, 113(1): 70-80. .
[66]
BaiT, LiM, LiuY, et al. The promotion action of AURKA on post-ischemic angiogenesis in diabetes-related limb ischemia[J]. Mol Med, 2023, 29(1): 39. .
[67]
ZhaoX, LiuY, WangL, et al. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2- mediated oxidative stress and NLRP3-mediated inflammation[J]. J Ethnopharmacol, 2022, 292: 115206. .
[68]
FanD, LiuC, GuoZ, et al. Resveratrol promotes angiogenesis in a FoxO1-dependent manner in hind limb ischemia in mice[J]. Molecules, 2021, 26(24):7528. .
[69]
GuiL, ChenY, DiaoY, et al. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia[J]. Mater Today Bio, 2022, 13: 100192. .
[70]
YuanY, ZhangZ, MoF, et al. A biomaterial-based therapy for lower limb ischemia using Sr/Si bioactive hydrogel that inhibits skeletal muscle necrosis and enhances angiogenesis[J]. Bioact Mater, 2023, 26: 264-278. .
[71]
ZhangT, OuyangH, LiuS, et al. pH/Thermosensitive dual-responsive hydrogel based sequential delivery for site-specific acute limb ischemia treatment[J]. J Mater Chem B, 2022, 10(38): 7836-7846. .
[72]
ChenZ, DuanJ, DiaoY, et al. ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia[J]. Bioact Mater, 2021, 6(1): 1-11. .
[73]
LiF, RongZ, ChenT, et al. Glycosylation-engineered platelet membrane-coated interleukin 10 nanoparticles for targeted inhibition of vascular restenosis[J]. Int J Nanomedicine, 2023, 18: 5011-5030. .
[74]
LongJ, WangS, ZhangY, et al. The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model[J]. J Vasc Surg, 2013, 58(3): 756-765.e2. .
[75]
YaoZ, LiuH, YangM, et al. Bone marrow mesenchymal stem cell-derived endothelial cells increase capillary density and accelerate angiogenesis in mouse hindlimb ischemia model[J]. Stem Cell Res Ther, 2020, 11(1): 221. .
[76]
YeM, NiQ, QiH, et al. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs[J]. Int J Biol Sci, 2019, 15(1): 158-168. .
[77]
GaoX, GaoM, GoreckaJ, et al. Human-induced pluripotent stem-cell-derived smooth muscle cells increase angiogenesis to treat hindlimb ischemia[J]. Cells, 2021, 10(4):792. .
[78]
GuoJ, XiangQ, XinY, et al. MiR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis[J]. Cell Commun Signal, 2020, 18(1): 35. .
[79]
LinH, QiuX, DuQ, et al. Engineered microenvironment for manufacturing human pluripotent stem cell-derived vascular smooth muscle cells[J]. Stem Cell Reports, 2019, 12(1): 84-97. .
[80]
LinH, LiQ, DuQ, et al. Integrated generation of induced pluripotent stem cells in a low-cost device[J]. Biomaterials, 2019, 189: 23-36. .
[81]
LinH, DuQ, LiQ, et al. A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-derived endothelial cells[J]. Stem Cell Reports, 2018, 11(2): 454-469. .
[82]
DuanY, ZhangY, QuC, et al. CKLF1 aggravates neointimal hyperplasia by inhibiting apoptosis of vascular smooth muscle cells through PI3K/AKT/NF-κB signaling[J]. Biomed Pharmacother, 2019, 117: 108986. .
[83]
YangGH, LiYC, WangZQ, et al. Protective effect of melatonin on cigarette smoke-induced restenosis in rat carotid arteries after balloon injury[J]. J Pineal Res, 2014, 57(4): 451-458. .
[84]
RongZ, LiF, ZhangR, et al. Ant-neointimal formation effects of SLC6A6 in preventing vascular smooth muscle cell proliferation and migration via Wnt/β-catenin signaling[J]. Int J Mol Sci, 2023, 24(3):3018. .
[85]
ZhouY, SharmaS, SunX, et al. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin[J].Cell Mol Life Sci, 2023, 80(9):264. .
[86]
TangX, ChenL, WuZ, et al. Lipophilic NO-driven nanomotors as drug balloon coating for the treatment of atherosclerosis[J]. Small, 2023, 19(13): e2203238. .
[87]
XuJ, WuD, YangY, et al. Endothelial-like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury[J]. Mol Med Rep, 2016, 14(5): 4830-4836. .
[88]
ZhuZR, HeQ, WuWB, et al. MiR-140-3p is Involved in in-stent restenosis by targeting C-Myb and BCL-2 in peripheral artery disease[J]. J Atheroscler Thromb, 2018, 25(11): 1168-1181. .
[89]
LiF, RongZ, ZhangR, et al. Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization[J]. iScience, 2022, 25(10): 105147. .
[90]
EberhardtRT, RaffettoJD. Chronic venous insufficiency[J]. Circulation, 2014, 130(4): 333-346. .
[91]
FuQ, LiuP, LuQ, et al. Novel mutation in FBN1 causes ectopia lentis and varicose great saphenous vein in one Chinese autosomal dominant family[J]. Mol Vis, 2014, 20: 812-821.
[92]
HuangX, LiuZ, ShenL, et al. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator- activated receptor-γ coactivator-1α[J]. J Cell Biochem, 2019, 120(6): 10031-10042. .
[93]
AiP, ShenB, PanH, et al. MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1α[J]. J Thromb Thrombolysis, 2018, 45(2): 264-273. .
[94]
ZhangC, LiH, GuoX. FOXC2-AS1 regulates phenotypic transition, proliferation and migration of human great saphenous vein smooth muscle cells[J]. Biol Res, 2019, 52(1): 59. .
[95]
PangP, HuX, ZhouB, et al. DDX24 mutations associated with malformations of major vessels to the viscera[J]. Hepatology, 2019, 69(2): 803-816. .
[96]
GongY, LiangY, LiuJ, et al. DDX24 is essential for cell cycle regulation in vascular smooth muscle cells during vascular development via binding to FANCA mRNA[J]. Arterioscler Thromb Vasc Biol, 2023, 43(9): 1653-1667. .
[97]
LiW, CaoS, LiuB, et al. Influence of the 4G/5G polymorphism of plasminogen activator inhibitor-1 gene in acute unprovoked deep vein thrombosis and residual vein thrombosis[J]. J Vasc Surg Venous Lymphat Disord, 2023, 11(4): 748-753. .
[98]
QianK, XuJ, WanH, et al. Impact of genetic polymorphisms in thrombin activatable fibrinolysis inhibitor (TAFI) on venous thrombosis disease: a meta-analysis[J]. Gene, 2015, 569(2): 173-181. .
[99]
JiangJ, JiaoY, DingX, et al. Association between genetic polymorphisms and deep vein thrombosis in a Chinese population[J]. Thromb Res, 2015, 136(3): 687-689. .
[100]
DuX, HuN, YuH, et al. MiR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution[J]. Stem Cell Res Ther, 2020, 11(1): 354. .
[101]
DuX, HongL, SunL, et al. MiR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis[J]. J Transl Med, 2019, 17(1): 270. .
[102]
HuangK, LiZ, HeX, et al. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1[J]. Cell Metab, 2024, 36(3): 598-616.e9. .
[103]
YangW, FengR, PengG, et al. Glycoursodeoxycholic acid alleviates arterial thrombosis via suppressing diacylglycerol kinases activity in platelet[J]. Arterioscler Thromb Vasc Biol, 2024. .
[104]
GuoZ, DuX, ZhouY, et al. Melatonin alleviates venous dysfunction in a mouse model of iliac vein occlusion[J]. Front Immunol, 2022, 13: 870981. .
[105]
GuoZ, DuX, ZhangY, et al. Diosmin alleviates venous injury and muscle damage in a mouse model of iliac vein stenosis[J]. Front Cardiovasc Med, 2021, 8: 785554. .
[106]
YeR, YeC, HuangY, et al. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis[J]. Thromb Res, 2012, 130(2): 253-258. .
[107]
ShiWY, HuLY, WuS, et al. Two swine models of iliac vein occlusion: which form most contributes to venous thrombosis?[J]. Thromb Res, 2015, 135(6): 1172-1178. .