专题笔谈
二甲双胍的作用机制新进展
中华糖尿病杂志, 2024,16(7) : 735-739. DOI: 10.3760/cma.j.cn115791-20240102-00003
摘要

二甲双胍在临床应用已超过60年,作为一线降糖治疗药物,在糖尿病管理中发挥重要作用。随着临床证据的积累,不断有研究报道二甲双胍在糖尿病预防、减少糖尿病并发症、抗炎、抗衰老及抗肿瘤方面的获益。二甲双胍作用的核心为激活腺苷酸活化蛋白激酶(AMPK),另外其还通过调节线粒体稳态、改善炎症、自噬及免疫调节等方式直接或间接发挥作用,减轻不同疾病对靶细胞的损伤。该文汇总分析二甲双胍最新作用机制的研究进展,为其临床获益背后的作用特点提供探讨和思考。

引用本文: 肖建中. 二甲双胍的作用机制新进展 [J] . 中华糖尿病杂志, 2024, 16(7) : 735-739. DOI: 10.3760/cma.j.cn115791-20240102-00003.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

二甲双胍是经典的降糖药物,发挥着2型糖尿病(type 2 diabetes mellitus,T2DM)药物治疗基石的作用,在临床应用已有60多年。其主要降糖机制包括:(1)激活腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK),促进葡萄糖转运蛋白转移到肝细胞膜,增强肝细胞中胰岛素受体的活性;(2)抑制脂肪细胞中甘油三酯分解,抑制肝脏和骨骼细胞中脂肪积累,降低血液中的游离脂肪酸;(3)减轻高脂饮食引起的炎症1;(4)抑制肠道对葡萄糖的吸收2;(5)通过增加胰岛素非依赖性组织中葡萄糖的利用率,二甲双胍减轻胰岛素抵抗对靶器官的影响1。由于二甲双胍的代谢调节作用,指南也推荐二甲双胍用于糖尿病预防。本文汇总分析二甲双胍最新作用机制的研究进展,为其临床获益背后的作用特点提供探讨和思考。

一、糖代谢调节作用机制

二甲双胍主要通过AMPK通路和非AMPK通路两种方式调节糖代谢。AMPK由α、β、γ三大亚基构成,当细胞内单磷酸腺苷(adenosine monophosphate,AMP)增多时,肝激酶B1(liver kinase B1,LKB1)被激活,它可以直接磷酸化α亚基苏氨酸172(Thr172位点)激活AMPK;AMP增多也可通过直接结合γ亚基CBS区域变构激活AMPK3。我国研究证实,临床相关浓度的二甲双胍结合γ分泌酶复合物中的早老素增强因子2(presenilin enhancer 2,PEN2)蛋白,再结合ATP6AP1蛋白募集到溶酶体空泡型ATP酶复合物上,导致空泡型ATP酶变构,便于LKB1募集到溶酶体,接触并激活AMPK4

非AMPK通路中二甲双胍可抑制线粒体内膜电子传递链(mitochondrial electron transport chain,METC)复合物Ⅰ,导致产生的三磷酸腺苷(adenosine triphosphate,ATP)降低,AMP水平增加5,继而抑制糖异生关键酶果糖-1,6-二磷酸酶,并变构激活糖酵解关键酶磷酸果糖激酶,抑制甘油和乳酸转化为血糖1。通过与METC复合物Ⅳ相互作用降低其酶活性,二甲双胍间接抑制氧化还原穿梭酶-线粒体甘油-3-磷酸脱氢酶,减少甘油转化引起的糖异生6。二甲双胍还通过激活生长分化因子157,促进葡萄糖从肠壁排至肠腔8等方式调节糖代谢。

二、减少糖尿病并发症的机制

糖尿病慢性并发症发病机制复杂,与胰岛素抵抗、高血糖、慢性炎症、血管内皮细胞功能紊乱等因素有关。体内糖脂代谢失衡会激活肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS)和交感神经系统,直接或间接引起全身广泛血管损伤,引发血管并发症9。大多数器官(心脏、大脑、外周血管系统)同时受到糖尿病大血管病变和微血管病变的影响,视网膜和肾脏主要受微血管病变影响9。英国前瞻性糖尿病研究(United Kingdom Prospective Diabetes Study,UKPDS)结果提示,新诊断T2DM患者强化降糖后微血管和大血管获益明显,早期严格控糖的远期记忆效应明显10, 11。通过AMPK依赖或非依赖途径(图1),二甲双胍减缓了糖尿病并发症进展。

点击查看大图
图1
二甲双胍的作用机制图
点击查看大图

注:AMPK为腺苷酸活化蛋白激酶;GDF-15为生长分化因子15

图1
二甲双胍的作用机制图

1.心血管疾病:心血管疾病是T2DM患者的主要致死病因。二甲双胍对糖尿病和非糖尿病患者均具有良好的心脏保护作用5。在T2DM小鼠模型中,二甲双胍、运动单独或联合可激活AMPK并减少核因子-κB(nuclear factor-κB,NF-κB)介导的免疫反应,从而改善心肌纤维化12。通过抑制内质网应激,二甲双胍增加一氧化氮生物有效性,改善心肌细胞内皮功能13,机制与AMPK及过氧化物酶体增殖物激活受体δ(peroxisome proliferator-activated receptor δ,PPARδ)激活有关。通过抑制线粒体分裂和加强线粒体产生,二甲双胍增强了线粒体稳态,以AMPK依赖方式保护血管14。Robichaud等15发现二甲双胍激活血管平滑肌细胞衍生的泡沫细胞自噬,增加泡沫细胞胆固醇外流,减轻动脉粥样硬化。二甲双胍还能抑制下游哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路激活16,下调巨噬细胞浸润和基质金属蛋白酶表达,减少新生血管形成的同时维持主动脉血管平滑肌细胞的收缩表型,保护血管内皮。二甲双胍可能通过激活AMPK促进白色脂肪棕色化,发挥改善代谢异常和抗动脉粥样硬化的作用17

2.视网膜病变:糖尿病视网膜病变(diabetic retinopathy,DR)是常见的糖尿病慢性并发症,氧化应激和炎症等在DR的发病和进展中起着重要作用。二甲双胍治疗减轻了视网膜色素上皮细胞的氧化应激及紧密连接紊乱,减缓视网膜血管内皮细胞炎症及血管生成,这一保护作用呈剂量依赖性18。使用二甲双胍治疗超过5年的增殖性糖尿病视网膜病变患者,玻璃体炎症细胞因子中可溶性细胞间黏附分子-1和单核细胞趋化蛋白-1的浓度较未治疗患者显著降低19。机制研究还提示二甲双胍对视网膜血管内皮炎症细胞因子的抑制不依赖于AMPK通路,而是直接抑制NF-κB19

在链脲佐菌素诱导的糖尿病眼病大鼠中,二甲双胍恢复血清肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、血管内皮生长因子、claudin-1和谷胱甘肽/丙二醛比率,不同程度地减轻了角膜、视网膜等和视神经中的糖尿病相关眼部病变20

3.肾脏疾病:糖尿病肾脏病是导致终末期肾病的主要病因21。高糖毒性、RAAS系统激活和细胞因子水平改变引起靶细胞损伤或凋亡,导致肾脏组织病理改变,包括肾小球基底膜增厚、肾小管受损/凋亡、内皮细胞改变和足细胞损伤21。二甲双胍有效降低糖尿病肾脏病变的基底膜厚度、肾小管和足细胞损伤22;通过激活蛋白磷酸酶2A(protein phosphatase 2A,PP2A)、抑制NF-κB,还可有效缓解高糖环境下人肾上皮细胞中的线粒体自噬,减轻肾上皮细胞损伤23。一项荟萃分析发现,糖尿病患者使用二甲双胍与较低的急性肾损伤和死亡风险相关24,这也许和二甲双胍改善糖尿病患者肾脏组织细胞代谢、改善内皮功能、抗炎、改善氧化应激状态等有关。

4.神经系统疾病:糖尿病神经病变是糖尿病最常见的慢性并发症,主要与高血糖、脂代谢紊乱和胰岛素信号通路异常相关。衰老、神经退行性疾病和神经相关心理疾病(如抑郁)伴随着慢性神经炎症,在糖尿病中则表现出认知障碍和神经性疼痛。二甲双胍可以通过血脑屏障,作用于特定的神经元和神经胶质细胞,激活AMPK通路,调节神经能量代谢减轻上述症状,保护外周神经和中央神经25, 26

三、抗病毒感染作用机制

COVID-OUT是一项随机对照研究,结果提示,二甲双胍早期治疗新型冠状病毒感染患者可能有助于降低其急诊就诊、住院或死亡的风险27。随访10个月,二甲双胍可显著降低“长新冠”风险达41%27。上述获益可能与二甲双胍降低炎性因子(如C反应蛋白、白细胞介素-6、白细胞介素-2和TNF-α)的升高程度有关28

四、抗骨质疏松作用机制

晚期糖基化终产物引发的炎症会导致骨关节炎,进一步发展为骨质疏松症。二甲双胍与较低的骨质疏松发生率有关29。回顾性队列研究显示,接受二甲双胍治疗的原位癌患者,较未治疗患者骨质疏松发生率更低30。在成骨细胞中,二甲双胍激活AMPK通路,激活自噬,上调去乙酰酶3(sirtuin3,SIRT3)、激活抗氧化酶、保护线粒体31, 32,减轻成骨细胞凋亡、保护成骨分化能力。在破骨细胞中,二甲双胍则抑制活性AMPK、NF-κB、磷酸化的细胞外调节蛋白激酶的激活,并抑制参与破骨细胞生成基因的上调33

五、抗肿瘤作用机制

随机对照试验(randomized controlled trial,RCT)结果显示,二甲双胍改善乳腺癌、前列腺癌、肺癌患者的病理学完全缓解率、无进展生存率等临床终点34, 35, 36, 37。在肿瘤细胞中,PP2A通过负向调节多种致癌信号通路抑癌,研究显示二甲双胍在肺癌、乳腺癌及髓样细胞白血病-138, 39, 40中激活PP2A,抑制肿瘤生长。

高胰岛素血症引起胰岛素样生长因子异常激活也促进肿瘤发展。基础及临床研究均显示,二甲双胍下调胰岛素样生长因子,抑制肿瘤生长41, 42。二甲双胍可调节肿瘤微环境中未转化细胞的表型和数量,如癌症相关成纤维细胞、内皮细胞及先天和适应性免疫细胞(包括肿瘤相关巨噬细胞和T淋巴细胞)43,增强免疫。通过改变肿瘤微环境中的细胞代谢,二甲双胍还进一步增强肿瘤细胞对化疗或免疫检查点抑制剂的敏感性44, 45

六、抗阿尔茨海默病及抗衰老的作用机制

炎症、内皮功能障碍及动脉硬化是导致阿尔茨海默病(Alzheimer′s disease,AD)及衰老发生的系统性因素。芬兰一项大规模巢式病例对照研究46报道,在长期或高剂量服用二甲双胍的糖尿病患者中,AD发病风险降低。AD患者表现出异常的胰岛素信号过度激活,长期高血糖还导致神经元线粒体功能障碍、AMPK抑制和脂质代谢失调47,其特征包括细胞外β-淀粉样蛋白(amyloid β-protein,Aβ)沉积和细胞内过度磷酸化的tau蛋白累积。二甲双胍可改善AD模型小鼠小胶质细胞自噬损伤,促进Aβ斑块周围不良神经突的吞噬作用48,减少大脑中Aβ的沉积;还能抑制tau在脑半球中传播及发展,通过减少tau在多个氨基酸位点的过度磷酸化,降低mTORC1蛋白水平,同时不影响tau激酶或PP2A蛋白水平49,改善记忆障碍。

一项在老年受试者中的RCT50显示,二甲双胍参与肌肉及脂肪组织中代谢功能和细胞周期相关基因的表达。对秀丽隐杆线虫的研究显示,二甲双胍与PEN2结合后,靶向激活溶酶体AMPK也是其抗衰老作用的重要通路4。二甲双胍还增强氧化应激调节因子叉头状转录因子O亚族3和过氧化物酶体增殖物激活受体γ辅激活因子1α的表达抵抗氧化应激,增加了衰老肠道中减低的AMPK和SIRT1(主要代谢调节因子)51,调节肠道菌群52,发挥抗衰老作用。

综上,二甲双胍在临床应用多年,目前对其多靶点治疗获益的机制研究仍在不断深入。通过增强线粒体稳态,减轻炎症反应,调节免疫、自噬和葡萄糖代谢,二甲双胍以AMPK依赖和不依赖的方式在包括糖尿病及其并发症、抗炎、抗衰老及抗肿瘤等治疗中发挥作用。

引用本文:

肖建中. 二甲双胍的作用机制新进展[J]. 中华糖尿病杂志, 2024, 16(7): 735-739. DOI: 10.3760/cma.j.cn115791-20240102-00003.

利益冲突
利益冲突

作者声明无利益冲突

参考文献
[1]
LiuJ, ZhangM, DengD, et al. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials[J]. Arch Pharm Res, 2023, 46(5):389-407. DOI: 10.1007/s12272-023-01445-2.
[2]
LaMoiaTE, ShulmanGI. Cellular and molecular mechanisms of metformin action[J]. Endocr Rev, 2021, 42(1):77-96. DOI: 10.1210/endrev/bnaa023.
[3]
AfinanisaQ, ChoMK, SeongHA. AMPK localization: a key to differential energy regulation[J]. Int J Mol Sci, 2021, 22(20):10921. DOI: 10.3390/ijms222010921.
[4]
MaT, TianX, ZhangB, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2[J]. Nature, 2022, 603(7899):159-165. DOI: 10.1038/s41586-022-04431-8.
[5]
ZhuH, JiaZ, LiYR, et al. Molecular mechanisms of action of metformin: latest advances and therapeutic implications[J]. Clin Exp Med, 2023, 23(7):2941-2951. DOI: 10.1007/s10238-023-01051-y.
[6]
LaMoiaTE, ButricoGM, KalpageHA, et al. Metformin, phenformin, and galegine inhibit complex Ⅳ activity and reduce glycerol-derived gluconeogenesis[J]. Proc Natl Acad Sci U S A, 2022, 119(10):e2122287119. DOI: 10.1073/pnas.2122287119.
[7]
Aguilar-RecarteD, BarrosoE, ZhangM, et al. A positive feedback loop between AMPK and GDF15 promotes metformin antidiabetic effects[J]. Pharmacol Res, 2023, 187:106578. DOI: 10.1016/j.phrs.2022.106578.
[8]
MoritaY, NogamiM, SakaguchiK, et al. Enhanced release of glucose into the intraluminal space of the intestine associated with metformin treatment as revealed by [(18)F]fluorodeoxyglucose PET-MRI[J]. Diabetes Care, 2020, 43(8):1796-1802. DOI: 10.2337/dc20-0093.、
[9]
LiY, LiuY, LiuS, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies[J]. Signal Transduct Target Ther, 2023, 8(1):152. DOI: 10.1038/s41392-023-01400-z.
[10]
HolmanRR, PaulSK, BethelMA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes[J]. N Engl J Med, 2008, 359(15):1577-1589. DOI: 10.1056/NEJMoa0806470.
[11]
44 years of UKPDS-does legacy effect still hold?[EB/OL].[2023-12-10]. https://gpvoice.com.au/index.php/2022/10/23/44-years-of-ukpds-does-legacy-effect-still-hold/.
[12]
LiuJ, LuJ, ZhangL, et al. The combination of exercise and metformin inhibits TGF-β1/Smad pathway to attenuate myocardial fibrosis in db/db mice by reducing NF-κB-mediated inflammatory response[J]. Biomed Pharmacother, 2023, 157:114080. DOI: 10.1016/j.biopha.2022.114080.
[13]
BuY, PengM, TangX, et al. Protective effects of metformin in various cardiovascular diseases: clinical evidence and AMPK-dependent mechanisms[J]. J Cell Mol Med, 2022, 26(19):4886-4903. DOI: 10.1111/jcmm.17519.
[14]
KarnewarS, NeeliPK, PanugantiD, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4Pt A):1115-1128. DOI: 10.1016/j.bbadis.2018.01.018.
[15]
RobichaudS, RasheedA, PietrangeloA, et al. Autophagy is differentially regulated in leukocyte and nonleukocyte foam cells during atherosclerosis[J]. Circ Res, 2022, 130(6):831-847. DOI: 10.1161/CIRCRESAHA.121.320047.
[16]
HeJ, LiN, FanY, et al. Metformin inhibits abdominal aortic aneurysm formation through the activation of the AMPK/mTOR signaling pathway[J]. J Vasc Res, 2021, 58(3):148-158. DOI: 10.1159/000513465.
[17]
SuM, SunL, LiW, et al. Metformin alleviates hyperuricaemia-induced serum FFA elevation and insulin resistance by inhibiting adipocyte hypertrophy and reversing suppressed white adipose tissue beiging[J]. Clin Sci (Lond), 2020, 134(12):1537-1553. DOI: 10.1042/CS20200580.
[18]
AminSV, KhannaS, ParvarSP, et al. Metformin and retinal diseases in preclinical and clinical studies: insights and review of literature[J]. Exp Biol Med (Maywood), 2022, 247(4):317-329. DOI: 10.1177/15353702211069986.
[19]
LiY, GappyS, LiuX, et al. Metformin suppresses pro-inflammatory cytokines in vitreous of diabetes patients and human retinal vascular endothelium[J]. PLoS One, 2022, 17(7):e0268451. DOI: 10.1371/journal.pone.0268451.
[20]
NaharN, MohamedS, MustaphaNM, et al. Metformin attenuated histopathological ocular deteriorations in a streptozotocin-induced hyperglycemic rat model[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(3):457-467. DOI: 10.1007/s00210-020-01989-w.
[21]
PetrazzuoloA, SabiuG, AssiE, et al. Broadening horizons in mechanisms, management, and treatment of diabetic kidney disease[J]. Pharmacol Res, 2023, 190:106710. DOI: 10.1016/j.phrs.2023.106710.
[22]
SongA, ZhangC, MengX. Mechanism and application of metformin in kidney diseases: an update[J]. Biomed Pharmacother, 2021, 138:111454. DOI: 10.1016/j.biopha.2021.111454.
[23]
ZhaoY, SunM. Metformin rescues Parkin protein expression and mitophagy in high glucose-challenged human renal epithelial cells by inhibiting NF-κB via PP2A activation[J]. Life Sci, 2020, 246:117382. DOI: 10.1016/j.lfs.2020.117382.
[24]
石琳, 肖建中. 糖尿病患者中二甲双胍与急性肾损伤风险的关系:系统评价和荟萃分析[D]. 北京: 清华大学, 2023.
[25]
XuC, WangF, SuC, et al. Restoration of aquaporin-4 polarization in the spinal glymphatic system by metformin in rats with painful diabetic neuropathy[J]. Neuroreport, 2023, 34(3):190-197. DOI: 10.1097/WNR.0000000000001880.
[26]
IsmailTR, YapCG, NaiduR, et al. Environmental enrichment and metformin improve metabolic functions, hippocampal neuron survival, and hippocampal-dependent memory in high-fat/high-sucrose diet-induced type 2 diabetic rats[J]. Biology (Basel), 2023, 12(3):480. DOI: 10.3390/biology12030480.
[27]
ZhangY, LiM, WangY, et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission[J]. Bioact Mater, 2023, 26:323-336. DOI: 10.1016/j.bioactmat.2023.01.020.
[28]
ChengX, LiuYM, LiH, et al. Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes[J]. Cell Metab, 2020, 32(4):537-547.e3. DOI: 10.1016/j.cmet.2020.08.013.
[29]
BlümelJE, ArteagaE, AedoS, et al. Metformin use is associated with a lower risk of osteoporosis in adult women independent of type 2 diabetes mellitus and obesity. REDLINC Ⅸ study[J]. Gynecol Endocrinol, 2020, 36(5):421-425. DOI: 10.1080/09513590.2020.1718092.
[30]
LuCH, ChungCH, KuoFC, et al. Metformin attenuates osteoporosis in diabetic patients with carcinoma in situ: a nationwide, retrospective, matched-cohort study in Taiwan[J]. J Clin Med, 2020, 9(9):2839. DOI: 10.3390/jcm9092839.
[31]
GuoX, LiangM. Metformin alleviates dexamethasone-induced apoptosis by regulating autophagy via AMPK/mTOR/p70S6K in osteoblasts[J]. Exp Cell Res, 2022, 415(1):113120. DOI: 10.1016/j.yexcr.2022.113120.
[32]
YangK, PeiL, ZhouS, et al. Metformin attenuates H(2)O(2)-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway[J]. Exp Ther Med, 2021, 22(5):1316. DOI: 10.3892/etm.2021.10751.
[33]
GuoH, DingD, WangL, et al. Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-κB/ERK signaling pathway[J]. PLoS One, 2021, 16(12):e0261127. DOI: 10.1371/journal.pone.0261127.
[34]
YeeD, IsaacsC, WolfDM, et al. Ganitumab and metformin plus standard neoadjuvant therapy in stage 2/3 breast cancer[J]. NPJ Breast Cancer, 2021, 7(1):131. DOI: 10.1038/s41523-021-00337-2.
[35]
AlghandourR, EbrahimMA, ElshalAM, et al. Repurposing metformin as anticancer drug: randomized controlled trial in advanced prostate cancer (MANSMED)[J]. Urol Oncol, 2021, 39(12):831.e1.e10. DOI: 10.1016/j.urolonc.2021.05.020.
[36]
ArrietaO, BarrónF, PadillaMS, et al. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial[J]. JAMA Oncol, 2019, 5(11):e192553. DOI: 10.1001/jamaoncol.2019.2553.
[37]
MarroneKA, ZhouX, FordePM, et al. A randomized phase Ⅱ study of metformin plus paclitaxel/carboplatin/bevacizumab in patients with chemotherapy-naïve advanced or metastatic nonsquamous non-small cell lung cancer[J]. Oncologist, 2018, 23(7):859-865. DOI: 10.1634/theoncologist.2017-0465.
[38]
Fatehi HassanabadA, MacQueenKT. Molecular mechanisms underlining the role of metformin as a therapeutic agent in lung cancer[J]. Cell Oncol (Dordr), 2021, 44(1):1-18. DOI: 10.1007/s13402-020-00570-0.
[39]
CairnsJ, LyRC, NiuN, et al. CDC25B partners with PP2A to induce AMPK activation and tumor suppression in triple negative breast cancer[J]. NAR Cancer, 2020, 2(4):zcaa039. DOI: 10.1093/narcan/zcaa039.
[40]
ElgendyM, CiròM, HosseiniA, et al. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis[J]. Cancer Cell, 2019, 35(5):798-815.e5. DOI: 10.1016/j.ccell.2019.03.007.
[41]
BirznieceV, LamT, McLeanM, et al. Insulin-like growth factor role in determining the anti-cancer effect of metformin: RCT in prostate cancer patients[J]. Endocr Connect, 2022, 11(4):e210375. DOI: 10.1530/EC-21-0375.
[42]
Nwabo KamdjeAH, Seke EtetPF, KipanyulaMJ, et al. Insulin-like growth factor-1 signaling in the tumor microenvironment: carcinogenesis, cancer drug resistance, and therapeutic potential[J]. Front Endocrinol (Lausanne), 2022, 13:927390. DOI: 10.3389/fendo.2022.927390.
[43]
KurelacI, Umesh GaneshN, IorioM, et al. The multifaceted effects of metformin on tumor microenvironment[J]. Semin Cell Dev Biol, 2020, 98:90-97. DOI: 10.1016/j.semcdb.2019.05.010.
[44]
DongS, XiaoY, ZhuZ, et al. Metformin sensitises osteosarcoma to chemotherapy<em>via</em>the IGF-1R/miR-610/FEN1 pathway[J]. Eur J Histochem, 2023, 67(2):3612. DOI: 10.4081/ejh.2023.3612.
[45]
WangY, HuJ, SunY, et al. Metformin synergizes with PD-L1 monoclonal antibody enhancing tumor immune response in treating non-small cell lung cancer and its molecular mechanism investigation[J]. Evid Based Complement Alternat Med, 2022:5983959. DOI: 10.1155/2022/5983959.
[46]
SluggettJK, KoponenM, BellJS, et al. Metformin and risk of Alzheimer′s disease among community-dwelling people with diabetes: a national case-control study[J]. J Clin Endocrinol Metab, 105(4):dgz234. DOI: 10.1210/clinem/dgz234.
[47]
RojasM, Chávez-CastilloM, BautistaJ, et al. Alzheimer′s disease and type 2 diabetes mellitus: pathophysiologic and pharmacotherapeutics links[J]. World J Diabetes, 2021, 12(6):745-766. DOI: 10.4239/wjd.v12.i6.745.
[48]
ChenY, ZhaoS, FanZ, et al. Metformin attenuates plaque-associated tau pathology and reduces amyloid-β burden in APP/PS1 mice[J]. Alzheimers Res Ther, 2021, 13(1):40. DOI: 10.1186/s13195-020-00761-9.
[49]
ZhaoS, FanZ, ZhangX, et al. Metformin attenuates tau pathology in tau-seeded PS19 mice[J]. Neurotherapeutics, 2023, 20(2):452-463. DOI: 10.1007/s13311-022-01316-6.
[50]
KulkarniAS, BrutsaertEF, AnghelV, et al. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults[J]. Aging Cell, 2018, 17(2):e12723. DOI: 10.1111/acel.12723.
[51]
LiS, HouY, LiuK, et al. Metformin protects against inflammation, oxidative stress to delay poly I:C-induced aging-like phenomena in the gut of an annual fish[J]. J Gerontol A Biol Sci Med Sci, 2022, 77(2):276-282. DOI: 10.1093/gerona/glab298.
[52]
InduriS, KansaraP, ThomasSC, et al. The gut microbiome, metformin, and aging[J]. Annu Rev Pharmacol Toxicol, 2022, 62:85-108. DOI: 10.1146/annurev-pharmtox-051920-093829.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词