参考文献[1]
ShahA, AnderssonTM, RachetB, et al. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study[J]. Br J Haematol, 2013,162(4):509-516. .
[2]
DombretH, GardinC. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016,127(1):53-61. .
[3]
DöhnerH, EsteyEH, AmadoriS, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet[J]. Blood, 2010,115(3):453-474. .
[4]
KantarjianH, O'brienS, CortesJ, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome[J]. Cancer, 2006,106(5):1090-1098. .
[5]
DöhnerH, EsteyE, GrimwadeD, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017,129(4):424-447. .
[6]
KonoplevaM, PollyeaDA, PotluriJ, et al. Efficacy and biological correlates of response in a phase Ⅱ study of venetoclax monotherapy in patients with acute myelogenous leukemia[J]. Cancer Discov, 2016,6(10):1106-1117. .
[7]
WeiAH, StricklandSA, HouJZ, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ⅰb/Ⅱ study[J]. J Clin Oncol, 2019,37(15):1277-1284. .
[8]
DiNardoCD, PratzK, PullarkatV, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia[J]. Blood, 2019,133(1): 7-17. .
[9]
SouersAJ, LeversonJD, BoghaertER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets[J]. Nat Med, 2013,19(2):202-208. .
[10]
KaleJ, OsterlundEJ, AndrewsDW. BCL-2 family proteins: changing partners in the dance towards death[J]. Cell Death Differ, 2018,25(1):65-80. .
[11]
RobertsAW. Therapeutic development and current uses of BCL-2 inhibition[J]. Hematology Am Soc Hematol Educ Program, 2020, 2020(1): 1-9. .
[12]
KaufmannSH, KarpJE, SvingenPA, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse[J]. Blood, 1998, 91(3): 991-1000.
[13]
CarterBZ, MakPY, TaoW, et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition[J]. Haematologica, 2022,107(1):58-76. .
[14]
KotschyA, SzlavikZ, MurrayJ, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models[J]. Nature, 2016, 538(7626): 477-482. .
[15]
RamseyHE, FischerMA, LeeT, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia[J]. Cancer Discov, 2018, 8(12): 1566-1581. .
[16]
Correction: AMG 176, a Selective MCL1 Inhibitor, Is Effective in hematologic cancer models alone and in combination with established therapies[J]. Cancer Discov, 2019,9(7): 980. .
[17]
TronAE, BelmonteMA, AdamA, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia[J]. Nat Commun, 2018, 9(1): 5341. .
[18]
WhiteBS, KhanSA, MasonMJ, et al. Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia[J]. NPJ Precis Oncol, 2021, 5(1): 71. .
[19]
HoTC, LaMereM, StevensBM, et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression[J]. Blood, 2016,128(13): 1671-1678. .
[20]
PeiS, PollyeaDA, GustafsonA, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia[J]. Cancer Discov, 2020, 10(4): 536-551. .
[21]
LevisM, SmallD. FLT3: ITDoes matter in leukemia[J]. Leukemia, 2003, 17(9): 1738-1752. .
[22]
YamamotoY, KiyoiH, NakanoY, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies[J]. Blood, 2001,97(8): 2434-2439. .
[23]
ChoudharyC, Müller-TidowC, BerdelWE, et al. Signal transduction of oncogenic Flt3[J]. Int J Hematol, 2005, 82(2): 93-99. .
[24]
WeiAH, MontesinosP, IvanovV, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial[J]. Blood, 2020, 135(24): 2137-2145. .
[25]
DiNardoCD, TiongIS, QuaglieriA, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML[J]. Blood, 2020, 135(11): 791-803. .
[26]
MaJ, ZhaoS, QiaoX, et al. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia[J]. Clin Cancer Res, 2019, 25(22): 6815-6826. .
[27]
ZhuR, LiL, NguyenB, et al. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation[J]. Signal Transduct Target Ther, 2021, 6(1): 186. .
[28]
DumonS, SantosSC, Debierre-GrockiegoF, et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line[J]. Oncogene, 1999, 18(29): 4191-4199. .
[29]
WatanabeD, NogamiA, OkadaK, et al. FLT3-ITD activates RSK1 to enhance proliferation and survival of AML cells by activating mTORC1 and eIF4B cooperatively with PIM or PI3K and by inhibiting bad and BIM[J]. Cancers (Basel), 2019,11(12):1827. .
[30]
PanJ, Quintás-CardamaA, ManshouriT, et al. The novel tyrosine kinase inhibitor EXEL-0862 induces apoptosis in human FIP1L1-PDGFR-alpha-expressing cells through caspase-3-mediated cleavage of Mcl-1[J]. Leukemia, 2007,21(7):1395-1404. .
[31]
KapoorS, NatarajanK, BaldwinPR, et al. Concurrent inhibition of pim and FLT3 kinases enhances apoptosis of FLT3-ITD acute myeloid leukemia cells through increased Mcl-1 proteasomal degradation[J]. Clin Cancer Res, 2018,24(1): 234-247. .
[32]
MorabitoF, GentileM, MontiP, et al. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors[J]. Expert Opin Investig Drugs, 2020, 29(8):869-880. .
[33]
LeyTJ, MillerC, DingL, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. N Engl J Med, 2013, 368(22): 2059-2074. .
[34]
BarbosaK, LiS, AdamsPD, et al. The role of TP53 in acute myeloid leukemia: challenges and opportunities[J]. Genes Chromosomes Cancer, 2019,58(12):875-888. .
[35]
HunterAM, SallmanDA. Current status and new treatment approaches in TP53 mutated AML[J]. Best Pract Res Clin Haematol, 2019, 32(2): 134-144. .
[36]
KimK, MaitiA, LoghaviS, et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax[J]. Cancer, 2021, 127(20): 3772-3781. .
[37]
NechiporukT, KurtzSE, NikolovaO, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells[J]. Cancer Discov, 2019, 9(7): 910-925. .
[38]
ZhangQ, Riley-GillisB, HanL, et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2022, 7(1): 51. .
[39]
ChoiJH, BogenbergerJM, TibesR. Targeting apoptosis in acute myeloid leukemia: current status and future directions of BCL-2 inhibition with venetoclax and beyond[J]. Target Oncol, 2020, 15(2): 147-162. .
[40]
KonoplevaM, MilellaM, RuvoloP, et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex[J]. Leukemia, 2012,26(4):778-787. .
[41]
DiNardoCD, JonasBA, PullarkatV, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia[J]. N Engl J Med, 2020,383(7):617-629. .
[42]
WangYW, TsaiCH, LinCC, et al. Cytogenetics and mutations could predict outcome in relapsed and refractory acute myeloid leukemia patients receiving BCL-2 inhibitor venetoclax[J]. Ann Hematol, 2020, 99(3): 501-511. .
[43]
PollyeaDA, PratzK, LetaiA, et al. Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: long term follow-up from a phase 1b study[J]. Am J Hematol, 2021, 96(2): 208-217. .
[44]
ThijssenR, DiepstratenST, MoujalledD, et al. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias[J]. Blood, 2021,137(20): 2721-2735. .
[45]
BallBJ, HsuM, DevlinSM, et al. The prognosis and durable clearance of RAS mutations in patients with acute myeloid leukemia receiving induction chemotherapy[J]. Am J Hematol, 2021, 96(5): E171-E175. .
[46]
StasikS, EckardtJN, KramerM, et al. Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia[J]. Blood Adv, 2021, 5(17): 3279-3289. .
[47]
AldossI, YangD, PillaiR, et al. Association of leukemia genetics with response to venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia[J]. Am J Hematol, 2019, 94(10): E253-E255. .
[48]
MaitiA, RauschCR, CortesJE, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens[J]. Haematologica, 2021,106(3):894-898. .
[49]
ChylaB, DaverN, DoyleK, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia[J]. Am J Hematol, 2018, 93(8): E202-205. .
[50]
GoemansBF, ZwaanCM, MartinelliS, et al. Differences in the prevalence of PTPN11 mutations in FAB M5 paediatric acute myeloid leukaemia[J]. Br J Haematol, 2005, 130(5): 801-803. .