综述
维奈克拉治疗急性髓系白血病耐药机制的研究进展
白血病·淋巴瘤, 2024,33(8) : 497-501. DOI: 10.3760/cma.j.cn115356-20230607-00131
摘要

维奈克拉是一种选择性的bcl-2抑制剂,与去甲基化药物或低剂量阿糖胞苷联合用于急性髓系白血病(AML)具有良好的疗效,然而耐药性是主要问题。文章对已知的维奈克拉耐药机制进行总结,从而为更好地设计合理的联合用药方案提供参考。

引用本文: 宗李红, 仇惠英. 维奈克拉治疗急性髓系白血病耐药机制的研究进展 [J] . 白血病·淋巴瘤, 2024, 33(8) : 497-501. DOI: 10.3760/cma.j.cn115356-20230607-00131.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

急性髓系白血病(AML)是造血组织的恶性克隆性疾病,其主要特征为骨髓和外周血中原始和幼稚细胞异常增生,同时伴有贫血和血小板减少。AML患者标准治疗方案为阿糖胞苷联合蒽环类药物,通常称为"7+3"方案,继而行巩固化疗或桥接造血干细胞移植(HSCT),60%~80%的年轻患者可以实现完全缓解(CR),中位总生存(OS)时间为16~24个月[1,2,3,4,5]。然而,老年AML患者及合并多种疾病的AML患者对强化化疗的耐受性较差,通常只能接受支持性治疗或姑息治疗。

维奈克拉是一种口服的bcl-2抑制剂,对多种血液恶性肿瘤具有活性。Konopleva等[6]首次评估了维奈克拉单药治疗AML的疗效,CR及伴血液学不完全恢复的完全缓解(CRi)率仅为19%。单药治疗AML的临床疗效不佳,但其与去甲基化药物(HMA)或低剂量阿糖胞苷(LDAC)联合应用时,能够显著提高患者缓解率及改善OS[7,8]。尽管联合治疗取得了成功,但该方案不能达到疾病治愈。此外,大多数患者无法接受HSCT,最终出现耐药。因此,了解维奈克拉的耐药机制至关重要。

1 维奈克拉的治疗机制

维奈克拉是选择性小分子bcl-2抑制剂。bcl-2是调节内源性(线粒体)凋亡的关键蛋白[9],bcl-2蛋白家族是细胞凋亡的关键调节因子,细胞凋亡是由只含BH3结构域蛋白(BH3-only)、抗凋亡蛋白和效应蛋白3个亚群之间的蛋白质-蛋白质相互作用驱动的。在线粒体外膜,效应蛋白bak/bax的同源二聚体增加线粒体外膜透化(MOMP)、促进细胞色素c释放和胱天蛋白酶激活,导致细胞凋亡。抗凋亡蛋白,包括MCL-1、bcl-2和bcl-xL,可以通过其BH3结构域螯合bak和bax,有效地阻断上述凋亡过程[10,11]

2 维奈克拉耐药机制
2.1 抗凋亡依赖改变

MCL-1是维奈克拉耐药的关键因素。MCL-1对血液系统恶性肿瘤持续增长有重要作用,并且与AML患者预后不良相关[12]。除了抗凋亡作用外,MCL-1还能与肿瘤细胞代谢产物结合从而促进细胞存活。其不仅能够调节白血病细胞生物能量和碳水化合物代谢,包括三羧酸循环、糖酵解和磷酸戊糖途径,而且还能调节细胞黏附蛋白和白血病-基质相互作用,通过抑制MCL-1可以增加髓系细胞系对bcl-2抑制剂的敏感性[13]。MCL-1的过表达与耐药和预后不良相关,MCL-1抑制剂显示出治疗血液系统恶性肿瘤的潜力。研究发现MCL-1抑制剂通过激活bax/bak依赖性线粒体凋亡途径,有效杀死依赖MCL-1的白血病细胞[14]。对于长期暴露于维奈克拉的AML细胞系,MCL-1和bcl-xL的上调驱动了获得性耐药的出现。MCL-1抑制剂与维奈克拉联合应用具有强大的抗肿瘤活性,增加了维奈克拉的疗效[15,16,17]

2.2 单核细胞白血病维奈克拉耐药

不同分化阶段的AML细胞对维奈克拉的敏感性不同,体外药物敏感试验显示白血病法、美、英协作组(FAB)分型M0、M1型对维奈克拉高度敏感,而M4、M5型中大量存在的单核细胞对bcl-2抑制剂耐药[18,19]。在单核细胞白血病中,bcl-2的表达显著降低或缺失,而bcl-2的缺失可能导致耐药性的出现。此外,单核细胞白血病在能量代谢和存活方面依赖MCL-1,其MCL-1表达明显高于原始表型[20]。MCL-1抑制剂单药或联合阿扎胞苷能够诱导单核细胞快速死亡,这种效果明显大于维奈克拉单药或维奈克拉联合阿扎胞苷,提示MCL-1是单核白血病细胞存活的关键蛋白。综上所述,单核细胞白血病可能对维奈克拉易产生耐药。

3 遗传特征与维奈克拉耐药性
3.1 FLT3突变

FLT3突变是AML中最常见的突变基因之一,约25%的病例有FLT3内部串联重复(ITD)[21],约7%的病例存在激活性FLT3酪氨酸激酶域(TKD)[22]。FLT3-ITD和FLT3-TKD都是连接蛋白依赖的组成性激活激酶,通过典型的下游途径PI3K和RAS-MAPK发出信号,并广泛影响细胞增殖、分化和存活[23]。相关研究显示,存在FLT3突变的AML患者对基于维奈克拉的治疗反应不佳并且缓解时间较短[7,24]。DiNardo等[25]对81例接受基于维奈克拉治疗的AML患者进行了研究,追踪了相应的动态分子变化。他们比较了诊断时、缓解期间和复发时个体突变的等位基因频率,以确定复发时扩增的克隆。结果显示,FLT3-ITD进行性克隆扩增与疾病复发有关。FLT3-ITD通过激活PI3K-Akt、RAS-MAPK和STAT5途径促进肿瘤细胞存活[26,27]。FLT3-ITD可诱导bcl-xL和MCL-1的高表达,这可能是耐药因素之一。研究表明FLT3下游的分子通路参与调节bcl-xL和MCL-1的表达,FLT3-ITD能够激活STAT5,从而调节BCL-xL基因转录[28]。Akt是PI3K途径的下游因子,通过糖原合成酶激酶3(GSK3)的失活,导致MCL-1蛋白水平增加,从而抑制细胞凋亡[25,29]

FLT3抑制剂与维奈克拉具有协同抗肿瘤效应。Ma等[26]和Zhu等[27]研究证明,单独使用FLT3抑制剂(米哚妥林或吉列替尼)或与维奈克拉联合可降低MCL-1的表达。FLT3抑制剂还可以逆转FLT3突变细胞对维奈克拉的耐药性,从而增加AML细胞对维奈克拉的敏感性[30,31]。尽管三药联合应用疗效显著,但也存在相关问题,例如长期骨髓抑制的发生率较高,感染和出血风险增加。

3.2 TP53突变

TP53基因是一个高度保守的肿瘤抑制基因,位于第17号染色体短臂的端粒区域。编码的蛋白质在调节细胞凋亡、衰老、DNA修复和代谢中发挥重要作用[32]。5%~10%的初诊AML患者存在TP53异常[33],在老年患者或与治疗相关的髓系恶性肿瘤患者中TP53突变率高达20%~40%[34]。而在具有复杂核型和染色体17/17p、5/5q或7/7q缺失的患者中,TP53异常的频率进一步增加至70%~80%[35]。相关研究显示维奈克拉获得性耐药与TP53突变有关[36,37]。TP53是一种调控促凋亡蛋白表达的基因,其失活或突变会降低AML细胞系中bcl-2的表达。TP53的表达越低,bcl-2的表达就越低[37]。由于维奈克拉与bcl-2结合发挥促凋亡作用,当bcl-2表达水平降低时,细胞对维奈克拉的敏感性降低。TP53不仅能够促进bcl-2蛋白的表达,还可调控MCL-1的水平。研究表明,TP53突变细胞中MAPK的总水平增加。MAPK信号通路能够调控细胞增殖和凋亡,上调MCL-1蛋白的表达,增加MCL-1和bcl-2与维奈克拉的竞争性结合,从而影响维奈克拉介导的细胞凋亡[38,39,40]

TP53突变患者的CR/CRi率及OS与接受基于维奈克拉治疗的整体队列相比均有所降低,TP53突变组CR/CRi率为0~55%,TP53野生型患者为23%~71%[41,42,43],两组的中位OS时间分别为1.9、7.4个月[42]。此外,32%的复发AML患者在维奈克拉治疗后出现TP53突变克隆扩增,这表明TP53突变的存在降低了患者对药物的敏感性并且增加了复发风险[25]。TP53突变在AML治疗中是一个巨大的挑战,研究表明同时抑制bcl-2和MCL-1能够增加TP53突变白血病细胞的凋亡[44],因此,维奈克拉与MCL-1抑制剂的组合可能是解决TP53突变相关耐药的一种选择。

3.3 其他相关基因的改变

RAS或PTPN11突变的AML患者对维奈克拉治疗反应不佳。RAS突变AML患者中位OS时间为12个月,而其他患者为30.1个月[45],PTPN11突变及野生型的AML患者中位OS时间分别为13.4、19.2个月[46]。此外,存在RAS突变患者的CR/CRi率仅为0~36%,而总体患者队列的CR/CRi率为23%~64%,NRAS突变与野生型AML患者的中位OS时间分别为3.8、7.4个月[25,42,47]。在维奈克拉和阿扎胞苷联合治疗后出现疾病进展或复发的AML患者中,27%的患者有NRAS和(或)KRAS突变,22%的患者有PTPN11突变[48,49]。RAS、PTPN11突变可能通过激活RAS/MAPK信号通路从而导致耐药性的出现[38]。此外,具有PTPN11突变的AML患者大多数为单核细胞亚型[50],这也是耐药因素之一。

4 总结

维奈克拉耐药机制涉及多种表观遗传学、转录和代谢过程。目前耐药机制包括bcl-2家族其他抗凋亡蛋白(如MCL-1、bcl-xL)的上调、单核细胞白血病、p53失活(包括TP53突变)和活化激酶(如FLT3、RAS)突变。抗凋亡蛋白和促凋亡蛋白之间相互作用影响细胞的存活,而抗凋亡蛋白的上调是维奈克拉耐药的关键因素。MCL-1抑制剂、BCL-xL抑制剂和维奈克拉的组合是新的治疗选择,且HSCT可能是解决维奈克拉耐药的最佳手段。在达到疾病缓解状态后,应该考虑其他策略来防止获得性耐药,例如早期使用HSCT和维持化疗。一旦患者达到CR,应考虑早期行HSCT。如果无法桥接HSCT,应行巩固化疗,以延缓耐药性的出现。

尽管我们对维奈克拉耐药机制的了解有所增加,但对于耐药的患者尚无标准化治疗方案,可以考虑靶向药物的联合应用。基于维奈克拉的联合疗法能够延缓或阻止维奈克拉耐药性的出现,但联合用药过程中仍有一些问题,如联合方案的疗效和反应持续时间、药物联合的毒性及不良反应等,未来需要设计更合理的治疗策略来解决这些问题,最大程度提高联合用药的疗效。

引用本文:

宗李红,仇惠英.维奈克拉治疗急性髓系白血病耐药机制的研究进展[J].白血病·淋巴瘤,2024,33(8):497-501. DOI:10.3760/cma.j.cn115356-20230607-00131.

利益冲突
利益冲突

所有作者声明无利益冲突

参考文献
[1]
ShahA, AnderssonTM, RachetB, et al. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study[J]. Br J Haematol, 2013,162(4):509-516. DOI: 10.1111/bjh.12425.
[2]
DombretH, GardinC. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016,127(1):53-61. DOI: 10.1182/blood-2015-08-604520.
[3]
DöhnerH, EsteyEH, AmadoriS, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet[J]. Blood, 2010,115(3):453-474. DOI: 10.1182/blood-2009-07-235358.
[4]
KantarjianH, O'brienS, CortesJ, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome[J]. Cancer, 2006,106(5):1090-1098. DOI: 10.1002/cncr.21723.
[5]
DöhnerH, EsteyE, GrimwadeD, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017,129(4):424-447. DOI: 10.1182/blood-2016-08-733196.
[6]
KonoplevaM, PollyeaDA, PotluriJ, et al. Efficacy and biological correlates of response in a phase Ⅱ study of venetoclax monotherapy in patients with acute myelogenous leukemia[J]. Cancer Discov, 2016,6(10):1106-1117. DOI: 10.1158/2159-8290.CD-16-0313.
[7]
WeiAH, StricklandSA, HouJZ, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ⅰb/Ⅱ study[J]. J Clin Oncol, 2019,37(15):1277-1284. DOI: 10.1200/JCO.18.01600.
[8]
DiNardoCD, PratzK, PullarkatV, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia[J]. Blood, 2019,133(1): 7-17. DOI: 10.1182/blood-2018-08-868752.
[9]
SouersAJ, LeversonJD, BoghaertER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets[J]. Nat Med, 2013,19(2):202-208. DOI: 10.1038/nm.3048.
[10]
KaleJ, OsterlundEJ, AndrewsDW. BCL-2 family proteins: changing partners in the dance towards death[J]. Cell Death Differ, 2018,25(1):65-80. DOI: 10.1038/cdd.2017.186.
[11]
RobertsAW. Therapeutic development and current uses of BCL-2 inhibition[J]. Hematology Am Soc Hematol Educ Program, 2020, 2020(1): 1-9. DOI: 10.1182/hematology.2020000154.
[12]
KaufmannSH, KarpJE, SvingenPA, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse[J]. Blood, 1998, 91(3): 991-1000.
[13]
CarterBZ, MakPY, TaoW, et al. Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition[J]. Haematologica, 2022,107(1):58-76. DOI: 10.3324/haematol.2020.260331.
[14]
KotschyA, SzlavikZ, MurrayJ, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models[J]. Nature, 2016, 538(7626): 477-482. DOI: 10.1038/nature19830.
[15]
RamseyHE, FischerMA, LeeT, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia[J]. Cancer Discov, 2018, 8(12): 1566-1581. DOI: 10.1158/2159-8290.CD-18-0140.
[16]
Correction: AMG 176, a Selective MCL1 Inhibitor, Is Effective in hematologic cancer models alone and in combination with established therapies[J]. Cancer Discov, 2019,9(7): 980. DOI: 10.1158/2159-8290.CD-19-0577.
[17]
TronAE, BelmonteMA, AdamA, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia[J]. Nat Commun, 2018, 9(1): 5341. DOI: 10.1038/s41467-018-07551-w.
[18]
WhiteBS, KhanSA, MasonMJ, et al. Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia[J]. NPJ Precis Oncol, 2021, 5(1): 71. DOI: 10.1038/s41698-021-00209-9.
[19]
HoTC, LaMereM, StevensBM, et al. Evolution of acute myelogenous leukemia stem cell properties after treatment and progression[J]. Blood, 2016,128(13): 1671-1678. DOI: 10.1182/blood-2016-02-695312.
[20]
PeiS, PollyeaDA, GustafsonA, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia[J]. Cancer Discov, 2020, 10(4): 536-551. DOI: 10.1158/2159-8290.CD-19-0710.
[21]
LevisM, SmallD. FLT3: ITDoes matter in leukemia[J]. Leukemia, 2003, 17(9): 1738-1752. DOI: 10.1038/sj.leu.2403099.
[22]
YamamotoY, KiyoiH, NakanoY, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies[J]. Blood, 2001,97(8): 2434-2439. DOI: 10.1182/blood.v97.8.2434.
[23]
ChoudharyC, Müller-TidowC, BerdelWE, et al. Signal transduction of oncogenic Flt3[J]. Int J Hematol, 2005, 82(2): 93-99. DOI: 10.1532/IJH97.05090.
[24]
WeiAH, MontesinosP, IvanovV, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial[J]. Blood, 2020, 135(24): 2137-2145. DOI: 10.1182/blood.2020004856.
[25]
DiNardoCD, TiongIS, QuaglieriA, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML[J]. Blood, 2020, 135(11): 791-803. DOI: 10.1182/blood.2019003988.
[26]
MaJ, ZhaoS, QiaoX, et al. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia[J]. Clin Cancer Res, 2019, 25(22): 6815-6826. DOI: 10.1158/1078-0432.CCR-19-0832.
[27]
ZhuR, LiL, NguyenB, et al. FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation[J]. Signal Transduct Target Ther, 2021, 6(1): 186. DOI: 10.1038/s41392-021-00578-4.
[28]
DumonS, SantosSC, Debierre-GrockiegoF, et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line[J]. Oncogene, 1999, 18(29): 4191-4199. DOI: 10.1038/sj.onc.1202796.
[29]
WatanabeD, NogamiA, OkadaK, et al. FLT3-ITD activates RSK1 to enhance proliferation and survival of AML cells by activating mTORC1 and eIF4B cooperatively with PIM or PI3K and by inhibiting bad and BIM[J]. Cancers (Basel), 2019,11(12):1827. DOI: 10.3390/cancers11121827.
[30]
PanJ, Quintás-CardamaA, ManshouriT, et al. The novel tyrosine kinase inhibitor EXEL-0862 induces apoptosis in human FIP1L1-PDGFR-alpha-expressing cells through caspase-3-mediated cleavage of Mcl-1[J]. Leukemia, 2007,21(7):1395-1404. DOI: 10.1038/sj.leu.2404714.
[31]
KapoorS, NatarajanK, BaldwinPR, et al. Concurrent inhibition of pim and FLT3 kinases enhances apoptosis of FLT3-ITD acute myeloid leukemia cells through increased Mcl-1 proteasomal degradation[J]. Clin Cancer Res, 2018,24(1): 234-247. DOI: 10.1158/1078-0432.CCR-17-1629.
[32]
MorabitoF, GentileM, MontiP, et al. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors[J]. Expert Opin Investig Drugs, 2020, 29(8):869-880. DOI: 10.1080/13543784.2020.1783239.
[33]
LeyTJ, MillerC, DingL, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. N Engl J Med, 2013, 368(22): 2059-2074. DOI: 10.1056/NEJMoa1301689.
[34]
BarbosaK, LiS, AdamsPD, et al. The role of TP53 in acute myeloid leukemia: challenges and opportunities[J]. Genes Chromosomes Cancer, 2019,58(12):875-888. DOI: 10.1002/gcc.22796.
[35]
HunterAM, SallmanDA. Current status and new treatment approaches in TP53 mutated AML[J]. Best Pract Res Clin Haematol, 2019, 32(2): 134-144. DOI: 10.1016/j.beha.2019.05.004.
[36]
KimK, MaitiA, LoghaviS, et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax[J]. Cancer, 2021, 127(20): 3772-3781. DOI: 10.1002/cncr.33689.
[37]
NechiporukT, KurtzSE, NikolovaO, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells[J]. Cancer Discov, 2019, 9(7): 910-925. DOI: 10.1158/2159-8290.CD-19-0125.
[38]
ZhangQ, Riley-GillisB, HanL, et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia[J]. Signal Transduct Target Ther, 2022, 7(1): 51. DOI: 10.1038/s41392-021-00870-3.
[39]
ChoiJH, BogenbergerJM, TibesR. Targeting apoptosis in acute myeloid leukemia: current status and future directions of BCL-2 inhibition with venetoclax and beyond[J]. Target Oncol, 2020, 15(2): 147-162. DOI: 10.1007/s11523-020-00711-3.
[40]
KonoplevaM, MilellaM, RuvoloP, et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex[J]. Leukemia, 2012,26(4):778-787. DOI: 10.1038/leu.2011.287.
[41]
DiNardoCD, JonasBA, PullarkatV, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia[J]. N Engl J Med, 2020,383(7):617-629. DOI: 10.1056/NEJMoa2012971.
[42]
WangYW, TsaiCH, LinCC, et al. Cytogenetics and mutations could predict outcome in relapsed and refractory acute myeloid leukemia patients receiving BCL-2 inhibitor venetoclax[J]. Ann Hematol, 2020, 99(3): 501-511. DOI: 10.1007/s00277-020-03911-z.
[43]
PollyeaDA, PratzK, LetaiA, et al. Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: long term follow-up from a phase 1b study[J]. Am J Hematol, 2021, 96(2): 208-217. DOI: 10.1002/ajh.26039.
[44]
ThijssenR, DiepstratenST, MoujalledD, et al. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias[J]. Blood, 2021,137(20): 2721-2735. DOI: 10.1182/blood.2020010167.
[45]
BallBJ, HsuM, DevlinSM, et al. The prognosis and durable clearance of RAS mutations in patients with acute myeloid leukemia receiving induction chemotherapy[J]. Am J Hematol, 2021, 96(5): E171-E175. DOI: 10.1002/ajh.26146.
[46]
StasikS, EckardtJN, KramerM, et al. Impact of PTPN11 mutations on clinical outcome analyzed in 1529 patients with acute myeloid leukemia[J]. Blood Adv, 2021, 5(17): 3279-3289. DOI: 10.1182/bloodadvances.2021004631.
[47]
AldossI, YangD, PillaiR, et al. Association of leukemia genetics with response to venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia[J]. Am J Hematol, 2019, 94(10): E253-E255. DOI: 10.1002/ajh.25567.
[48]
MaitiA, RauschCR, CortesJE, et al. Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens[J]. Haematologica, 2021,106(3):894-898. DOI: 10.3324/haematol.2020.252569.
[49]
ChylaB, DaverN, DoyleK, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia[J]. Am J Hematol, 2018, 93(8): E202-205. DOI: 10.1002/ajh.25146.
[50]
GoemansBF, ZwaanCM, MartinelliS, et al. Differences in the prevalence of PTPN11 mutations in FAB M5 paediatric acute myeloid leukaemia[J]. Br J Haematol, 2005, 130(5): 801-803. DOI: 10.1111/j.1365-2141.2005.05685.x.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词