综述
血液系统疾病患者抗真菌预防后突破性侵袭性真菌病的诊断与治疗研究进展
中华医学杂志, 2024,104(37) : 3543-3548. DOI: 10.3760/cma.j.cn112137-20240409-00829
摘要

血液恶性肿瘤、造血干细胞移植、实体器官移植等高危患者常接受抗真菌药物预防,但仍有部分患者发生侵袭性真菌病(IFD),称为突破性IFD(bIFD)。bIFD的临床诊断和治疗较为困难,显著增加患者死亡风险。本文对bIFD的概念、流行病学特点、危险因素、诊断及治疗策略进行综述,以期为临床诊治提供参考。

引用本文: 朱丹苹, 孙于谦. 血液系统疾病患者抗真菌预防后突破性侵袭性真菌病的诊断与治疗研究进展 [J] . 中华医学杂志, 2024, 104(37) : 3543-3548. DOI: 10.3760/cma.j.cn112137-20240409-00829.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

侵袭性真菌病(IFD)好发于血液恶性肿瘤、造血干细胞移植(HSCT)等患者1。抗真菌药物的预防性使用可显著降低IFD的发生率及死亡率,但仍有1%~40%的患者在预防后发生IFD,即突破性IFD(bIFD)2, 3, 4, 5。bIFD显著延长了患者住院时间、入住重症监护病房(ICU)时间,增加患者死亡风险6, 7, 8,同时也增加了患者及其家庭的经济负担。临床中,受预防用药的影响,bIFD的诊断较为困难;此外,bIFD的治疗启动时机、治疗策略及药物选择目前尚无统一标准。基于上述现状,本文对bIFD的定义、流行病学特征、诊断及治疗进行了综述,以期为临床管理提供参考。

一、bIFD的概述

2019年意大利急性髓系白血病化疗患者接受抗霉菌活性唑类药物预防后bIFD的定义与管理专家共识认为,bIFD是启动抗真菌预防7 d后至抗真菌预防结束后7 d内所有确诊、临床诊断和拟诊的IFD9。2019年欧洲真菌研究组教育和研究共同体(MSG-ERC)及欧洲医学真菌学联盟(ECMM)制订的bIFD定义标准共识:发生于抗真菌药物预防性暴露期间的任何IFD均被称为bIFD10。临床研究中,合适的抗真菌药物预防至少7 d后至停药14 d内,发生的确诊、临床诊断及拟诊IFD也考虑为bIFD2, 3, 411, 12, 13。尽管目前bIFD的定义尚未统一,但了解其流行病学特征及相关危险因素将有助于临床的早期识别与精准管理。

1. bIFD的流行病学现状:接受抗真菌预防的高危患者bIFD发病率为1%~42%;曲霉、念珠菌、毛霉是常见病原真菌,分别约占检出菌株的14%~80%、11%~50%和4%~50%5, 6, 714, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35

临床中,不同抗真菌药物预防后bIFD的发生率及感染菌种存在一定差异(表1)。氟康唑、伊曲康唑、棘白菌素类药物预防后bIFD发生率相对较高,约2%~42%;而伏立康唑、泊沙康唑、艾沙康唑预防后bIFD的发生率相对低,约2%~20%。曲霉是bIFD患者主要感染致病真菌(除伏立康唑预防后bIFD患者),约占检出真菌的14%~80%;念珠菌、其他丝状真菌在bIFD中检出率也较高,分别为11%~50%和4%~50%(主要好发于伏立康唑预防后bIFD患者)。此外,与使用氟康唑、伊曲康唑预防相比,泊沙康唑、伏立康唑、艾沙康唑预防的患者中,镰刀菌、根霉、赛多孢子菌等少见真菌相对更常见。

点击查看表格
表1

不同抗真菌药物预防后突破性侵袭性真菌病发生率

表1

不同抗真菌药物预防后突破性侵袭性真菌病发生率

药物发生率
氟康唑8%~42%14, 15, 16, 17, 18
伊曲康唑1%~42%141619, 20, 21, 22
伏立康唑3%~18%1423, 24, 25
泊沙康唑2%~20%14, 15, 162226
艾沙康唑3%~10%2427, 28, 29, 30
棘白菌素2%~29%31, 32

2. bIFD的危险因素:长时间粒细胞减少、使用激素治疗、使用≥2种抗菌药物超过14 d等多种因素影响宿主免疫功能,从而增加其bIFD发生风险36。此外,抗真菌预防所用药物是发生bIFD的另一关键因素,如:抗菌谱未覆盖可能真菌、真菌耐药、药物浓度不达标等。既往研究报道提示,预防使用抗真菌药物缺乏活性是导致bIFD发生最常见原因(占67.0%)37。剂量不足、药物间相互作用、胃内pH值升高、饮食等因素常造成预防药物体内暴露不足,也增加bIFD的发生风险。有报道显示,泊沙康唑预防并发生bIFD的患者中,仅约20%达到了目标预防浓度。

二、bIFD的诊断
(一)诊断挑战

IFD临床症状不典型,早期诊断困难,加之新发少见真菌的不断出现,进一步加重了诊断难度。预防用药进一步影响了实验室检测手段的敏感度:抗原检测[如1,3-β-D-葡聚糖(G试验)、半乳甘露聚糖(GM试验)]、聚合酶链反应(PCR)检测等在抗霉菌活性药物预防后的诊断敏感率降低。既往研究发现:泊沙康唑预防后,随药物浓度的增高,GM试验的敏感度随之降低;泊沙康唑血浆浓度≥0.5 mg/L且出现侵袭性曲霉病(IA)的4例患者,其血清GM试验均为阴性38

(二)诊断建议

镜检、培养仍是重要的诊断手段,但敏感度低;与抗原检测、PCR检测、宏基因组二代测序(mNGS)以及新型诊断标记物等结合,有助于提高bIFD的诊断阳性率9。此外,鉴于未覆盖菌种、耐药菌感染等是导致bIFD发生的重要危险因素;因此,菌种鉴别及体外药敏检测同样极为重要,有助于后期抗真菌药物的合理选择。

1. GM检测:GM检测是诊断IA最常用方法,但抗霉菌活性药物预防使血清GM检测敏感度大幅度降低;因此,诊断bIFD时应选择疑似感染部位的标本行GM检测,以提高诊断准确性。肺部感染患者,支气管肺泡灌洗液(BALF)GM检测的敏感度高于血液标本;因此推荐使用EALF GM检测进行诊断。当BALF的光密度指数(ODI)下限为0.5时,在既往使用抗真菌药物患者中诊断IA的敏感度为71%;当ODI临界值为1.0时,其诊断的敏感度则降至52%39, 40, 41;因此,推荐使用BALF的ODI下限0.5作为诊断突破性IA的参考指标。

针对中枢神经系统感染患者,脑脊液真菌阳性检测结果具有重要临床意义。既往多项研究证实:脑脊液抗原/抗体检测诊断IFD的敏感度及特异度均高于血清学检测结果;因此,脑脊液标本的抗原/抗体检测是诊断中枢神经系统IFD的关键指标42

2. 分子诊断:(1)PCR检测:PCR被指南推荐用于IFD的早期诊断43,适用于各种标本(如血液、BALF、肺组织、气道分泌物和痰液等),检测速度快,特异度高10。鉴于目前针对抗真菌预防后bIFD,还没有一种传统检测手段具有足够的敏感度和特异度,因此近年来真菌的特异度分子生物学检测手段和多种实验室检测手段的联合方法是目前现行的有效方法。BALF PCR检测诊断IA的敏感度和特异度分别为90.2%和96.4%,高于血液标本的PCR检测(敏感度和特异度分别为75%~88%和75%~87%)44, 45。因此,免疫功能严重低下患者建议使用血液PCR检测;高度怀疑侵袭性肺曲霉菌病(IPA)的患者,推荐进行BALF的PCR检测,单次PCR阳性有助于排除其他疾病,连续两次阳性具有较高的特异度。

此外,PCR联合应用可用于IFD的早期诊断。有报道称,BALF GM检测和PCR检测诊断IA的敏感度分别为38%和44%,但联合BALF GM检测与PCR检测时,诊断的敏感度提高至62.5%,特异度也高达95%46。念珠菌T2 MRI结合PCR可在3~5 h内完成,且无需事先进行血培养和核酸提取,敏感度和特异度可达91.1%和99.4%47

(2)mNGS:NGS通过对血液游离DNA进行测序以确定病原体种类,且NGS可用于多个不同部位感染的诊断48, 49, 50。mNGS诊断肺部感染的敏感度及特异度分别为95.12%和70.73%,其敏感度远高于其他病原学检测方法(培养与PCR检测的58.54%和82.93%)51。mNGS诊断中枢神经系统真菌感染的灵敏度、特异度、准确率及阳性预测值分别为63.0%、100.0%、69.7%和100.0%,均优于传统检测方法(培养、涂片及PCR检测)的44.4%、83.3%、51.5%和92.3%52。此外,与传统微生物学检测方法相比,mNGS在诊断少见真菌感染时具有潜在的临床应用前景。因此,疑似患者存在真菌感染时,特别当患者存在重症感染、免疫功能低下等情况时,及时开展mNGS检测有助于IFD的早期诊断。

但目前mNGS仅作为临床辅助诊断,尚不能作为bIFD病原学的确诊依据。临床中,若NGS的结果符合患者的临床表现和其他实验室检查结果,可根据NGS结果推荐指导临床决策;若患者NGS结果阳性且符合临床表现,但是缺乏其他实验室证据支持,应进行PCR验证,并进一步完善传统实验室检查加以验证;若患者NGS结果阳性,但临床表现或实验室检查结果不支持NGS诊断,则不能仅根据NGS结果进行诊断,应以传统实验室检查结果为首要临床决策参考依据。

3. 其他新型诊断方法:为进一步提高IFD早期诊断的准确性,研究者们不断探讨新型检测标志物及新型检测方法;如:白细胞介素(IL)-6/IL-8等新型免疫标志物检测、曲霉即时检测(POCT检测)、基质辅助激光脱附/电离飞行时间质谱检测(MALDI-TOF MS)、基于阳离子共轭聚合物的荧光共振能量转移技术、呼吸中释放的挥发性代谢物检测等53, 54, 55。POCT检测无需要标本运送,缩短了标本周转时间,快速出结果,且仅需很少的标本;因此该检测方法越来越受到医疗机构的重视。MALDI-TOF MS在丝状真菌诊断中的应用已得到了迅速发展,且MALDI-TOF MS准确识别念珠菌菌种的效力优于传统技术;但MALDI-TOF MS样品制备耗时,数据库和分离群有限,这些限制了该方法的广泛应用。

随着医学技术的不断进步,IFD的检测方法亦在不断更新。未来,亟待有更高敏感度和准确性、方便、快捷、价廉的诊断技术应用于临床工作。

三、bIFD的治疗
(一)治疗挑战

由于危险因素缺乏特异度、实验室检测结果准确性较低,临床难以抉择何时更换预防用药为治疗药物,尤其是对于接受抗霉菌活性药物预防患者的bIFD,在临床治疗和管理中面临更大压力。当前bIFD的治疗多是基于流行病学特点,以及临床医师对疑似患者治疗的经验总结;因此,何时启动抗真菌治疗以及如何规范突破后的药物选择是临床医师需要重点关注的问题。

(二)治疗原则

早期启动抗真菌治疗极为重要。目前尚无指南明确bIFD治疗启动时机;依据其定义标准,临床建议当接受抗真菌预防的高危患者出现IFD相关症状和体征,且广谱抗生素使用无效,应考虑bIFD,积极进行bIFD的诊断检测,并评估患者的疾病严重程度。危重者应尽快启动经验性抗真菌治疗(图1),同时积极收集IFD检测结果,根据进一步诊断结果调整抗真菌方案;非重症患者应获得更多的证据支持后或病情加重后启动抗真菌治疗(图1)。

点击查看大图
图1
抗真菌预防后突破性侵袭性真菌病(IFD)的诊疗流程
点击查看大图

注:GM为半乳甘露聚糖;BALF为支气管肺泡灌洗液;PCR为聚合酶链反应;NGS为基因组二代测序;L-AmB为两性霉素B脂质体

图1
抗真菌预防后突破性侵袭性真菌病(IFD)的诊疗流程
(三)药物选择

bIFD患者的流行病学特点是决定后期药物选择的重要依据,而既往抗真菌预防方案显著影响患者突破感染的菌种构成及真菌耐药性。因此,临床管理时应综合多种因素进行个体化管理。

怀疑发生bIFD且病情危重的患者,临床中应及时启动经验抗真菌治疗,治疗时应基于既往抗真菌预防方案选择适当药物。若患者接受三唑类或棘白菌素类药物预防,则建议选择两性霉素B脂质体联合或不联合其他药物治疗;若患者既往接受多烯类药物预防,则建议选择具有抗霉菌活性的广谱三唑类药物联合/不联合棘白菌素类药物治疗。有研究显示,接受伏立康唑预防的患者,两性霉素B脂质体经验性抗真菌治疗的有效率为89.5%,中位退热时间4 d56

已启动经验性抗bIFD治疗的危重患者,在获得更多诊断证据后,应结合经验性治疗疗效评估如何调整治疗方案;非重症患者获得bIFD诊断依据后,应结合患者预防用药情况、临床表现及真菌检测结果,分析突破感染原因及可能致病菌,选择广谱、强效的抗真菌治疗方案。考虑由预防药物浓度/剂量不足引起感染,应增加用药剂量或更换为其他品类药物或联合治疗;考虑预防用药未覆盖病原体感染,需选择多烯类或广谱三唑类药物治疗;考虑耐药真菌或少见真菌感染,应尽可能选择与抗真菌预防药物不同品类的广谱抗真菌药物治疗257

此外,新型治疗手段有望提高bIFD患者的生存率。SUBA伊曲康唑用于曲霉病、组织胞浆菌病及芽孢菌病的治疗;Amphotericin B Cochleate是可以口服的多烯类药物;雷扎芬净是长效棘白菌素类药物,可每周给药1次;Olorofim用于IA、丝孢菌属感染、赛多孢子菌感染、球孢子菌病的治疗58, 59, 60。此外,免疫疗法也逐渐受到临床关注,如:免疫记忆细胞在诱导保护性反应中起核心作用61, 62;Crf1蛋白中编码一个表位p41已成功用于体外扩增真菌特异度T细胞63;Crf1、Gel1和Pmp20重叠肽混合物的组合可诱导与真菌裂解物类似的特异度T细胞反应64

四、展望

总之,目前bIFD的管理任重道远,期待更多的、大型的研究开展以探讨该病的流行病学特点以及为不同的患者提供个体化管理策略。未来希望有更高敏感度和准确性、方便、快捷、价廉的诊断技术,更有效的新型治疗手段应用于临床工作中,以改善bIFD患者的预后。

引用本文:

朱丹苹, 孙于谦. 血液系统疾病患者抗真菌预防后突破性侵袭性真菌病的诊断与治疗研究进展[J]. 中华医学杂志, 2024, 104(37): 3543-3548. DOI: 10.3760/cma.j.cn112137-20240409-00829.

利益冲突
利益冲突

所有作者声明不存在利益冲突

参考文献
[1]
LionakisMS, LewisRE, KontoyiannisDP. Breakthrough invasive mold infections in the hematology patient: current concepts and future directions[J]. Clin Infect Dis, 2018, 67(10): 1621-1630. DOI: 10.1093/cid/ciy473.
[2]
GattiM, RinaldiM, FerraroG, et al. Breakthrough invasive fungal infections in liver transplant recipients exposed to prophylaxis with echinocandins vs other antifungal agents: a systematic review and meta-analysis[J]. Mycoses, 2021, 64(11):1317-1327. DOI: 10.1111/myc.13362. Epub 2021 Aug 23.
[3]
MonforteA, Los-ArcosI, Martín-GómezMT, et al. Safety and effectiveness of isavuconazole treatment for fungal infections in solid organ transplant recipients (ISASOT study)[J]. Microbiol Spectr, 2022, 10(1): e0178421.DOI: 10.1128/spectrum.01784-21.
[4]
GioiaF, FilighedduE, CorbellaL, et al. Invasive aspergillosis in solid organ transplantation: diagnostic challenges and differences in outcome in a Spanish national cohort (Diaspersot study)[J]. Mycoses, 2021, 64(11):1334-1345. DOI: 10.1111/myc.13298.
[5]
BakerAW, MaziarzEK, ArnoldCJ, et al. Invasive fungal infection after lung transplantation: epidemiology in the setting of antifungal prophylaxis[J]. Clin Infect Dis, 2020, 70(1):30-39. DOI: 10.1093/cid/ciz156.
[6]
KungHC, JohnsonMD, DrewRH, et al. Clinical effectiveness of posaconazole versus fluconazole as antifungal prophylaxis in hematology-oncology patients: a retrospective cohort study[J]. Cancer Med, 2014, 3(3):667-673. DOI: 10.1002/cam4.225.
[7]
PaganoL, CairaM, CandoniA, et al. Evaluation of the practice of antifungal prophylaxis use in patients with newly diagnosed acute myeloid leukemia: results from the SEIFEM 2010-B registry[J]. Clin Infect Dis, 2012, 55(11):1515-1521. DOI: 10.1093/cid/cis773.
[8]
UzunO, AsciogluS, AnaissieEJ, et al. Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia[J]. Clin Infect Dis, 2001, 32(12):1713-1717. DOI: 10.1086/320757.
[9]
GirmeniaC, BuscaA, CandoniA, et al. Breakthrough invasive fungal diseases in acute myeloid leukemia patients receiving mould active triazole primary prophylaxis after intensive chemotherapy: an Italian consensus agreement on definitions and management[J]. Med Mycol, 2019, 57(Supplement_2):S127-S137. DOI: 10.1093/mmy/myy091.
[10]
CornelyOA, HoeniglM, Lass-FlörlC, et al. Defining breakthrough invasive fungal infection-Position paper of the mycoses study group education and research consortium and the European Confederation of Medical Mycology[J]. Mycoses, 2019, 62(9):716-729. DOI: 10.1111/myc.12960.
[11]
DagherH, HachemR, ChaftariAM, et al. Real-world use of isavuconazole as primary therapy for invasive fungal infections in high-risk patients with hematologic malignancy or stem cell transplant[J]. J Fungi (Basel), 2022, 8(1):74. DOI: 10.3390/jof8010074.
[12]
Del PrincipeMI, DragonettiG, ContiA, et al. Invasive aspergillosis in relapsed/refractory acute myeloid leukaemia patients: Results from SEIFEM 2016-B survey[J]. Mycoses, 2022, 65(2):171-177. DOI: 10.1111/myc.13384.
[13]
KronigI, Masouridi-LevratS, ChalandonY, et al. Clinical considerations of isavuconazole administration in high-risk hematological patients: a single-center 5-year experience[J]. Mycopathologia, 2021, 186(6):775-788. DOI: 10.1007/s11046-021-00583-9.
[14]
Ananda-RajahMR, GriggA, DowneyMT, et al. Comparative clinical effectiveness of prophylactic voriconazole/posaconazole to fluconazole/itraconazole in patients with acute myeloid leukemia/myelodysplastic syndrome undergoing cytotoxic chemotherapy over a 12-year period[J]. Haematologica, 2012, 97(3):459-463. DOI: 10.3324/haematol.2011.051995.
[15]
KungHC, JohnsonMD, DrewRH, et al. Clinical effectiveness of posaconazole versus fluconazole as antifungal prophylaxis in hematology-oncology patients: a retrospective cohort study[J]. Cancer Med, 2014, 3(3):667-673. DOI: 10.1002/cam4.225.
[16]
PosteraroB, De CarolisE, CriscuoloM, et al. Candidaemia in haematological malignancy patients from a SEIFEM study: epidemiological patterns according to antifungal prophylaxis[J]. Mycoses, 2020, 63(9):900-910. DOI: 10.1111/myc.13130.
[17]
WasylyshynA, LinderKA, CastilloCG, et al. Breakthrough invasive fungal infections in patients with acute myeloid leukemia[J]. Mycopathologia, 2020, 185(2):299-306. DOI: 10.1007/s11046-019-00418-8.
[18]
OraschC, MertzD, GarbinoJ, et al. Fluconazole non-susceptible breakthrough candidemia after prolonged low-dose prophylaxis: a prospective FUNGINOS study[J]. J Infect, 2018, 76(5):489-495. DOI: 10.1016/j.jinf.2017.12.018.
[19]
PaganoL, CairaM, CandoniA, et al. Evaluation of the practice of antifungal prophylaxis use in patients with newly diagnosed acute myeloid leukemia: results from the SEIFEM 2010-B registry[J]. Clin Infect Dis, 2012, 55(11):1515-1521. DOI: 10.1093/cid/cis773.
[20]
KatadaY, NakagawaS, NagaoM, et al. Risk factors of breakthrough aspergillosis in lung transplant recipients receiving itraconazole prophylaxis[J]. J Infect Chemother, 2022, 28(1):54-60. DOI: 10.1016/j.jiac.2021.09.020.
[21]
LindsayJ, OthmanJ, KongY, et al. SUBA-itraconazole for primary antifungal prophylaxis after allogeneic hematopoietic cell transplantation[J]. Open Forum Infect Dis, 2021, 8(11):ofab502. DOI: 10.1093/ofid/ofab502.
[22]
TormoM, Pérez-MartínezA, CalabuigM, et al. Primary prophylaxis of invasive fungal infections with posaconazole or itraconazole in patients with acute myeloid leukaemia or high-risk myelodysplastic syndromes undergoing intensive cytotoxic chemotherapy: a real-world comparison[J]. Mycoses, 2018, 61(3):206-212. DOI: 10.1111/myc.12728.
[23]
WasylyshynAI, LinderKA, KauffmanCA, et al. Invasive fungal disease in patients with newly diagnosed acute myeloid leukemia[J]. J Fungi (Basel), 2021, 7(9):761. DOI: 10.3390/jof7090761.
[24]
RauschCR, DiPippoAJ, JiangY, et al. Comparison of mold active triazoles as primary antifungal prophylaxis in patients with newly diagnosed acute myeloid leukemia in the era of molecularly targeted therapies[J]. Clin Infect Dis, 2022, 75(9):1503-1510. DOI: 10.1093/cid/ciac230.
[25]
HachemR, AssafA, NumanY, et al. Comparing the safety and efficacy of voriconazole versus posaconazole in the prevention of invasive fungal infections in high-risk patients with hematological malignancies[J]. Int J Antimicrob Agents, 2017, 50(3):384-388. DOI: 10.1016/j.ijantimicag.2017.03.021.
[26]
BerkingS, DoedensD, HornsH, et al. Antifungal prophylaxis in newly diagnosed AML patients-Adherence to guidelines and feasibility in a real life setting[J]. Mycoses, 2017, 60(9):600-606. DOI: 10.1111/myc.12635.
[27]
FontanaL, PerlinDS, ZhaoY, et al. Isavuconazole prophylaxis in patients with hematologic malignancies and hematopoietic cell transplant recipients[J]. Clin Infect Dis, 2020, 70(5):723-730. DOI: 10.1093/cid/ciz282.
[28]
VuCA, RanaMM, JacobsSE, et al. Isavuconazole for the prophylaxis and treatment of invasive fungal disease: a single-center experience[J]. Transpl Infect Dis, 2021, 23(2):e13469. DOI: 10.1111/tid.13469.
[29]
SternA, SuY, LeeYJ, et al. A single-center, open-label trial of isavuconazole prophylaxis against invasive fungal infection in patients undergoing allogeneic hematopoietic cell transplantation[J]. Biol Blood Marrow Transplant, 2020, 26(6):1195-1202. DOI: 10.1016/j.bbmt.2020.02.009.
[30]
BowenCD, TallmanGB, HakkiM, et al. Isavuconazole to prevent invasive fungal infection in immunocompromised adults: initial experience at an academic medical centre[J]. Mycoses, 2019, 62(8):665-672. DOI: 10.1111/myc.12924.
[31]
LionakisMS, LewisRE, KontoyiannisDP. Breakthrough invasive mold infections in the hematology patient: current concepts and future directions[J]. Clin Infect Dis, 2018, 67(10):1621-1630. DOI: 10.1093/cid/ciy473.
[32]
DvorakCC, FisherBT, EsbenshadeAJ, et al. A Randomized trial of caspofungin vs triazoles prophylaxis for invasive fungal disease in pediatric allogeneic hematopoietic cell transplant[J]. J Pediatric Infect Dis Soc, 2021, 10(4):417-425. DOI: 10.1093/jpids/piaa119.
[33]
Puerta-AlcaldeP, Monzó-GalloP, Aguilar-GuisadoM, et al. Breakthrough invasive fungal infection among patients with haematologic malignancies: a national, prospective, and multicentre study[J]. J Infect, 2023, 87(1):46-53. DOI: 10.1016/j.jinf.2023.05.005.
[34]
Puerta-AlcaldeP, Garcia-VidalC. Changing epidemiology of invasive fungal disease in allogeneic hematopoietic stem cell transplantation[J]. J Fungi (Basel), 2021, 7(10):848. DOI: 10.3390/jof7100848.
[35]
中国医药教育学会真菌病专业委员会, 中华医学会血液学分会. 造血干细胞移植后侵袭性真菌病中国专家共识(2023年版)[J]. 中华血液学杂志, 2023, 44(2):92-97. DOI: 10.3760/cma.j.issn.0253-2727.2023.02.002.
[36]
中国医师协会血液科医师分会, 中国侵袭性真菌感染工作组. 血液病/恶性肿瘤患者侵袭性真菌病的诊断标准与治疗原则(第六次修订版)[J]. 中华内科杂志, 2020, 59(10):754-763. DOI: 10.3760/cma.j.cn112138-20200627-00624.
[37]
BoutinCA, DurocherF, BeaucheminS, et al. Breakthrough invasive fungal infections in patients with high-risk hematological disorders receiving voriconazole and posaconazole prophylaxis: a systematic review[J]. Clin Infect Dis, 2024, 79(1):151-160. DOI: 10.1093/cid/ciae203.
[38]
BergeronA, PorcherR, SulahianA, et al. The strategy for the diagnosis of invasive pulmonary aspergillosis should depend on both the underlying condition and the leukocyte count of patients with hematologic malignancies[J]. Blood, 2012, 119(8):1831-1837; quiz 1956. DOI: 10.1182/blood-2011-04-351601.
[39]
EiglS, PrattesJ, ReinwaldM, et al. Influence of mould-active antifungal treatment on the performance of the Aspergillus-specific bronchoalveolar lavage fluid lateral-flow device test[J]. Int J Antimicrob Agents, 2015, 46(4):401-405. DOI: 10.1016/j.ijantimicag.2015.05.017.
[40]
ReinwaldM, SpiessB, HeinzWJ, et al. Diagnosing pulmonary aspergillosis in patients with hematological malignancies: a multicenter prospective evaluation of an Aspergillus PCR assay and a galactomannan ELISA in bronchoalveolar lavage samples[J]. Eur J Haematol, 2012, 89(2):120-127. DOI: 10.1111/j.1600-0609.2012.01806.x.
[41]
SalzerH, LangeC, HöniglM. Aspergillus in airway material: ignore or treat?[J]. Internist (Berl), 2017, 58(11):1150-1162. DOI: 10.1007/s00108-017-0334-9.
[42]
NathanCL, EmmertBE, NelsonE, et al. CNS fungal infections: a review[J]. J Neurol Sci, 2021, 422:117325. DOI: 10.1016/j.jns.2021.117325.
[43]
中国医药教育协会真菌病专业委员会, 国家皮肤与免疫疾病临床医学研究中心(北京大学第一医院), 国家血液疾病临床医学研究中心(北京大学人民医院). 侵袭性真菌病实验室诊断方法临床应用专家共识[J]. 中华内科杂志, 2022, 61(2):134-141. DOI: 10.3760/cma.j.cn112138-20210530-00383.
[44]
EiglS, HoeniglM, SpiessB, et al. Galactomannan testing and Aspergillus PCR in same-day bronchoalveolar lavage and blood samples for diagnosis of invasive aspergillosis[J]. Med Mycol, 2017, 55(5):528-534. DOI: 10.1093/mmy/myw102.
[45]
MengoliC, CrucianiM, BarnesRA, et al. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis[J]. Lancet Infect Dis, 2009, 9(2):89-96. DOI: 10.1016/S1473-3099(09)70019-2.
[46]
EiglS, PrattesJ, ReinwaldM, et al. Influence of mould-active antifungal treatment on the performance of the Aspergillus-specific bronchoalveolar lavage fluid lateral-flow device test[J]. Int J Antimicrob Agents, 2015, 46(4):401-405. DOI: 10.1016/j.ijantimicag.2015.05.017.
[47]
MylonakisE, ClancyCJ, Ostrosky-ZeichnerL, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial[J]. Clin Infect Dis, 2015, 60(6):892-899. DOI: 10.1093/cid/ciu959.
[48]
ArmstrongAE, RossoffJ, HollemonD, et al. Cell-free DNA next-generation sequencing successfully detects infectious pathogens in pediatric oncology and hematopoietic stem cell transplant patients at risk for invasive fungal disease[J]. Pediatr Blood Cancer, 2019, 66(7):e27734. DOI: 10.1002/pbc.27734.
[49]
《中华传染病杂志》编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志, 2020, 38(11):681-689. DOI: 10.3760/cma.j.cn311365-20200731-00732.
[50]
WeiP, WuL, LiY, et al. Metagenomic next-generation sequencing for the detection of pathogenic microorganisms in patients with pulmonary infection[J]. Am J Transl Res, 2022, 14(9):6382-6388.
[51]
ChenYY, GuoY, XueXH, et al. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases of the central nervous system after empirical treatment[J]. World J Clin Cases, 2022, 10(22):7760-7771. DOI: 10.12998/wjcc.v10.i22.7760.
[52]
XuC, ChenX, ZhuG, et al. Utility of plasma cell-free DNA next-generation sequencing for diagnosis of infectious diseases in patients with hematological disorders[J]. J Infect, 2023, 86(1):14-23. DOI: 10.1016/j.jinf.2022.11.020.
[53]
MercierT, DunbarA, VeldhuizenV, et al. Point of care aspergillus testing in intensive care patients[J]. Crit Care, 2020, 24(1):642. DOI: 10.1186/s13054-020-03367-7.
[54]
Freeman WeissZ, LeonA, KooS. The evolving landscape of fungal diagnostics, current and emerging microbiological approaches[J]. J Fungi (Basel), 2021, 7(2):127. DOI: 10.3390/jof7020127.
[55]
YangQ, HeB, ChenC, et al. A Rapid, Visible, and highly sensitive method for recognizing and distinguishing invasive fungal infections via CCP-FRET technology[J]. ACS Infect Dis, 2021, 7(10):2816-2825. DOI: 10.1021/acsinfecdis.1c00393.
[56]
KobayashiR, MatsushimaS, HoriD, et al. Efficacy of liposomal amphotericin against febrile neutropenia in pediatric patients receiving prophylactic voriconazole[J]. Pediatr Int, 2021, 63(5):550-555. DOI: 10.1111/ped.14450.
[57]
Puerta-AlcaldeP, Garcia-VidalC. Changing epidemiology of invasive fungal disease in allogeneic hematopoietic stem cell transplantation[J]. J Fungi (Basel), 2021, 7(10):848. DOI: 10.3390/jof7100848.
[58]
HoeniglM, SpruteR, EggerM, et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin[J]. Drugs, 2021, 81(15):1703-1729. DOI: 10.1007/s40265-021-01611-0.
[59]
BouzG, DoležalM. Advances in antifungal drug development: an up-to-date mini review[J]. Pharmaceuticals (Basel), 2021, 14(12):1312. DOI: 10.3390/ph14121312.
[60]
GintjeeTJ, DonnelleyMA, ThompsonGR. Aspiring antifungals: review of current antifungal pipeline developments[J]. J Fungi (Basel), 2020, 6(1):28. DOI: 10.3390/jof6010028.
[61]
BozzaS, PerruccioK, MontagnoliC, et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation[J]. Blood, 2003, 102(10):3807-3814. DOI: 10.1182/blood-2003-03-0748.
[62]
CenciE, MencacciA, BacciA, et al. T cell vaccination in mice with invasive pulmonary aspergillosis[J]. J Immunol, 2000, 165(1):381-388. DOI: 10.4049/jimmunol.165.1.381.
[63]
StuehlerC, KhannaN, BozzaS, et al. Cross-protective TH1 immunity against aspergillus fumigatus and Candida albicans[J]. Blood, 2011, 117(22):5881-5891. DOI: 10.1182/blood-2010-12-325084.
[64]
StuehlerC, NowakowskaJ, BernardiniC, et al. Multispecific aspergillus T cells selected by CD137 or CD154 induce protective immune responses against the most relevant mold infections[J]. J Infect Dis, 2015, 211(8):1251-1261. DOI: 10.1093/infdis/jiu607.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词