综述
急性肾损伤与急性呼吸窘迫综合征相互关系及其致病机制
中国小儿急救医学, 2021,28(4) : 337-340. DOI: 10.3760/cma.j.issn.1673-4912.2021.04.021
摘要

急性肾损伤和急性呼吸窘迫综合征是重症监护室最为常见的脏器衰竭,病死率高。肺脏与肾脏共同参与维持机体酸碱平衡,两者都含有庞大的血管网络,互为对方功能衰竭首要的远隔器官效应的靶器官。本文综述肾损伤或急性呼吸窘迫综合征时发生的肺-肾cross-talk的可能发病机制,以加深对两种疾病的认识,改善预后。

引用本文: 黄林林, 李晓忠. 急性肾损伤与急性呼吸窘迫综合征相互关系及其致病机制 [J] . 中国小儿急救医学, 2021, 28(4) : 337-340. DOI: 10.3760/cma.j.issn.1673-4912.2021.04.021.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

在危重患者中,肺脏和肾脏同时损伤或功能衰竭是常见的,常需要器官支持治疗,如有创机械通气(invasive mechanical ventilation,IMV)、肾脏替代治疗、体外膜肺氧合。急性肾损伤(acute kidney injury,AKI)患者发生肺损伤需要IMV的概率增加2倍[1];而AKI合并呼吸衰竭的预后比AKI合并任何其他器官系统衰竭的预后都差[2]。机械通气患者中,急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)患者发生AKI的风险是非ARDS患者的3倍[3],并且中重度ARDS患者发生AKI的概率明显大于轻度或非ARDS患者[4]。当ADRS和AKI同时发生时后果严重,病死率>80%[5]

AKI的死亡原因可分为"传统的"和"非传统的",长期被公认的AKI传统并发症包括高钾血症、酸中毒和容量超负荷,通常可以通过肾脏替代治疗纠正;而非传统的并发症包括肺损伤、心力衰竭、脓毒症和免疫功能障碍等[6]。ARDS的死亡原因包括难治性呼吸衰竭导致的二氧化碳潴留、低氧血症、代谢性酸中毒引起呼吸心跳骤停,通常可通过机械通气缓解;而AKI、脓毒症/脓毒性休克等多器官功能衰竭是ARDS的主要死亡原因[7]。本文主要探讨危重症中肺-肾相互作用的病理生理机制。

1 AKI对肺脏的影响

AKI影响水电解质平衡,减少毒素排出,并影响包括肺脏的远隔器官的生理机能。AKI患者需要IMV支持治疗比例增高,接受肾脏替代治疗的AKI患者IMV的发生率进一步增加,其中肾功能恢复正常的患者出现中重度ARDS的概率更低[8],这表明AKI增加ARDS的易患性。AKI与慢性肺部疾病的发病及预后相关,在控制胎龄、孕妇羊水过多、多次妊娠、5 min Apgar评分、插管和缺氧缺血性脑病等因素之后,存在AKI的32周胎龄婴儿患者慢性肺部疾病病死率增加了5倍,且需要更长时间的呼吸支持[9]。改善AKI的干预措施能改善支气管肺发育不良的远期预后[10]

AKI后ARDS病理表现为血管通透性增加,间质水肿,巨噬细胞和中性粒细胞等浸润,肺泡出血和红细胞淤滞[11]。病理生理机制可大致分为炎症性和非炎症性(容量超载、免疫功能障碍)[12]

1.1 AKI炎症反应与肺损伤

AKI是一种炎症反应失衡状态,因肺有庞大的血管网络系统而成为最易累及的脏器。AKI诱导的肺损伤涉及复杂的炎症级联反应,包括循环细胞因子水平增加、肺内皮细胞凋亡、炎性细胞浸润。

动物AKI模型以及AKI危重症患者循环和(或)肺组织中白细胞介素(interleukin-6,IL)-6、IL-8、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等水平增高[13,14,15,16],引起全身炎症反应,导致炎症细胞的募集。TNF-α与内皮细胞上的TNF受体-1结合,通过caspase-3途径导致内皮细胞凋亡;TNF-α还能激活核因子-κB,进而增加炎症和细胞凋亡。IL-6与可溶性IL-6受体结合,通过肺组织内皮细胞上的gp130,导致肺和血清IL-8水平增加,而IL-8诱导中性粒细胞的肺部聚集[17]。代谢产物尿素的堆积,能刺激巨噬细胞分泌粒细胞集落刺激因子,调节弹性蛋白酶和其他介质调节中性粒细胞的产生及功能[18]。动物实验发现AKI大鼠体内促炎因子(TNF-α、IL-6等)可通过下调水通道蛋白-1及上皮钠通道α亚基的表达,损伤肺泡液体清除功能[15,19]。因此,AKI诱导的炎症反应、细胞凋亡、炎症细胞浸润,导致毛细血管通透性增加,肺泡液体清除能力下降,导致非心源性肺水肿形成。

大量动物及临床研究证明抑制炎症级联反应可缓解AKI后肺损伤。早期腹膜透析能通过有效清除循环IL-6等细胞因子,减轻缺血性ARDS小鼠肺部炎症[20]

1.2 AKI容量超载与肺损伤

AKI患者由于肾脏排泄功能下降,循环血量增多,血浆胶体渗透压降低,肺脏毛细血管静水压升高,引起肺水肿。循环血量增多,心脏前负荷增加,导致左心功能不全,而引起心源性肺水肿。一些肾功能衰竭合并肺水肿的患者仅通过利尿排液就能缓解病情,容量超负荷是重症患者发生肺损伤的独立危险因素[21]。在比较1 000例ARDS患者7 d内使用保守和自由液体管理策略发现,保守策略液体管理能改善肺功能,缩短IMV和重症监护时间[22]

1.3 AKI免疫功能障碍与肺损伤

肾脏是独特的免疫调节器官,肾小球能阻止各种免疫球蛋白的滤过;近端小管上皮能重吸收大量免疫物质包括小分子肽、免疫调节分子等[23]。肾损伤时免疫物质的丢失导致免疫功能障碍,而肺部是最常见的感染靶器官。

2 ARDS对肾脏的影响

ARDS是一种以呼吸衰竭导致的严重低氧血症为特征的危及生命的疾病,并发症众多,其中AKI最为常见。ARDS与AKI发病独立相关,是危重患者发生AKI的危险因素[3]。回顾性分析186例儿童病例发现,64%中重度ARDS患者发生AKI,46%的轻度或非ARDS患者发生AKI,合并AKI的患者氧合指数更低,PICU治疗时间及住院时间更长[4]。当ARDS合并AKI时,ICU住院时间和病死率显著增加[24]

危重病患者中,ARDS及其相关治疗可通过多种机制影响肾功能,除缺氧直接造成组织脏器损伤外,还存在以下因素:机械通气、炎症反应和血流动力学的改变,其中机械通气似乎最为重要,可独立引起AKI,不合理的机械通气会近一步影响血流动力学及炎症反应[12,24,25]

2.1 ARDS机械通气与肾损伤

ARDS的呼吸机治疗措施提倡保护性肺通气策略,即小潮气量、限制的平台压、高呼气末正压(positive end expiratory pressure,PEEP)维持肺复张等。临床观察发现ARDS患者第1~3天高潮气量是后期肾功能不能恢复的高危险因素[26];而小潮气量机械通气与AKI的发生或恶化无相关性[27],还可以降低病死率,减少机械通气时间[28]。呼吸系统顺应性和PEEP水平与AKI的发生相关[29]。气道峰压与AKI的严重程度相关[30],气道峰压和潮气量是机械通气患者48 h内发生AKI的高风险因素[31]。在同样潮气量和压力限制下,自主呼吸可能有利于防止AKI的恶化[32]。机械通气不仅引起肺部的生物伤,而且诱导全身炎症反应,导致包括AKI在内的器官功能障碍;胸内高压导致的心输出量减少,体循环充血导致肾脏灌注和氧合改变[33]

机械通气过程中对肺泡的牵张作用不仅诱导肺组织中黏附分子(E-选择素和血管细胞黏附因子-1)的合成,而且诱导肾组织中黏附分子(E-选择素、血管细胞黏附因子-1和细胞间黏附分子-1)的合成;增加了肾组织中趋化因子和细胞因子(IL-1β和TNF-α)的表达,髓过氧化物酶的活性,并伴有粒细胞的募集;而且机械通气1 h后肾组织即出现粒细胞募集和肾趋化因子的表达;这些结果表明,呼吸机引起的免疫反应可同时发生在肺脏和肾脏中,而不仅仅是肺部释放到循环中引起的肾损伤[34]。油酸诱导的AKI动物模型发现,常规机械通气引起肾脏损伤,其机制可能与血浆、肺、肾脏组织中TNF-α和IL-6水平相关[35],血清IL-6与体外循环AKI的发生相关[36]。而亚低温治疗可通过提高IL-10水平缓解油酸和机械通气对肾脏组织的病理学损伤[37]。IMV诱导抗炎性Th2细胞因子反应增强,表现为IL-4分泌增加,并下调Th1和Th17细胞因子,后者在介导黏膜免疫和抑制细菌和真菌生长方面具有重要作用[36]

机械通气过程中胸腔压力增高,静脉回流受阻,右心前后负荷增加,影响肾脏血流灌注。肾脏移植患者中,对比不同PEEP水平机械通气模式发现,PEEP通气与心输出量、平均动脉压降低相关,影响肾灌注压,导致尿量减少,钠排泄率和肌酐清除率下降[38]。自主呼吸引起的胸腔负压利于改善静脉回流和心输出量[39],因此在同样潮气量和压力限制下,保留自主呼吸的控制性机械通气比无自主呼吸的控制性机械通气有更好的肾脏灌注和肾功能[34]

2.2 ARDS炎症反应与肾损伤

ARDS是由病原体感染引起的肺炎或由其他非感染因素导致的炎症性损伤引起的。而这些不仅来源于病原体,也来源于受损的宿主细胞,并可转移至全身循环,导致多脏器功能衰竭[40]。急性肺损伤患者中AKI预测因素分析发现,IL-6、Ⅰ型和Ⅱ型可溶性肿瘤坏死因子受体、纤溶酶原激活物抑制剂-1与AKI独立相关,表明炎症反应、凝血紊乱和中性粒细胞-内皮细胞相互作用在AKI发病机制中起重要作用[41]。此外,机械通气引起的生物伤也参与肾脏损害。

2.3 ARDS血流动力学改变与肾损伤

ARDS伴随着低氧血症、高二氧化碳血症、肺动脉高压、右心功能不全、机械通气治疗等,这些因素可通过各种途径影响静脉回流、心输出量及肾脏灌注。高碳酸血症可导致肾小球滤过率、肾血流量下降,肾血管阻力增高[42]。在炎症反应、水肿、血栓、血管重塑、高碳酸血症及机械通气等因素共同作用下,ARDS肺血管阻力增加,肺动脉高压形成,引起右心功能不全。右心功能不全,中心静脉压力升高,可导致肾间质和肾小管静水压升高,降低肾小球滤过率。

4 总结

肾脏及肺脏功能障碍在ICU中最为常见,互为对方死亡的高风险因素。但AKI与ARDS之间的联系未引起重视,肺-肾cross-talk的致病机制也尚不确切。过度的炎症反应参与致病过程,其中IL-6、IL-10是重要的炎症因子。为改善预后,除积极治疗原发病外,抗炎治疗不能忽视。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
HosteEA, BagshawSM, BellomoR, et al.Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study[J]. Intensive Care Med, 2015, 41(8): 1411-1423.DOI: 10.1007/s00134-015-3934-7.
[2]
FanYW, JiangSW, ChenJM, et al.A pulmonary source of infection in patients with sepsis-associated acute kidney injury leads to a worse outcome and poor recovery of kidney function[J]. World J Emerg Med, 2020, 11(1): 18-26.DOI: 10.5847/wjem.j.1920-8642.2020.01.003.
[3]
DarmonM, Clec′hC, AdrieC, et al.Acute respiratory distress syndrome and risk of AKI among critically ill patients[J]. Clin J Am Soc Nephrol, 2014, 9(8): 1347-1353.DOI: 10.2215/CJN.08300813.
[4]
VillacrésSM, MedarSS, AydinSI.Acute Kidney Injury in Children With Acute Respiratory Failure[J]. Clin Pediatr (Phila), 2018, 57(11): 1340-1348.DOI: 10.1177/0009922818779222.
[5]
FaubelS. Pulmonary complications after acute kidney injury[J]. Adv Chronic Kidney Dis, 2008, 15(3): 284-296.DOI: 10.1053/j.ackd.2008.04.008.
[6]
FaubelS, ShahPB.Immediate Consequences of Acute Kidney Injury: The Impact of Traditional and Nontraditional Complications on Mortality in Acute Kidney Injury[J]. Adv Chronic Kidney Dis, 2016, 23(3): 179-185.DOI: 10.1053/j.ackd.2016.02.007.
[7]
DiSilvioB, YoungM, GordonA, et al.Complications and Outcomes of Acute Respiratory Distress Syndrome[J]. Crit Care Nurs Q, 2019, 42(4): 349-361.DOI: 10.1097/CNQ.0000000000000275.
[8]
FederspielCK, ItenovTS, MehtaK, et al.Duration of acute kidney injury in critically ill patients[J]. Ann Intensive Care, 2018, 8(1): 30.DOI: 10.1186/s13613-018-0374-x.
[9]
StarrMC, BoohakerL, EldredgeLC, et al.Acute Kidney Injury is Associated with Poor Lung Outcomes in Infants Born ≥32 Weeks of Gestational Age[J]. Am J Perinatol, 2020, 37(2): 231-240.DOI: 10.1055/s-0039-1698836.
[10]
AskenaziD, PatilNR, AmbalavananN, et al.Acute kidney injury is associated with bronchopulmonary dysplasia/mortality in premature infants[J]. Pediatr Nephrol, 2015, 30(9): 1511-1518.DOI: 10.1007/s00467-015-3087-5.
[11]
KarimiZ, KetabchiF, AlebrahimdehkordiN, et al.Renal ischemia/reperfusion against nephrectomy for induction of acute lung injury in rats[J]. Ren Fail, 2016, 38(9): 1503-1515.DOI: 10.1080/0886022X.2016.1214149.
[12]
MichaelJ, Forni LuiG, Klein SebastianJ, et al.Lung-kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup[J]. Intensive Care Med, 2020, 46(4): 654-672.DOI: 10.1007/s00134-019-05869-7.
[13]
GóesMA, IizukaIJ, QuintoBM, et al.Serum Soluble-Fas, Inflammation, and Anemia in Acute Kidney Injury[J]. Artif Organs, 2018, 42(9): E283-E289.DOI: 10.1111/aor.12019.
[14]
RossiM, DelbauveS, RoumeguèreT, et al.HO-1 mitigates acute kidney injury and subsequent kidney-lung cross-talk[J]. Free Radic Res, 2019, 53(9-10): 1035-1043.DOI: 10.1080/10715762.2019.1668936.
[15]
MaT, LiuZ. Functions of aquaporin 1 and α-epithelial Na+ channel in rat acute lung injury induced by acute ischemic kidney injury[J]. Int Urol Nephrol, 2013, 45(4): 1187-1196.DOI: 10.1007/s11255-012-0355-1.
[16]
LeeJH, JoYH, KimK, et al.Effect of N-acetylcysteine (NAC) on acute lung injury and acute kidney injury in hemorrhagic shock[J]. Resuscitation, 2013, 84(1): 121-127.DOI: 10.1016/j.resuscitation.2012.05.017.
[17]
TeixeiraJP, AmbrusoS, GriffinBRet al.Pulmonary Consequences of Acute Kidney Injury[J]. Semin Nephrol, 2019, 39(1): 3-16.DOI: 10.1016/j.semnephrol.2018.10.001.
[18]
JingW, QinF, GuoX, et al.G-CSF mediates lung injury in mice with adenine-induced acute kidney injury[J]. Int Immunopharmacol, 2018, 63: 1-8.DOI: 10.1016/j.intimp.2018.07.032.
[19]
马涛刘志细胞因子和水钠通道蛋白在急性肾损伤致肺损伤中的作用[J].中华急诊医学杂志201322(3):242-247.
[20]
AltmannC, AhujaN, KiekhaeferCM, et al.Early peritoneal dialysis reduces lung inflammation in mice with ischemic acute kidney injury[J]. Kidney Int, 2017, 92(2): 365-376.DOI: 10.1016/j.kint.2017.01.020.
[21]
SalahuddinN, SammaniM, HamdanA, et al.Fluid overload is an independent risk factor for acute kidney injury in critically Ill patients: results of a cohort study[J]. BMC Nephrol, 2017, 18(1): 45.DOI: 10.1186/s12882-017-0460-6.
[22]
National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome(ARDS) Clinical Trials Network, WiedemannHP, WheelerAP, et al.Comparison of two fluid-management strategies in acute lung injury[J]. N Engl J Med, 2006, 354(24): 2564-75.
[23]
PaladinoJD, HotchkissJR, RabbH. Acute kidney injury and lung dysfunction: a paradigm for remote organ effects of kidney disease?[J]. Microvasc Res, 2009, 77(1): 8-12.DOI: 10.1016/j.mvr.2008.09.001.
[24]
RanieriVM, GiuntaF, SuterPM, et al.Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome[J]. JAMA, 2000, 284(1): 43-44.DOI: 10.1001/jama.284.1.43.
[25]
UpadhyayaVD, ShariffMZ, MathewRO, et al.Management of Acute Kidney Injury in the Setting of Acute Respiratory Distress Syndrome: Review Focusing on Ventilation and Fluid Management Strategies[J]. J Clin Med Res, 2020, 12(1): 1-5.DOI: 10.14740/jocmr3938.
[26]
PanitchoteA, MehkriO, HastingsA, et al.Clinical predictors of renal non-recovery in acute respiratory distress syndrome[J]. BMC Nephrol, 2019, 20(1): 255.DOI: 10.1186/s12882-019-1439-2.
[27]
CortjensB, RoyakkersAA, DetermannRM, et al.Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation[J]. J Crit Care, 2012, 27(3): 261-267.DOI: 10.1016/j.jcrc.2011.05.005.
[28]
Acute Respiratory Distress Syndrome Network, BrowerRG, MatthayMA, et al.Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342(18): 1301-1308.DOI: 10.1056/NEJM200005043421801.
[29]
LeiteTT, GomesC, ValdiviaJ, et al.Respiratory parameters and acute kidney injury in acute respiratory distress syndrome: a causal inference study[J]. Ann Transl Med, 2019, 7(23): 742.DOI: 10.21037/atm.2019.11.92.
[30]
PanitchoteA, MehkriO, HastingsA, et al.Factors associated with acute kidney injury in acute respiratory distress syndrome[J]. Ann Intensive Care, 2019, 9(1): 74.DOI: 10.1186/s13613-019-0552-5.
[31]
LombardiR, NinN, PeñuelasO, et al.Acute Kidney Injury in Mechanically Ventilated Patients: The Risk Factor Profile Depends on the Timing of Aki Onset[J]. Shock, 2017, 48(4): 411-417.DOI: 10.1097/SHK.0000000000000871.
[32]
HeringR, PetersD, ZinserlingJ, et al.Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury[J]. Intensive Care Med, 2002, 28(10): 1426-1433.DOI: 10.1007/s00134-002-1442-z.
[33]
KahnT, BoschJ, LevittMF, et al.Effect of sodium nitrate loading on electrolyte transport by the renal tubule[J]. Am J Physiol, 1975, 229(3): 746-753.DOI: 10.1152/ajplegacy.1975.229.3.746.
[34]
HegemanMA, HennusMP, HeijnenCJ, et al.Ventilator-induced endothelial activation and inflammation in the lung and distal organs[J]. Crit Care, 2009, 13(6): R182.DOI: 10.1186/cc8168.
[35]
LiuAj, LingF, LiZQ, et al.Effect of oleic acid-induced acute lung injury and conventional mechanical ventilation on renal function in piglets[J]. Chin Med J (Engl), 2013, 126(13): 2530-2535.
[36]
De WinterF, ′s JongersB, BielenK, et al.Mechanical Ventilation Impairs IL-17 Cytokine Family Expression in Ventilator-Associated Pneumonia[J]. Int J Mol Sci, 2019, 20(20): 5072.DOI: 10.3390/ijms20205072.
[37]
XiaJ, LiR, YangR, et al.Mild hypothermia attenuate kidney injury in canines with oleic acid-induced acute respiratory distress syndrome[J]. Injury, 2016, 47(7): 1445-1451.DOI: 10.1016/j.injury.2016.04.022.
[38]
JacobLP, ChazaletJJ, PayenDM, et al.Renal hemodynamic and functional effect of PEEP ventilation in human renal transplantations[J]. Am J Respir Crit Care Med, 1995, 152(1): 103-107.DOI: 10.1164/ajrccm.152.1.7599806.
[39]
PutensenC, MutzNJ, Putensen-HimmerG, et al.Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 1999, 159(4Pt 1): 1241-1248.DOI: 10.1164/ajrccm.159.4.9806077.
[40]
LeeKY.Pneumonia, Acute Respiratory Distress Syndrome, and Early Immune-Modulator Therapy[J]. Int J Mol Sci, 2017, 18(2): 388.DOI: 10.3390/ijms18020388.
[41]
LiuKD, GliddenDV, EisnerMD, et al.Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury[J]. Crit Care Med, 2007, 35(12): 2755-2761.
[42]
SharkeyRA, MulloyEM, O′NeillSJ.Acute effects of hypoxaemia, hyperoxaemia and hypercapnia on renal blood flow in normal and renal transplant subjects[J]. Eur Respir J, 1998, 12(3): 653-657.DOI: 10.1183/09031936.98.12030653.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词