综述
人工关节置换术后假体周围感染的诊断进展
中华临床感染病杂志, 2019,12(4) : 309-315. DOI: 10.3760/cma.j.issn.1674-2397.2019.04.012
摘要

关节假体周围感染(Periprosthetic joint infections,PJI)是指关节假体及周围邻近组织的感染,属于关节置换术后严重的并发症之一。其诊断仍是当前关节外科医师所面临的一大难题。本文拟通过对当前PJI的血清学、关节液、病原微生物、组织病理学、影像学诊断新进展进行总结,以期为临床关节外科医师提供新思路。

引用本文: 黄金承, 金毅. 人工关节置换术后假体周围感染的诊断进展 [J] . 中华临床感染病杂志, 2019, 12(4) : 309-315. DOI: 10.3760/cma.j.issn.1674-2397.2019.04.012.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

关节假体周围感染(Periprosthetic joint infections,PJI)是指关节假体及周围邻近组织的感染,属于关节置换术后严重的并发症之一[1],由于当前国内外尚无统一的PJI诊断标准,加上患者症状的异质性,临床中做出一个准确的PJI诊断十分困难,需要同时对患者的临床症状、病史、辅助检查结果及术中发现进行综合评估。目前使用最多的PJI诊断指南为2011年肌肉与骨骼感染协会(Musculoskeletal infection society,MSIS)[2]及2012年美国感染病协会(Infectious diseases society of America,IDSA)[3]发布的PJI诊断指南,虽然两个指南中用于诊断PJI的参考指标存在一些差异(MSIS诊断参考指南包含2个主要诊断和6个次要诊断指标,诊断为PJI的条件为至少满足1个主要诊断或次要诊断指标中满足4项;IDSA的诊断参考指南包含4个主要诊断指标,诊断为PJI的条件为至少满足一项指标),但均包含对辅助检查结果(病原微生物检测结果,组织病理学结果)及临床表现(是否存在窦道,是否存在脓液)的综合评估。现有的PJI诊断辅助检查方法包括:血清学检测、关节液检测、病原微生物检测、组织病理学检测及影像学检测。虽然以上辅助检查在PJI的诊断中均具有重要指导意义,但目前国内外没有一个公认的PJI诊断检查金标准。近年来,一些新的具有诊断意义的检测指标及方法已展示出较好的应用前景,本文将对这些新指标、新方法在PJI诊断中的意义进行总结,以期为PJI的诊断提供新思路。

1 血清学检测新进展

PJI诊断最常用的血清学检测指标为白细胞计数(WBC)、红细胞沉降率(ESR)和C-反应蛋白(CRP),但这3项指标易受到多种因素(如基础疾病、年龄及术后炎症反应等)的干扰,特异性较差[4]。因此,不少学者开始评价一些新的血清学检测指标在PJI诊断中的意义。

白细胞介素-6 (IL-6)对炎症的反应速度较CRP快,相较于CRP有更好的诊断价值,但其他刺激如手术、创伤、T淋巴细胞的增殖或局部细胞因子均可引起IL-6的升高,使得IL-6在PJI诊断中存在特异性不高的缺点[5]。降钙素原(PCT)由甲状腺的滤泡旁细胞、肺脏及肠的神经内分泌细胞合成,是反映机体内存在细菌感染的敏感指标,在鉴别感染性及非感染性炎症中具有比CRP更敏感的优势[6],然而一些自身免疫性疾病、慢性炎症性疾病及恶性肿瘤可能会引起血清PCT的增高,使得PCT在诊断PJI中也存在特异性不高的缺点[7]。D-二聚体来源于纤溶酶溶解的交联纤维蛋白凝块,常作为血栓形成的一个辅助诊断指标,研究显示,以> 850 ng/mL为标准时,D-二聚体在诊断PJI时优于ESR及CRP,具有89%的敏感度及93%的特异度[8]。可溶性细胞间粘附分子-1(sICAM-1)是细胞间粘附分子-1经过裂解产生的与感染相关的可溶性蛋白,研究显示与无菌性假体松动患者相比,sICAM-1只在PJI患者体内高表达,术后创伤引起的炎症不引起sICAM-1的高表达,提示sICAM-1可能是PJI诊断的一个特异性指标,但缺乏进一步研究的数据[9]。Toll样受体(TLRs)为白介素-1受体(IL-1R)超家族蛋白成员,在机体免疫活化过程中发挥重要作用,可反映机体不同炎症状态及感染的存在(TLR2识别革兰阳性菌,TLR4识别革兰阴性菌),且PJI患者血清内TLR2的水平显著增高,提示其有望成为PJI诊断的一个新指标[10]。脂多糖结合蛋白(LBP)是机体识别革兰阴性菌脂多糖并启动免疫反应的关键因子,其浓度可间接反映机体内炎症水平,研究显示以>7 ng/mL为标准时,LBP在PJI诊断时仅有66%的特异度及71%的敏感度,不建议将LBP作为PJI诊断的血清指标[11,12]。髓样相关蛋白-14(MRP-14)属于钙离子结合蛋白S100家族中成员,参与细胞的炎症反应。研究显示,MRP-14在PJI患者骨组织及外周血中的水平显著高于关节置换术后无菌性松动的患者,提示其有望成为PJI诊断的一个新指标[13]。可溶性尿激酶型纤溶酶原激活物受体(su-PAR)是细胞表面尿激酶纤溶酶原激活物受体经裂解后形成的可溶性受体,可以反映感染的严重程度,其在PJI患者血清的水平显著高于健康人,并与CRP、IL-6的表达呈正相关,提示其有望成为PJI诊断的一个新指标[14]

2 关节液检测新进展

与血清学检测指标易受全身状况干扰不同的是,关节液检测结果可更准确地反映关节局部的病理情况。关节液WBC和中性粒细胞比例在PJI诊断中具有较高的准确性,但这两项指标临界值的界定目前国内外尚无统一标准[15,16]。因此不少学者对一些新的关节液指标在PJI诊断中的意义进行了研究。

α-防御素作为一种小分子抗菌肽,被证实在PJI诊断中具有63%~100%的敏感度及95%~100%的特异度[17,18],且不受抗菌药物治疗干扰的优点[19],但在伴有假体周围重金属中毒时会出现假阳性[20]。白细胞酯酶(LE)是白细胞内含有的一种特异性酶,其阳性表达可提示炎症的存在。虽然研究显示LE在PJI诊断中的敏感度(28.6%~100%)及特异度(63.6%~96.5%)波动较大[21,22,23],但一项荟萃分析显示LE可作为排除PJI的一种方法[24]。IL-6作为一项炎症指标,被证实在PJI诊断中具有46.8%~90.9%的敏感度及85.7%~97.6%的特异度[25,26],联合检测血清IL-6和关节液IL-6指标可排除PJI假阴性诊断[27]。钙卫蛋白是来源于中性粒细胞和巨噬细胞的含钙蛋白,属于急性炎性细胞活化的标志物,研究显示关节液内钙卫蛋白在PJI诊断中具有86.7%的敏感度及91.7%的特异度,提示关节液内钙卫蛋白可作为排除PJI的一个指标[28]。腺苷脱氨酶(ADA)是一种与机体细胞免疫系统相关的核酸代谢酶类,研究显示关节液内ADA在PJI诊断中具有78.3%的敏感度及96.9%的特异度,联合关节液ADA及WBC可进一步提高PJI诊断阳性预测值[29]。此外,也有研究显示关节液中IL-17、IL-1β、中性粒细胞弹性蛋白酶-2(ELA-2)、杀菌/通透性增加蛋白(BPI)、α2-巨球蛋白(α2M)、粒细胞集落刺激因子(G-CSF),人β防御素(HBD)、干扰素、乳酸脱氢酶、导管素LL-37(LL-37)、中性粒细胞明胶酶相关脂钙蛋白(NGAL)、皮肤源性抗白细胞蛋白酶(SKALP)、凝血酶致敏蛋白及血管内皮生长因子(VEGF)在PJI诊断中具有一定指导意义,但具体的敏感度及特异度数据尚不完善,值得进一步研究[30]

3 病原微生物检测新进展

虽然病原微生物检测是PJI诊断的金标准,但约7%~39% PJI患者的病原微生物检测结果仍为阴性[31],因此如何提高病原微生物检测结果准确性已成为当前研究的热点。传统的病原微生物检测方式包括术前抽取关节液培养(敏感度约为90%~92%)、术中留取假体周围组织培养(敏感度约为77%~82%)以及术中使用拭子擦拭假体周围组织培养(敏感度约为68%~76%),但由于后者假阳性率较高,目前已不再推荐使用[16,32]。目前认为引起病原微生物检测结果不佳的主要原因包括:(1)检测前的抗病原微生物治疗;(2)不合适的培养基、培养时间;(3)罕见微生物(真菌、分枝杆菌等);(4)生物膜包裹;(5)低毒力病原微生物等。针对这些问题,对应采取的措施主要包括:(1)取标本前停止抗病原微生物治疗2~4周[33];(2)使用血培养瓶进行病原微生物培养[34];(3)延长培养时间(5~14 d)[35];(4)同时行需氧、厌氧、真菌培养[36];(5)术中留取至少3处标本进行培养[35];(6)假体行超声裂解或二硫苏糖醇浸泡[37]后再行病原微生物培养等方式提高病原微生物检测的敏感度和特异度。Liu等[38]发现在关节腔穿刺行病原微生物培养时不使用利多卡因可提高病原微生物培养阳性率;Rieber等[39]发现在培养基内加入肝巯基酸汤可缩短厌氧微生物检测的培养时间(6 d即可检测出厌氧微生物的存在)。

近年来,一些新的检测技术如:基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术、聚合酶链反应技术(PCR)、16S rRNA测序技术及鸟枪法宏基因组测序技术在PJI诊断中展示出了一些优势。Harris等[40]采用MALDI-TOF MS成功地检测出158例PJI患者的葡萄球菌菌属,认为该方法在PJI诊断中具有快速、可靠的优点,但该方法只能检测出已有细菌图谱的细菌。Yang和Liu[41]研究发现,PCR技术在检测病原微生物时可获得76%的敏感度及94%的特异度,建议使用PCR诊断PJI时应联合其他检测指标。Tarabichi等[42]使用16S rRNA测序技术对11例培养阴性的PJI标本进行病原微生物检测,获得了81.8%阳性率。该团队又通过该技术成功检测出1例培养阴性的PJI患者的病原微生物并以该结果指导临床治疗获得了不错的临床疗效[43]。Thoendel等[44]使用鸟枪法宏基因组测序技术成功检测出一种新的PJI病原微生物Mycoplasma salivarium,并发现该技术能检测出94.8%超声裂解液培养出的已知病原微生物及43.9%的超声裂解液无法培养出的病原微生物[45]。Moshirabadi等[46]研究显示限制性片段长度多态性-PCR(PCR-RFLP)在PJI诊断中具有97.4%的敏感度及100%的特异度。虽然这些PCR技术在PJI诊断中展示出了优势,但存在样品易污染,价格贵等缺点。

4 组织病理学检测

虽然组织病理学检测在PJI诊断中具有重要意义,但目前国内外尚无统一的标准[47]。以5个高倍视野下平均中性粒细胞计数>5个为PJI诊断标准,可获得>80.0%的敏感度,>90.0%的特异度;以10个高倍视野下平均中性粒细胞计数>23个为PJI诊断标准,可获得82%的敏感度,90.0%的特异度[48];以每个高倍镜视野下CD15阳性的中性粒细胞>39个为PJI诊断标准,可获得91.0%的敏感度,92.0%的特异度[49]。George等[50]使用术中冰冻切片评估二期关节翻修中感染控制情况时发现,组织病理学在诊治感染时具有94%的特异度,但在排除感染时只有50%的敏感度及50%的阳性预测率,因此建议使用组织病理学检测进行PJI诊断时,应联合其他检测指标。Xu等[51]研究发现联合使用血清ESR、CRP指标及术中冰冻切片组织病理学检测(单个高倍镜视野下中性粒细胞>5或>10个),可获得更高的PJI诊断准确率。

5 影像学检测

虽然传统的解剖成像技术(X线、CT、MRI)在PJI诊断中具有重要参考价值,但敏感度、特异度差且存在金属伪影干扰的缺点。目前使用影像学技术进行PJI诊断的研究热点主要集中在核成像技术方面。与解剖成像技术不同,核成像技术属于功能性显像,不受金属伪影干扰且可在组织发生形态结构变化之前做出诊断,近年来已被认为是PJI诊断的一个新选择[52]99mTc标记的亚甲基二磷酸盐(99mTc-MDP)三相骨显像技术及镓(67Ga)显像虽然在PJI诊断中具有较高的敏感度,但特异度较低[53],已不被推荐作为PJI诊断的首选[54]。白细胞显像被认为是核成像技术中用于诊断感染的金标准[55],但该技术只能检测伴中性粒细胞增高的感染,对不伴中性粒细胞增高(如结核感染)[56]及慢性、有生物膜形成的感染诊断效果不佳[57]。由于白细胞会在感染区域及骨髓内同时聚集,白细胞联合骨髓显像技术的出现,进一步提高了感染诊断的特异性,在PJI诊断中可获得55%~100%的敏感度及94%~100%的特异度,已被认为是PJI诊断的金标准[58]。但白细胞显像及白细胞联合骨髓显像均存在耗时耗力、需要配备特殊设备、需对检测人员进行特殊培训等缺点[59]。发射型计算机断层扫描仪(ECT)通过检测放射性核素表达量的差异对疾病进行诊断,当前成为研究PJI诊断的新热点,包括正电子发射型计算机断层扫描(PET)及单光子发射计算机断层扫描(SPECT)两大类。18F-脱氧葡萄糖-正电子发射断层扫描(18F-FDG/PET)通过检测细胞葡萄糖摄入量对感染进行评估,但无法区分葡萄糖摄入量的增加是由无菌性松动还是感染引起[60]。为了弥补18F-FDG/PET的缺陷,18F-脱氧葡萄糖标记白细胞正电子发射断层扫描的出现,提高了PJI诊断的敏感度(87.0%~93.3%)及特异度(82.0%~97.4%)[61,62],但该检测方法存在耗时,不能对慢性感染进行诊断的缺点[60]。单光子发射计算机断层成像结合计算机断层扫描(SPECT/CT)不仅可对PJI做出诊断,还可对感染部位进行定位[63],能进一步指导PJI治疗方案的选择[64]。免疫标记单克隆抗体作为示踪剂的技术也逐渐应用于PJI的诊断。由于环丙沙星可结合到革兰阳性及阴性菌DNA促旋酶上,使用99mTc标记的环丙沙星诊断PJI可获得85.4%的敏感度及81.7%的特异度[65],但该方法存在较高的假阴性率[66]。Pickett等[67]发现使用免疫PET成像技术检测锆-89标记的脂膜酸(LTA)单克隆抗体能有效区分关节周围的无菌性炎症和感染。虽然核成像技术在PJI诊断中展示出了独特的优势,但如何寻找特异的PJI核成像技术检测指标,仍是当前研究的重点。

6 小结

虽然新的检测手段和检测指标为PJI的诊断提供了新思路,但目前仍没有一个公认的PJI诊断检测金标准。随着精准医学的到来,进一步明确PJI发病特点,寻找PJI诊断的更特异的指标或方法仍将是关节外科医师的研究热点。近几年提出的限制性片段长度多态性-PCR[46]、免疫PET成像技术[67]等方法,符合精准医学的靶向检测特点,虽然初步研究结果提示其具有良好的PJI诊断价值,但尚缺乏大数据的支持。因此,在金标准找到之前,通过优化现有检测方法、联合现有多种检测手段可为提高PJI诊断准确性提供参考。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
MorozenkoD, MarushakO, GliebovaK, et al. Clinical and biochemical markers in the diagnosis of bacterial arthritis of knee joint and periprosthetic infection of hip joint[J]. Georgian Med News, 2019, (288): 26-32.
[2]
ParviziJ, ZmistowskiB, BerbariEF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011, 469(11): 2992-2994. DOI: 10.1007/s11999-011-2102-9.
[3]
OsmonDR, BerbariEF, BerendtAR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2013, 56(1): e1-e25. DOI: 10.1093/cid/cis803.
[4]
GoswamiK, ParviziJ, Maxwell CourtneyP. Current recommendations for the diagnosis of acute and chronic PJI for hip and knee-cell counts, alpha-defensin, leukocyte esterase, next-generation sequencing[J]. Curr Rev Musculoskelet Med, 2018, 11(3): 428-438. DOI: 10.1007/s12178-018-9513-0.
[5]
GlehrM, FriesenbichlerJ, HofmannG, et al. Novel biomarkers to detect infection in revision hip and knee arthroplasties[J]. Clin Orthop Relat Res, 2013, 471(8): 2621-2628.DOI: 10.1007/s11999-013-2998-3.
[6]
YuanK, LiWD, QiangY, et al. Comparison of procalcitonin and C-reactive protein for the diagnosis of periprosthetic joint infection before revision total hip arthroplasty[J]. Surg Infect (Larchmt), 2015, 16(2): 146-150. DOI: 10.1089/sur.2014.034.
[7]
WorthingtonT, DunlopD, CaseyA, et al. Serum procalcitonin, interleukin-6, soluble intercellular adhesin molecule-1 and IgG to short-chain exocellular lipoteichoic acid as predictors of infection in total joint prosthesis revision[J]. Br J Biomed Sci, 2010, 67(2): 71-76.
[8]
ShahiA, KheirMM, TarabichiM, et al. Serum D-dimer test is promising for the diagnosis of periprosthetic joint infection and timing of reimplantation[J]. J Bone Joint Surg Am, 2017, 99(17): 1419-1427. DOI: 10.2106/JBJS.16.01395.
[9]
MumingjiangY, ZhouX, HeR. Value of knee skin temperature measured by infrared thermography and soluble intercellular adhesion molecule-1 in the diagnosis of peri-prosthetic knee infection in Chinese individuals following total knee arthroplasty[J]. Chin Med J (Engl), 2014, 127(17): 3105-3109.
[10]
GallieraE, DragoL, VassenaC, et al. Toll-like receptor 2 in serum: a potential diagnostic marker of prosthetic joint infection?[J]. J Clin Microbiol, 2014, 52(2): 620-623. DOI: 10.1128/JCM.02727-13.
[11]
EttingerM, CalliessT, KielsteinJT, et al. Circulating biomarkers for discrimination between aseptic joint failure, low-grade infection, and high-grade septic failure[J]. Clin Infect Dis, 2015, 61(3): 332-341. DOI: 10.1093/cid/civ286.
[12]
FriedrichMJ, RandauTM, WimmerMD, et al. Lipopolysaccharide-binding protein: a valuable biomarker in the differentiation between periprosthetic joint infection and aseptic loosening?[J]. Int Orthop, 2014, 38(10): 2201-2207. DOI: 10.1007/s00264-014-2351-9.
[13]
DapuntU, GieseT, MaurerS, et al. Neutrophil-derived MRP-14 is up-regulated in infectious osteomyelitis and stimulates osteoclast generation[J]. J Leukoc Biol, 2015, 98(4): 575-582. DOI: 10.1189/jlb.3VMA1014-482R.
[14]
GallieraE, DragoL, MarazziMG, et al. Soluble urokinase-type plasminogen activator receptor (suPAR) as new biomarker of the prosthetic joint infection: correlation with inflammatory cytokines[J]. Clin Chim Acta, 2015, 441: 23-28. DOI: 10.1016/j.cca.2014.11.029.
[15]
TrampuzA, HanssenAD, OsmonDR, et al. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection[J]. Am J Med, 2004, 117(8): 556-562. DOI: 10.1016/j.amjmed.2004.06.022.
[16]
ParviziJ, GehrkeT, ChenAF. Proceedings of the international consensus on periprosthetic joint infection[J]. Bone Joint J, 2013, 95-B(11): 1450-1452. DOI: 10.1302/0301-620X.95B11.33135.
[17]
DeirmengianC, KardosK, KilmartinP, et al. Combined measurement of synovial fluid alpha-Defensin and C-reactive protein levels: highly accurate for diagnosing periprosthetic joint infection[J]. J Bone Joint Surg Am, 2014, 96(17): 1439-1445. DOI: 10.2106/JBJS.M.01316.
[18]
BinghamJ, ClarkeH, SpangehlM, et al. The alpha defensin-1 biomarker assay can be used to evaluate the potentially infected total joint arthroplasty[J]. Clin Orthop Relat Res, 2014, 472(12): 4006-4009. DOI: 10.1007/s11999-014-3900-7.
[19]
WyattMC, BeswickAD, KunutsorSK, et al. The alpha-defensin immunoassay and leukocyte esterase colorimetric strip test for the diagnosis of periprosthetic infection: a systematic review and meta-analysis[J]. J Bone Joint Surg Am, 2016, 98(12): 992-1000. DOI: 10.2106/JBJS.15.01142.
[20]
BonanzingaT, ZaharA, DütschM, et al. How reliable is the alpha-defensin immunoassay test for diagnosing periprosthetic joint infection? A prospective study[J]. Clin Orthop Relat Res, 2017, 475(2): 408-415. DOI: 10.1007/s11999-016-4906-0.
[21]
ShahiA, TanTL, KheirMM, et al. Diagnosing periprosthetic joint infection: and the winner is?[J]. J Arthroplasty, 2017, 32(9S): S232-S235. DOI: 10.1016/j.arth.2017.06.005.
[22]
GuentherD, KokengeT, JacobsO, et al. Excluding infections in arthroplasty using leucocyte esterase test[J]. Int Orthop, 2014, 38(11): 2385-2390. DOI: 10.1007/s00264-014-2449-0.
[23]
NelsonGN, PaxtonES, NarzikulA, et al. Leukocyte esterase in the diagnosis of shoulder periprosthetic joint infection[J]. J Shoulder Elbow Surg, 2015, 24(9): 1421-1426. DOI: 10.1016/j.jse.2015.05.034.
[24]
WangC, LiR, WangQ, et al. Synovial fluid leukocyte esterase in the diagnosis of peri-prosthetic joint infection: a systematic review and meta-analysis[J]. Surg Infect (Larchmt), 2018, 19(3): 245-253. DOI: 10.1089/sur.2017.192.
[25]
FrangiamoreSJ, SalehA, KovacMF, et al. Synovial fluid interleukin-6 as a predictor of periprosthetic shoulder infection[J]. J Bone Joint Surg Am, 2015, 97(1): 63-70. DOI: 10.2106/JBJS.N.00104.
[26]
LenskiM, SchererMA. Synovial IL-6 as inflammatory marker in periprosthetic joint infections[J]. J Arthroplasty, 2014, 29(6): 1105-1109. DOI: 10.1016/j.arth.2014.01.014.
[27]
GalloJ, SvobodaM, ZapletalovaJ, et al. Serum IL-6 in combination with synovial IL-6/CRP shows excellent diagnostic power to detect hip and knee prosthetic joint infection[J/OL]. PLoS One, 2018, 13(6): e0199226. DOI: 10.1371/journal.pone.0199226.
[28]
Wouthuyzen-BakkerM, PloegmakersJJW, OttinkK, et al. Synovial calprotectin: an inexpensive biomarker to exclude a chronic prosthetic joint infection[J]. J Arthroplasty, 2018, 33(4): 1149-1153. DOI: 10.1016/j.arth.2017.11.006.
[29]
SousaR, SerranoP, Gomes DiasJ, et al. Improving the accuracy of synovial fluid analysis in the diagnosis of prosthetic joint infection with simple and inexpensive biomarkers: C-reactive protein and adenosine deaminase[J]. Bone Joint J, 2017, 99-B(3): 351-357. DOI: 10.1302/0301-620X.99B3.BJJ-2016-0684.R1.
[30]
SalehA, RamanathanD, SiqueiraMBP, et al. The diagnostic utility of synovial fluid markers in periprosthetic joint infection: a systematic review and meta-analysis[J]. J Am Acad Orthop Surg, 2017, 25(11): 763-772. DOI: 10.5435/JAAOS-D-16-00548.
[31]
WangFD, WangYP, ChenCF, et al. The incidence rate, trend and microbiological aetiology of prosthetic joint infection after total knee arthroplasty: A 13 years’ experience from a tertiary medical center in Taiwan[J]. J Microbiol Immunol Infect, 2018, 51(6): 717-722. DOI: 10.1016/j.jmii.2018.08.011.
[32]
LarsenLH, LangeJ, XuY, et al. Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995[J]. J Med Microbiol, 2012, 61(Pt 3): 309-316. DOI: 10.1099/jmm.0.035303-0.
[33]
Wouthuyzen-BakkerM, BenitoN, SorianoA. The effect of preoperative antimicrobial prophylaxis on intraoperative culture results in patients with a suspected or confirmed prosthetic joint infection: a systematic review[J]. J Clin Microbiol, 2017, 55(9): 2765-2774. DOI: 10.1128/JCM.00640-17.
[34]
YanQ, KarauMJ, Greenwood-QuaintanceKE, et al. Comparison of diagnostic accuracy of periprosthetic tissue culture in blood culture bottles to that of prosthesis sonication fluid culture for diagnosis of prosthetic joint infection (PJI) by use of bayesian latent class modeling and IDSA PJI criteria for classification[J]. J Clin Microbiol, 2018, 56(6). pii: e00319-18. DOI: 10.1128/JCM.00319-18.
[35]
BemerP, LegerJ, TandeD, et al. How many samples and how many culture media to diagnose a prosthetic joint infection: a clinical and microbiological prospective multicenter study[J]. J Clin Microbiol, 2016, 54(2): 385-391. DOI: 10.1128/JCM.02497-15.
[36]
JordanRW, SmithNA, SaithnaA, et al. Sensitivities, specificities, and predictive values of microbiological culture techniques for the diagnosis of prosthetic joint infection[J]. Biomed Res Int, 2014, 2014: 180416. DOI: 10.1155/2014/180416.
[37]
SambriA, CadossiM, GianniniS, et al. Is treatment with dithiothreitol more effective than sonication for the diagnosis of prosthetic joint infection?[J] Clin Orthop Relat Res, 2018, 476(1): 137-145. DOI: 10.1007/s11999.0000000000000060.
[38]
LiuK, YeL, SunW, et al. Does use of lidocaine affect culture of synovial fluid obtained to diagnose periprosthetic joint infection (PJI)? An in vitro study[J]. Med Sci Monit, 2018, 24: 448-452. DOI: 10.12659/msm.908585.
[39]
RieberH, FrontzekA, JeroschJ, et al. Periprosthetic joint infection caused by anaerobes. Retrospective analysis reveals no need for prolonged cultivation time if sensitive supplemented growth media are used[J]. Anaerobe, 2018, 50: 12-18. DOI: 10.1016/j.anaerobe.2018.01.009.
[40]
HarrisLG, El-BouriK, JohnstonS, et al. Rapid identification of staphylococci from prosthetic joint infections using MALDI-TOF mass-spectrometry[J]. Int J Artif Organs, 2010, 33(9): 568-574.
[41]
YangJ, LiuJH. Diagnosis of periprosthetic joint infection using polymerase chain reaction: an updated systematic review and meta-analysis[J]. Surg Infect (Larchmt), 2018, 19(6): 555-565. DOI: 10.1089/sur.2018.014.
[42]
TarabichiM, ShohatN, GoswamiK, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing[J]. J Bone Joint Surg Am, 2018, 100(2): 147-154. DOI: 10.2106/JBJS.17.00434.
[43]
TarabichiM, AlvandA, ShohatN, et al. Diagnosis of streptococcus canis periprosthetic joint infection: the utility of next-generation sequencing[J]. Arthroplast Today, 2018, 4(1): 20-23. DOI: 10.1016/j.artd.2017.08.005.
[44]
ThoendelM, JeraldoP, Greenwood-QuaintanceKE, et al. A novel prosthetic joint infection pathogen, mycoplasma salivarium, identified by metagenomic shotgun sequencing[J]. Clin Infect Dis, 2017, 65(2): 332-335. DOI: 10.1093/cid/cix296.
[45]
ThoendelMJ, JeraldoPR, Greenwood-QuaintanceKE, et al. Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach[J]. Clin Infect Dis, 2018, 67(9): 1333-1338. DOI: 10.1093/cid/ciy303.
[46]
MoshirabadiA, RaziM, ArastehP, et al. Polymerase chain reaction assay using the restriction fragment length polymorphism technique in the detection of prosthetic joint infections: a multi-centered study[J]. J Arthroplasty, 2019, 34(2): 359-364. DOI: 10.1016/j.arth.2018.10.017.
[47]
BemerP, LegerJ, MilinS, et al. Histopathological diagnosis of prosthetic joint infection: does a threshold of 23 neutrophils do better than classification of the periprosthetic membrane in a prospective multicenter study?[J]. J Clin Microbiol, 2018, 56(9). pii: e00536-18. DOI: 10.1128/JCM.00536-18.
[48]
MorawietzL, TiddensO, MuellerM, et al. Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening[J]. Histopathology, 2009, 54(7): 847-853. DOI: 10.1111/j.1365-2559.2009.03313.x.
[49]
KrennVT, LiebischM, KolbelB, et al. CD15 focus score: infection diagnosis and stratification into low-virulence and high-virulence microbial pathogens in periprosthetic joint infection[J]. Pathol Res Pract, 2017, 213(5): 541-547. DOI: 10.1016/j.prp.2017.01.002.
[50]
GeorgeJ, KwiecienG, KlikaAK, et al. Are frozen sections and MSIS criteria reliable at the time of reimplantation of two-stage revision arthroplasty?[J]. Clin Orthop Relat Res, 2016, 474(7): 1619-1626. DOI: 10.1007/s11999-015-4673-3.
[51]
XuC, GuoH, ChenJY. Intra-operative diagnosis of periprosthetic joint infection can rely on frozen sections in patients without synovial fluid analyses[J]. Int Orthop, 2019, 43(6): 1303-1308. DOI: 10.1007/s00264-018-4227-x.
[52]
YueB, TangT. The use of nuclear imaging for the diagnosis of periprosthetic infection after knee and hip arthroplasties[J]. Nucl Med Commun, 2015, 36(4): 305-311. DOI: 10.1097/MNM.0000000000000266.
[53]
SeguraAB, MunozA, BrullesYR, et al. What is the role of bone scintigraphy in the diagnosis of infected joint prostheses?[J]. Nucl Med Commun, 2004, 25(5): 527-532.
[54]
GlaudemansAW, GalliF, PacilioM, et al. Leukocyte and bacteria imaging in prosthetic joint infection[J]. Eur Cell Mater, 2013, 25: 61-77.
[55]
RennenHJ, BoermanOC, OyenWJ, et al. Imaging infection/inflammation in the new millennium[J]. Eur J Nucl Med, 2001, 28(2): 241-252.
[56]
PalestroCJ, LoveC. Radionuclide imaging of musculoskeletal infection: conventional agents[J]. Semin Musculoskelet Radiol, 2007, 11(4): 335-352. DOI: 10.1055/s-2008-1060336.
[57]
LarikkaMJ, AhonenAK, JunilaJA, et al. Extended combined 99mTc-white blood cell and bone imaging improves the diagnostic accuracy in the detection of hip replacement infections[J]. Eur J Nucl Med, 2001, 28(3): 288-293.
[58]
SousaR, MassadaM, PereiraA, et al. Diagnostic accuracy of combined 99mTc-sulesomab and 99mTc-nanocolloid bone marrow imaging in detecting prosthetic joint infection[J]. Nucl Med Commun, 2011, 32(9): 834-839. DOI: 10.1097/MNM.0b013e3283496695.
[59]
LoveC, MarwinSE, TomasMB, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging[J]. J Nucl Med, 2004, 45(11): 1864-1871.
[60]
PalestroCJ, LoveC, MillerTT. Diagnostic imaging tests and microbial infections[J]. Cell Microbiol, 2007, 9(10): 2323-2333.
[61]
AksoySY, AsaS, OzhanM, et al. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection[J]. Eur J Nucl Med Mol Imaging, 2014, 41(3): 556-564. DOI: 10.1007/s00259-013-2597-2.
[62]
RiniJN, BhargavaKK, TroncoGG, et al. PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection[J]. Radiology, 2006, 238(3): 978-987.
[63]
GrauteV, FeistM, LehnerS, et al. Detection of low-grade prosthetic joint infections using 99mTc-antigranulocyte SPECT/CT: initial clinical results[J]. Eur J Nucl Med Mol Imaging, 2010, 37(9): 1751-1759. DOI: 10.1007/s00259-010-1431-3.
[64]
FilippiL, SchillaciO. Usefulness of hybrid SPECT/CT in 99mTc-HMPAO-labeled leukocyte scintigraphy for bone and joint infections[J]. J Nucl Med, 2006, 47(12): 1908-1913.
[65]
BrittonKE, WarehamDW, DasSS, et al. Imaging bacterial infection with (99m)Tc-ciprofloxacin (Infecton)[J]. J Clin Pathol, 2002, 55(11): 817-823.
[66]
LarikkaMJ, AhonenAK, NiemelaO, et al. 99mTc-ciprofloxacin (Infecton) imaging in the diagnosis of knee prosthesis infections[J]. Nucl Med Commun, 2002, 23(2): 167-170.
[67]
PickettJE, ThompsonJM, SadowskaA, et al. Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone[J]. Bone Res, 2018, 6: 13. DOI: 10.1038/s41413-018-0014-y.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词