参考文献[1]
MorozenkoD, MarushakO, GliebovaK, et al. Clinical and biochemical markers in the diagnosis of bacterial arthritis of knee joint and periprosthetic infection of hip joint[J]. Georgian Med News, 2019, (288): 26-32.
[2]
ParviziJ, ZmistowskiB, BerbariEF, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011, 469(11): 2992-2994. .
[3]
OsmonDR, BerbariEF, BerendtAR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2013, 56(1): e1-e25. .
[4]
GoswamiK, ParviziJ, Maxwell CourtneyP. Current recommendations for the diagnosis of acute and chronic PJI for hip and knee-cell counts, alpha-defensin, leukocyte esterase, next-generation sequencing[J]. Curr Rev Musculoskelet Med, 2018, 11(3): 428-438. .
[5]
GlehrM, FriesenbichlerJ, HofmannG, et al. Novel biomarkers to detect infection in revision hip and knee arthroplasties[J]. Clin Orthop Relat Res, 2013, 471(8): 2621-2628..
[6]
YuanK, LiWD, QiangY, et al. Comparison of procalcitonin and C-reactive protein for the diagnosis of periprosthetic joint infection before revision total hip arthroplasty[J]. Surg Infect (Larchmt), 2015, 16(2): 146-150. .
[7]
WorthingtonT, DunlopD, CaseyA, et al. Serum procalcitonin, interleukin-6, soluble intercellular adhesin molecule-1 and IgG to short-chain exocellular lipoteichoic acid as predictors of infection in total joint prosthesis revision[J]. Br J Biomed Sci, 2010, 67(2): 71-76.
[8]
ShahiA, KheirMM, TarabichiM, et al. Serum D-dimer test is promising for the diagnosis of periprosthetic joint infection and timing of reimplantation[J]. J Bone Joint Surg Am, 2017, 99(17): 1419-1427. .
[9]
MumingjiangY, ZhouX, HeR. Value of knee skin temperature measured by infrared thermography and soluble intercellular adhesion molecule-1 in the diagnosis of peri-prosthetic knee infection in Chinese individuals following total knee arthroplasty[J]. Chin Med J (Engl), 2014, 127(17): 3105-3109.
[10]
GallieraE, DragoL, VassenaC, et al. Toll-like receptor 2 in serum: a potential diagnostic marker of prosthetic joint infection?[J]. J Clin Microbiol, 2014, 52(2): 620-623. .
[11]
EttingerM, CalliessT, KielsteinJT, et al. Circulating biomarkers for discrimination between aseptic joint failure, low-grade infection, and high-grade septic failure[J]. Clin Infect Dis, 2015, 61(3): 332-341. .
[12]
FriedrichMJ, RandauTM, WimmerMD, et al. Lipopolysaccharide-binding protein: a valuable biomarker in the differentiation between periprosthetic joint infection and aseptic loosening?[J]. Int Orthop, 2014, 38(10): 2201-2207. .
[13]
DapuntU, GieseT, MaurerS, et al. Neutrophil-derived MRP-14 is up-regulated in infectious osteomyelitis and stimulates osteoclast generation[J]. J Leukoc Biol, 2015, 98(4): 575-582. .
[14]
GallieraE, DragoL, MarazziMG, et al. Soluble urokinase-type plasminogen activator receptor (suPAR) as new biomarker of the prosthetic joint infection: correlation with inflammatory cytokines[J]. Clin Chim Acta, 2015, 441: 23-28. .
[15]
TrampuzA, HanssenAD, OsmonDR, et al. Synovial fluid leukocyte count and differential for the diagnosis of prosthetic knee infection[J]. Am J Med, 2004, 117(8): 556-562. .
[16]
ParviziJ, GehrkeT, ChenAF. Proceedings of the international consensus on periprosthetic joint infection[J]. Bone Joint J, 2013, 95-B(11): 1450-1452. .
[17]
DeirmengianC, KardosK, KilmartinP, et al. Combined measurement of synovial fluid alpha-Defensin and C-reactive protein levels: highly accurate for diagnosing periprosthetic joint infection[J]. J Bone Joint Surg Am, 2014, 96(17): 1439-1445. .
[18]
BinghamJ, ClarkeH, SpangehlM, et al. The alpha defensin-1 biomarker assay can be used to evaluate the potentially infected total joint arthroplasty[J]. Clin Orthop Relat Res, 2014, 472(12): 4006-4009. .
[19]
WyattMC, BeswickAD, KunutsorSK, et al. The alpha-defensin immunoassay and leukocyte esterase colorimetric strip test for the diagnosis of periprosthetic infection: a systematic review and meta-analysis[J]. J Bone Joint Surg Am, 2016, 98(12): 992-1000. .
[20]
BonanzingaT, ZaharA, DütschM, et al. How reliable is the alpha-defensin immunoassay test for diagnosing periprosthetic joint infection? A prospective study[J]. Clin Orthop Relat Res, 2017, 475(2): 408-415. .
[21]
ShahiA, TanTL, KheirMM, et al. Diagnosing periprosthetic joint infection: and the winner is?[J]. J Arthroplasty, 2017, 32(9S): S232-S235. .
[22]
GuentherD, KokengeT, JacobsO, et al. Excluding infections in arthroplasty using leucocyte esterase test[J]. Int Orthop, 2014, 38(11): 2385-2390. .
[23]
NelsonGN, PaxtonES, NarzikulA, et al. Leukocyte esterase in the diagnosis of shoulder periprosthetic joint infection[J]. J Shoulder Elbow Surg, 2015, 24(9): 1421-1426. .
[24]
WangC, LiR, WangQ, et al. Synovial fluid leukocyte esterase in the diagnosis of peri-prosthetic joint infection: a systematic review and meta-analysis[J]. Surg Infect (Larchmt), 2018, 19(3): 245-253. .
[25]
FrangiamoreSJ, SalehA, KovacMF, et al. Synovial fluid interleukin-6 as a predictor of periprosthetic shoulder infection[J]. J Bone Joint Surg Am, 2015, 97(1): 63-70. .
[26]
LenskiM, SchererMA. Synovial IL-6 as inflammatory marker in periprosthetic joint infections[J]. J Arthroplasty, 2014, 29(6): 1105-1109. .
[27]
GalloJ, SvobodaM, ZapletalovaJ, et al. Serum IL-6 in combination with synovial IL-6/CRP shows excellent diagnostic power to detect hip and knee prosthetic joint infection[J/OL]. PLoS One, 2018, 13(6): e0199226. .
[28]
Wouthuyzen-BakkerM, PloegmakersJJW, OttinkK, et al. Synovial calprotectin: an inexpensive biomarker to exclude a chronic prosthetic joint infection[J]. J Arthroplasty, 2018, 33(4): 1149-1153. .
[29]
SousaR, SerranoP, Gomes DiasJ, et al. Improving the accuracy of synovial fluid analysis in the diagnosis of prosthetic joint infection with simple and inexpensive biomarkers: C-reactive protein and adenosine deaminase[J]. Bone Joint J, 2017, 99-B(3): 351-357. .
[30]
SalehA, RamanathanD, SiqueiraMBP, et al. The diagnostic utility of synovial fluid markers in periprosthetic joint infection: a systematic review and meta-analysis[J]. J Am Acad Orthop Surg, 2017, 25(11): 763-772. .
[31]
WangFD, WangYP, ChenCF, et al. The incidence rate, trend and microbiological aetiology of prosthetic joint infection after total knee arthroplasty: A 13 years’ experience from a tertiary medical center in Taiwan[J]. J Microbiol Immunol Infect, 2018, 51(6): 717-722. .
[32]
LarsenLH, LangeJ, XuY, et al. Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995[J]. J Med Microbiol, 2012, 61(Pt 3): 309-316. .
[33]
Wouthuyzen-BakkerM, BenitoN, SorianoA. The effect of preoperative antimicrobial prophylaxis on intraoperative culture results in patients with a suspected or confirmed prosthetic joint infection: a systematic review[J]. J Clin Microbiol, 2017, 55(9): 2765-2774. .
[34]
YanQ, KarauMJ, Greenwood-QuaintanceKE, et al. Comparison of diagnostic accuracy of periprosthetic tissue culture in blood culture bottles to that of prosthesis sonication fluid culture for diagnosis of prosthetic joint infection (PJI) by use of bayesian latent class modeling and IDSA PJI criteria for classification[J]. J Clin Microbiol, 2018, 56(6). . .
[35]
BemerP, LegerJ, TandeD, et al. How many samples and how many culture media to diagnose a prosthetic joint infection: a clinical and microbiological prospective multicenter study[J]. J Clin Microbiol, 2016, 54(2): 385-391. .
[36]
JordanRW, SmithNA, SaithnaA, et al. Sensitivities, specificities, and predictive values of microbiological culture techniques for the diagnosis of prosthetic joint infection[J]. Biomed Res Int, 2014, 2014: 180416. .
[37]
SambriA, CadossiM, GianniniS, et al. Is treatment with dithiothreitol more effective than sonication for the diagnosis of prosthetic joint infection?[J] Clin Orthop Relat Res, 2018, 476(1): 137-145. .
[38]
LiuK, YeL, SunW, et al. Does use of lidocaine affect culture of synovial fluid obtained to diagnose periprosthetic joint infection (PJI)? An in vitro study[J]. Med Sci Monit, 2018, 24: 448-452. .
[39]
RieberH, FrontzekA, JeroschJ, et al. Periprosthetic joint infection caused by anaerobes. Retrospective analysis reveals no need for prolonged cultivation time if sensitive supplemented growth media are used[J]. Anaerobe, 2018, 50: 12-18. .
[40]
HarrisLG, El-BouriK, JohnstonS, et al. Rapid identification of staphylococci from prosthetic joint infections using MALDI-TOF mass-spectrometry[J]. Int J Artif Organs, 2010, 33(9): 568-574.
[41]
YangJ, LiuJH. Diagnosis of periprosthetic joint infection using polymerase chain reaction: an updated systematic review and meta-analysis[J]. Surg Infect (Larchmt), 2018, 19(6): 555-565. .
[42]
TarabichiM, ShohatN, GoswamiK, et al. Diagnosis of periprosthetic joint infection: the potential of next-generation sequencing[J]. J Bone Joint Surg Am, 2018, 100(2): 147-154. .
[43]
TarabichiM, AlvandA, ShohatN, et al. Diagnosis of streptococcus canis periprosthetic joint infection: the utility of next-generation sequencing[J]. Arthroplast Today, 2018, 4(1): 20-23. .
[44]
ThoendelM, JeraldoP, Greenwood-QuaintanceKE, et al. A novel prosthetic joint infection pathogen, mycoplasma salivarium, identified by metagenomic shotgun sequencing[J]. Clin Infect Dis, 2017, 65(2): 332-335. .
[45]
ThoendelMJ, JeraldoPR, Greenwood-QuaintanceKE, et al. Identification of prosthetic joint infection pathogens using a shotgun metagenomics approach[J]. Clin Infect Dis, 2018, 67(9): 1333-1338. .
[46]
MoshirabadiA, RaziM, ArastehP, et al. Polymerase chain reaction assay using the restriction fragment length polymorphism technique in the detection of prosthetic joint infections: a multi-centered study[J]. J Arthroplasty, 2019, 34(2): 359-364. .
[47]
BemerP, LegerJ, MilinS, et al. Histopathological diagnosis of prosthetic joint infection: does a threshold of 23 neutrophils do better than classification of the periprosthetic membrane in a prospective multicenter study?[J]. J Clin Microbiol, 2018, 56(9). . .
[48]
MorawietzL, TiddensO, MuellerM, et al. Twenty-three neutrophil granulocytes in 10 high-power fields is the best histopathological threshold to differentiate between aseptic and septic endoprosthesis loosening[J]. Histopathology, 2009, 54(7): 847-853. .
[49]
KrennVT, LiebischM, KolbelB, et al. CD15 focus score: infection diagnosis and stratification into low-virulence and high-virulence microbial pathogens in periprosthetic joint infection[J]. Pathol Res Pract, 2017, 213(5): 541-547. .
[50]
GeorgeJ, KwiecienG, KlikaAK, et al. Are frozen sections and MSIS criteria reliable at the time of reimplantation of two-stage revision arthroplasty?[J]. Clin Orthop Relat Res, 2016, 474(7): 1619-1626. .
[51]
XuC, GuoH, ChenJY. Intra-operative diagnosis of periprosthetic joint infection can rely on frozen sections in patients without synovial fluid analyses[J]. Int Orthop, 2019, 43(6): 1303-1308. .
[52]
YueB, TangT. The use of nuclear imaging for the diagnosis of periprosthetic infection after knee and hip arthroplasties[J]. Nucl Med Commun, 2015, 36(4): 305-311. .
[53]
SeguraAB, MunozA, BrullesYR, et al. What is the role of bone scintigraphy in the diagnosis of infected joint prostheses?[J]. Nucl Med Commun, 2004, 25(5): 527-532.
[54]
GlaudemansAW, GalliF, PacilioM, et al. Leukocyte and bacteria imaging in prosthetic joint infection[J]. Eur Cell Mater, 2013, 25: 61-77.
[55]
RennenHJ, BoermanOC, OyenWJ, et al. Imaging infection/inflammation in the new millennium[J]. Eur J Nucl Med, 2001, 28(2): 241-252.
[56]
PalestroCJ, LoveC. Radionuclide imaging of musculoskeletal infection: conventional agents[J]. Semin Musculoskelet Radiol, 2007, 11(4): 335-352. .
[57]
LarikkaMJ, AhonenAK, JunilaJA, et al. Extended combined 99mTc-white blood cell and bone imaging improves the diagnostic accuracy in the detection of hip replacement infections[J]. Eur J Nucl Med, 2001, 28(3): 288-293.
[58]
SousaR, MassadaM, PereiraA, et al. Diagnostic accuracy of combined 99mTc-sulesomab and 99mTc-nanocolloid bone marrow imaging in detecting prosthetic joint infection[J]. Nucl Med Commun, 2011, 32(9): 834-839. .
[59]
LoveC, MarwinSE, TomasMB, et al. Diagnosing infection in the failed joint replacement: a comparison of coincidence detection 18F-FDG and 111In-labeled leukocyte/99mTc-sulfur colloid marrow imaging[J]. J Nucl Med, 2004, 45(11): 1864-1871.
[60]
PalestroCJ, LoveC, MillerTT. Diagnostic imaging tests and microbial infections[J]. Cell Microbiol, 2007, 9(10): 2323-2333.
[61]
AksoySY, AsaS, OzhanM, et al. FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection[J]. Eur J Nucl Med Mol Imaging, 2014, 41(3): 556-564. .
[62]
RiniJN, BhargavaKK, TroncoGG, et al. PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection[J]. Radiology, 2006, 238(3): 978-987.
[63]
GrauteV, FeistM, LehnerS, et al. Detection of low-grade prosthetic joint infections using 99mTc-antigranulocyte SPECT/CT: initial clinical results[J]. Eur J Nucl Med Mol Imaging, 2010, 37(9): 1751-1759. .
[64]
FilippiL, SchillaciO. Usefulness of hybrid SPECT/CT in 99mTc-HMPAO-labeled leukocyte scintigraphy for bone and joint infections[J]. J Nucl Med, 2006, 47(12): 1908-1913.
[65]
BrittonKE, WarehamDW, DasSS, et al. Imaging bacterial infection with (99m)Tc-ciprofloxacin (Infecton)[J]. J Clin Pathol, 2002, 55(11): 817-823.
[66]
LarikkaMJ, AhonenAK, NiemelaO, et al. 99mTc-ciprofloxacin (Infecton) imaging in the diagnosis of knee prosthesis infections[J]. Nucl Med Commun, 2002, 23(2): 167-170.
[67]
PickettJE, ThompsonJM, SadowskaA, et al. Molecularly specific detection of bacterial lipoteichoic acid for diagnosis of prosthetic joint infection of the bone[J]. Bone Res, 2018, 6: 13. .