综述
贝达喹啉临床应用研究进展
中华临床感染病杂志, 2022,15(2) : 152-160. DOI: 10.3760/cma.j.issn.1674-2397.2022.02.011
摘要

结核分枝杆菌(Mycobacterium tuberculosis,MTB)导致的耐药结核病(Drug-resistant tuberculosis,DR-TB)一直是全球严重公共卫生问题和终止结核病的主要障碍之一,亟需新手段治疗耐药MTB。贝达喹啉(Bedaquiline,Bdq)是一种新型抗结核药物,属于二芳基喹啉类,能有效抑制MTB三磷酸腺苷合成酶,是目前治疗DR-TB的核心药物之一。Bdq能显著提高痰培养转阴率,降低病死率,具有良好的安全性和耐受性,并能缩短肺结核患者的疗程,节省费用。本文综述了含Bdq方案治疗DR-TB的疗效、安全性、耐受性和治疗相关问题。

引用本文: 杨松, 严晓峰, 唐神结, 等.  贝达喹啉临床应用研究进展 [J] . 中华临床感染病杂志, 2022, 15(2) : 152-160. DOI: 10.3760/cma.j.issn.1674-2397.2022.02.011.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

结核病仍然是全球主要死亡原因之一[1],是包括印度、印度尼西亚、中国、尼日利亚、巴基斯坦和南非6个发展中国家造成全球主要负担的传染病,也是发达国家免疫低下人群发病和死亡的一个重要因素[2]。利福平耐药结核病、耐多药和广泛耐药结核病(Rifampicin-resistant/multidrug-resistant/extensively drug-resistant tuberculosis,RR/MDR/XDR-TB)是全球严重公共卫生问题[3],也是世界卫生组织(World Health Organization,WHO)于2035年终止结核病目标的主要障碍之一[4,5],因此亟需新药治疗耐药结核分枝杆菌(Mycobacterium tuberculosis,MTB)[1]。全球RR/MDR-TB治疗成功率为57%[4],MDR-TB约50%[6],XDR-TB低于30%[7],许多国家/地区耐药结核病(DR-TB)患者治疗失败的一个重要原因是无法获得有效抗结核药物[8]。WHO、美国食品药品管理局、欧洲医药局和我国食品药品监督管理局相继推荐全球50余年来首个新药—贝达喹啉(Bedaquiline,Bdq)治疗DR-TB[2,9,10,11,12,13],均取得较好的治疗结果[8,14,15,16,17,18]。本文对含Bdq方案治疗DR-TB的疗效、安全性、耐受性和相关问题等进行了综述,期望对同道有所帮助。

1 含Bdq方案的疗效
1.1 提高痰菌转阴率

一项来自29个国家/地区的883例儿童和青少年MDR-TB(30%以上为XDR-TB)患者接受Bdq和/或德拉马尼(Delamanid,Dlm)治疗,痰涂片转阴率达89.3%~93.4%,痰培养转阴率达88.8%~92.8%,痰涂片和痰培养转阴时间平均为58(30~90) d[9]。Ferlazzo等[19]发现Bdq和Dlm联用第6个月痰培养转阴率为74%。Li等[14]报道35例MDR-TB患者治疗24周后痰培养转阴率达80%,转阴时间为75.5(52~126) d。Wu等[4]报道青少年RR-TB患者治疗后第2、4和24周痰培养转阴率分别为80%、100%和100%。Gao等[13]报道治疗24周的痰培养转阴率达85.3%,痰培养平均转阴时间为4(2~8)周。其中MDR-TB患者痰培养转阴率为84.6%,准广泛耐药结核病(Pre-extensively drug-resistant tuberculosis,pre-XDR-TB)患者痰培养转阴率为83.9%,XDR-TB患者痰培养转阴率为86.6%。荟萃分析提示含Bdq方案治疗可提高DR-TB患者的痰培养转阴率[5]

Dooley等[15]应用含Bdq方案治疗RR/MDR-TB患者第8和第24周的累积痰培养转阴率分别为88%和92%,Bdq和Dlm联用痰培养转阴率升至95%。Tack等[20]发现,含Bdq和利奈唑胺(Lzd)的全口服标准短程方案治疗合并有68.4%HIV感染的RR-TB患者,痰涂片转阴率为92.3%,6个月痰培养转阴率为89.6%,平均痰培养转阴时间为56 d。Maretbayeva等[3]于2021年报道,治疗6个月痰培养转阴率达89%。Kang等[18]报道,治疗第2、第6个月痰培养转阴率分别达57.4%和89.4%。2021年Hwang等[16]报道RR/MDR-TB患者痰培养转阴率为93.3%。Decroo等[21]在孟加拉研究发现,含Bdq的标准短程治疗方案(Bdq-containing standardized short treatment regimen,Bdq-STR)(即4BKPtHhCEZ/5BCEZ:K代表卡那霉素;Pt代表丙硫异烟胺;Hh代表高剂量异烟肼;C代表氯法齐明;E代表乙胺丁醇;Z代表吡嗪酰胺)治疗后64%和82%的患者分别在第1、第2个月痰培养转阴。Chesov等[22]发现含Bdq方案优于不含Bdq方案,前者6个月痰培养转阴率更高(66.7%比40.3%)。法国Guglielmetti等[23]报道,治疗6个月的痰培养转阴率达97%。Pecho-Silva等[24]报道,Bdq与Dlm、Lzd、莫西沙星(Mfx)和氯法齐明(Cfz)联用治疗1例MDR-TB患者取得疗效甚好。

由上可见,来自全球不同国家/地区的含Bdq方案治疗DR-TB患者的痰菌转阴率均显著提高,具体见表1

点击查看表格
表1

含贝达喹啉(Bdq)方案治疗耐药结核病患者的痰菌转阴情况汇总

表1

含贝达喹啉(Bdq)方案治疗耐药结核病患者的痰菌转阴情况汇总

作者国家发表时间(年/月)发表杂志研究类型试验规模(例)治疗时间Bdq应用时间痰菌转阴率
Maretbayeva等[3]哈萨克斯坦2021/12Int J Infect Dis多中心观察研究220例RR/MDR-TB6个月24周治疗6个月痰培养转阴率达89%
Wang等[5]中国2021/09BMC Infect Dis荟萃分析21 836例DR-TB6~24个月24周Bdq使用与高痰培养转阴率相关
Koirala等[9]尼泊尔2021/03Pulmonology前瞻性观察描述性研究883例MDR-TB18(13~23)个月183(168~364) d痰涂片转阴率为89.3%~93.4%;痰培养转阴率为88.8%~92.8%
Gao等[13]中国2021/04Clin Microbiol Infect多中心回顾性队列研究177例MDR-TB24周24周治疗24周痰培养转阴率85.3%
Li等[14]中国2021/09Int J Infect Dis单中心回顾性研究35例MDR-TB24周24周治疗24周痰培养转阴率为100%
Dooley等[15]美国2021/07Lancet Infect Dis2期开放性随机对照试验84例MDR-TB24周24周治疗第24周痰培养转阴率分别为92%(Bdq组)和95%(Bdq与德拉马尼联用组)
Hwang等[16]韩国2021/10Clin Infect Dis全国性队列研究284例MDR/RR-TB平均21个月24周Bdq组痰培养转阴率为93.3%
Kang等[18]韩国2020/06Respir Med回顾性评价318例MDR-TB--治疗第2和第6个月内的痰培养转阴率分别达57.4%和89.4%
Ferlazzo等[19]南非2018/03Lancet Infect Dis回顾性队列研究28例DR-TB6个月6~12个月治疗6个月痰培养转阴率为74%
Tack等[20]南非2021/10Clin Infect Dis回顾性队列研究117例合并HIV感染的RR-TB9~12个月24周痰涂片转阴率达92.3%
Decroo等[21]比利时2021/09Eur Respir J观察性研究11例RR-TB9个月24周64%第1个月和82%第2个月痰菌转阴
Chesov等[22]摩尔多瓦2021/06Eur Respir J回顾性队列研究114例MDR-TB6个月6个月含Bdq方案治疗6个月痰培养转阴率更高(66.7%)
Guglielmetti等[23]法国2015/01Clin Infect Dis回顾性队列研究35例MDR/XDR-TB6个月6个月痰培养转阴率达97%
Pecho-Silva和Navarro-Solsol[24]秘鲁2021/01Pulmonology个案1例MDR-TB8个月24周100%

注:"-".无相关数据;RR/MDR/XDR-TB.利福平耐药/耐多药/广泛耐药结核病

1.2 对治疗成功率和病死率的影响

Koirala等[9]报道383例含Bdq方案的治疗成功率为74.2%,病死率为6.5%,治疗失败率为2.9%,失访率为16.5%。Ahmad等[25]对25个国家50项研究12 030例患者的荟萃分析发现,Bdq可提高治疗成功率。2018年末Tack等[20]改进了一项全口服治疗方案后合并HIV感染的RR-TB患者治疗成功率达75.2%。Brust等[12]发现,含Bdq方案治愈或治疗完成率达74%,且HIV对治疗结果无影响。Hwang等[16]报道,284例RR/MDR-TB患者使用含Bdq或Dlm方案治疗,总的治疗成功率为79.2%。Decroo等[21]在孟加拉采用Bdq-STR治疗,82%患者达到无复发的治愈。一项来自白俄罗斯研究发现,含Bdq方案治疗儿童和青少年MDR/XDR-TB有效[26]。Bdq可降低病死率,其降低与Bdq和Lzd、Lfx、Mfx、Cfz等联合应用等呈正相关[19]。Wang等[5]进行荟萃分析发现,Bdq可显著降低全因病死率。但Tack等[20]发现,与其他口服方案比较,虽然含Bdq方案治疗RR-TB患者9~12个月有效,但治疗6个月内病死率达12.8%,随访丢失率达4.5%。

总之,大多数非随机对照研究结果提示,含Bdq方案可提高DR-TB治疗成功率,降低病死率,但个别研究也提示有高病死率问题,具体见表2

点击查看表格
表2

含贝达喹啉(Bdq)方案对耐药结核病(DR-TB)患者的治疗成功率汇总

表2

含贝达喹啉(Bdq)方案对耐药结核病(DR-TB)患者的治疗成功率汇总

作者国家发表时间(年/月)发表杂志研究类型试验规模(例)治疗时间贝达喹啉应用时间治疗成功率病死率治疗失败率失访率
Wang等[5]中国2021/09BMC Infect Dis荟萃分析21 836例DR-TB6~24个月24周Bdq未增加治疗成功率含Bdq方案显著减少全因死亡率--
Koirala等[9]尼泊尔2021/03Pulmonology前瞻性描述性观察性研究883例MDR-TB18(13~23)个月183(168~364) d74.2%6.5%2.9%16.5%
Tack等[20]南非2021/10Clin Infect Dis回顾性队列研究117例合并HIV感染的RR-TB9~12个月24周75.2%12.8%0.9%10.3%
Chesov等[22]摩尔多瓦2021/06Eur Respir J回顾性队列研究114例MDR-TB6个月6个月-含Bdq为8.8%;不含Bdq为20.2%--
Guglielmetti等[23]法国2015/01Clin Infect Dis回顾性队列研究35例MDR/XDR-TB6个月6个月-3%--
Ahmad等[25]巴基斯坦2018/09Lancet荟萃分析12 030例MDR-TB--61%14%8%-

注:"-".无相关数据;RR/MDR/XDR-TB.利福平耐药/耐多药/广泛耐药结核病

1.3 缩短疗程

Tweed等[27]采用Bdq-普托马尼(Pa)-M-Z方案治疗敏感或耐药肺结核的2b期临床试验研究结果提示,B200-Pa-Z治疗方案可能缩短敏感肺结核疗程,但还需3期临床试验验证。

1.4 节约经费

Mulder等[28]经5年研究发现6BPaL方案可节约经费,可使印度尼西亚开支减少17%,吉尔吉斯斯坦减少15%,尼日利亚减少32%。Gomez等[29]认为BPaL方案可节约成本。南非Singh等[30]发现含Bdq方案比含氨基糖苷类药物方案治疗DR-TB更有效。

总之,Bdq是DR-TB的核心药物之一,含Bdq方案可提高第8、16和24周痰培养转阴率。我国患者痰培养转阴率高于全球平均水平,最快治疗1个月后痰菌即可转阴,平均痰菌转阴时间约2个月。Bdq与Dlm、Lzd、Mfx和Cfz联用可发挥高效作用,6BPaL方案治疗XDR-TB符合成本效益,含Bdq方案优于含氨基糖苷类方案。HIV对转阴率无显著影响。含Bdq和Pa新方案可能缩短疗程。我国DR-TB患儿的研究数据缺乏,应用需谨慎。

2 含Bdq方案的安全性和耐受性

含Bdq方案可降低病死率,目前报道较多的不良事件分别为校正的QT(QTc)间期延长和电解质紊乱等[14,30,31,32]

2.1 耐受性

来自北京、沈阳等研究发现,成人或青少年RR/MDR-TB患者采用含Bdq方案治疗后,Bdq耐受性好,撤药率非常低[4,12,33]

2.2 对QTc间期的影响

含Bdq方案治疗最常见不良事件为QTc间期延长(24.7%),但Bdq使用36周的严重不良事件发生率仅7.8%,QTcF≥500 ms患者仅为3.1%,因QT间期延长而致Bdq撤药率仅4.2%[33]。中国DR-TB患者应用Bdq是安全的[4,13]。含Bdq的不同方案(包括Bdq、Bdq+Lfx、Bdq+Cfz、Bdq+Lfx+Cfz)的QTc间期延长和风险因素无差异[31]。Isralls等[34]报道4.3%患者QTc>500 ms,无心律失常或心源性死亡事件发生。Chesov等[22]报道114例接受含Bdq治疗患者中仅1例QTc间期超过500 ms。Moodliar等[35]采用Bdq治疗儿童DR-TB的Ⅱ期研究发现,仅小部分QTc增加30~60 ms,24周后5~18岁儿童无一例出现QTc间期绝对值超过460 ms。Tanneau等[36]经模型研究未发现Bdq暴露与安全性事件相关。Katrak等[37]报道37例接受Bdq治疗的MDR-TB患者中仅4例(11%)出现非短暂性QTc超过500 ms,均未出现心律失常。美国Dooley等[15]在南非患者研究发现Bdq联合Dlm可发生极轻QTc延长,无叠加效应,支持Bdq和Dlm的联用。2022年1月Hewison等[38]牵头的前瞻性研究显示,2 296例患者QT延长率仅2.7%。秘鲁Pecho-Silva等[24]发现,Bdq联合Dlm、Lzd、Mfx和Cfz口服治疗MDR-TB是安全的。但Li等[14]报道Bdq与Cfz联用可增加QTc间期延长的风险。Brust等[12]发现高龄是QT间期延长的独立危险因素。QT间期延长与M2暴露和患者肝酶CYP3A5*3参与Bdq缓慢清除等可能有关[39]

总之,Bdq可引起QTc间期延长,但大多数疱状较轻,对Bdq的持续应用影响不大,但Bdq与可延长QTc间期的其他药物以及在高龄患者中应用时仍需谨慎。

2.3 对血浆电解质的影响

含Bdq方案的MDR-TB患者的血清钾水平低于基线值的10.71%[14],2 296例含Bdq和/或Dlm方案治疗的MDR/RR-TB患者出现电解质减少率为26.0%[38],个别患者可发生严重低钾血症[37]

2.4 其他不良事件

来自北京116例患者采用含Bdq方案治疗后发生肝毒性占16.4%[31]。10例RR-TB患者在含Bdq方案治疗24周中50.0%出现白细胞减少,16.7%发生贫血,外周神经病变发生率为16.7%[4]。与含卡那霉素方案治疗DR-TB患者发生的耳毒性比较,含Bdq方案组耳毒性发生率显著降低,仅1例(7%)患者出现耳鸣,而前者发生听力损伤率达73%[40]。Hewison等[38]报道,含Bdq和/或Dlm方案治疗MDR/RR-TB患者发生听力下降为13.2%,但更常见于Lzd和注射剂。

总之,国内外研究提示Bdq的安全耐受性较好,少数患者出现QTc间期延长、低钾血症和肝功能损害。部分患者使用Bdq延长至9~12个月安全性也较好。Bdq应用1个月之后即可出现QTc间期延长,发生率虽高,但多数较轻。Bdq与其他可延长QTc间期的药物如Lfx、Cfz、Dlm等联用时心脏事件风险无明显增强,但对高龄患者和Bdq与可延长QTc间期的其他药物联用时需要加强心脏安全性监测。

3 Bdq治疗性药物和耐药的监测及其临床意义

Bdq治疗性血药浓度以及MTB耐药与治疗结局之间是否具有关联?QTc间期延长是否与高Bdq血浆浓度相关?目前进行Bdq的治疗药物监测研究较少。Wu等[4]采用液相色谱-质谱技术测得青少年RR-TB患者第2、12和24周的血浆Bdq平均峰浓度分别为(3.29±0.66)、(1.78±0.81)和(1.93±0.74) μg/mL。浙江省35例MDR-TB患者治疗期间Bdq血清浓度平均为(0.586 ± 0.288) μg/mL,Bdq治疗停药后第16周的浓度为(0.205 ± 0.145) μg/mL[14],但均高于MDR-TB的最低抑菌浓度(Minimum inhibitory concentration,MIC)[41],并且停药第52周仍可检测到Bdq[14]。Bdq血药浓度差异可能导致治疗结果的差异[4,14],其与药物不良反应密切相关[10],与其他药物组成的不同治疗方案也似乎相关[9,15]

Bdq的耐药监测从开始便受到重视。虽然缓慢引入Bdq,但仍未避免耐药菌株的发生[42]。He等[43]发现我国结核病分离菌株的Bdq耐药率为0.4%(6/1 603),MDR-TB患者分离菌株耐药率为1.0%(1/102)。Yang等[32]从518例结核病患者中分离到10株Bdq耐药菌(1.93%)。Bdq耐药的MDR-TB患者治疗失败风险较高[44]。Wu等[45]发现,无Bdq暴露的DR-TB患者中3.1%(28/898)对Bdq耐药,18株对Bdq MIC为0.25 μg/mL,MGIT法检测Bdq耐药率和敏感率分别为38.9%和61.1%。摩尔多瓦26例患者治疗中15.3%(4/26)发生获得性Bdq耐药,3.8%(1/26)患者为Bdq耐药菌株的再感染,治疗失败与空洞和存在其他抗结核药物耐药有关[46]。Ismail等[47]报道Bdq获得性耐药率为2.3%(16/695),平均90(62~195) d发生耐药。体外和临床研究均已明确Bdq与Cfz的交叉耐药对Bdq耐药构成威胁[48]。且Ismail等[49]于2018年报道,服用Bdq的患者出现Bdq MIC的升高而发生耐药及rv0678突变后,可使患者的治疗失败。具有MTB突变的6例俄罗斯患者治疗均失败,而无突变患者中仅1/5治疗失败[50]。但Wu等[45]的研究结果相反,无论rv0678突变与否,接受含Bdq方案治疗,临床分离菌株出现Bdq耐药患者的治疗结果均较好,这提示rv0678突变与治疗结果无相关性。治疗失败的病例提示,Bdq治疗中可出现与Cfz的交叉耐药和rv0678突变[51]。Ismail等[52]系统评价了Bdq耐药基因型与耐药表型的相关性,除外atpE187G→C和rv0678138_139insG变异株外,rv0678、atpEpepQrv1979c基因任何单一突变菌株的基因型与表型的相关性均无显著性。Bdq基线耐药者的治疗成功概率较低[47]。O’Donnell等[53]发现Bdq耐药相关突变株分离率达12%(7/57),耐药患者的治疗成功率仅28.6%。

总之,初始和获得性耐药可显著影响疗效,但Bdq基因型与表型的相关性存在不一致现象。Bdq高血药浓度可能与不良事件发生率和高痰菌转阴率相关。限于有限的证据,Bdq血药浓度与疗效、不良事件和耐药以及Bdq耐药相关基因型和表型的相关性等有待进一步明确。

4 Bdq治疗DR-TB的相关问题
4.1 Bdq治疗中断后的处理

Bdq中断治疗后的再引入治疗目前无指南可供参考,模拟研究建议Bdq在第3和第72周之间中断1~6周则要2周的负荷剂量(即200 mg,1次/d),如果Bdq中断治疗超过8周,需要的负荷剂量为400 mg,1次/d[54]

4.2 24周Bdq引起的高复发率

根据临床试验提供的证据,Bdq使用说明书推荐Bdq-STR疗程为24周,但该推荐未考虑MDR-TB患者个体的特殊需求。53例接受Bdq治疗24周的MDR-TB患者中断Bdq治疗24周时的痰培养转阳率达20%[42]

4.3 Bdq虽为核心药物但可能不是唯一选择

荟萃分析显示,Bdq可提高治疗成功率和降低病死率[1,24],WHO指南将Bdq列为核心抗结核药物(A组)。因此,所有MDR-TB患者应接受含Bdq方案治疗,除非对Bdq耐药或对Bdq不能耐受[10],督促某些国家克服获取Bdq的障碍用于所有MDR/XDR-TB患者的治疗[1]。但含Bdq和不含Bdq方案治疗的MDR-TB患者培养转阴率无显著差异[55],提示Bdq可能不是治疗MDR-TB的唯一选择,但该研究样本量少,并非随机对照试验研究结论,故尚待大样本多中心RCT进一步验证。

4.4 加强表型-基因型药物敏感试验相关性研究

Bdq应用的同时必须伴随持续进行表型药物敏感试验(DST)和耐药基因的鉴定分析[56]和凸显耐药监控方案的重要性[51]。由于缺乏明确的Bdq基因型-表型相关性,使得分子DST研发复杂化,急需评估基因型和表型DST,尤其针对含Bdq方案治疗不成功的患者,应设计预防Bdq耐药的治疗方案,采用表型DST以指导和监测治疗反应[52]

4.5 Bdq是否按体质量给药

Alghamdi等[57]测得99例患者平均Bdq最低浓度为0.68 mg/L,平均Bdq时间-浓度曲线(0~24 h)下面积为30.6 mg·h·L-1,发现体质量与最低浓度暴露参数呈负相关,有必要进一步探索基于体质量的最佳Bdq应用剂量。同时发现男性比女性具有更高的Bdq最低浓度和曲线下面积,BDQ暴露与体质量存在强相关,建议需要根据体质量确定Bdq剂量。

4.6 根据病情Bdq疗程可适当延长

许多患者在应用Bdq 24周停用时并未取得良好的临床结果,可是目前无超标准应用Bdq的指南或推荐依据[7,58]。而慢性肾病、HIV和空洞等患者可能延长使用Bdq[58]。Gubkina等[59]报道1例俄罗斯12岁MDR-TB女孩全疗程18个月使用含Bdq方案(3Am-Bdq-Lzd-Cs;15Bdq-Lzd-Cs;DST证实对上述四种药物均敏感)治疗,治疗1个月后痰菌即转阴,完成治疗18个月时空洞即闭合,而且整个治疗期间无心脏毒性,无QT间期延长,故基于挽救生命考虑将Bdq应用周期延长。Gao等[7]将Bdq应用时间延长至36周,2例XDR-TB女性患者(年龄分别为58岁和18岁)疗效较好,未增加心脏事件风险或新的安全问题。

4.7 合并其他基础疾病的Bdq剂量调整

Gour等[60]首先在临床前研究报道Bdq在肾损伤和糖尿病大鼠的药代动力学结果,提示糖尿病大鼠需要调整Bdq剂量,以避免Bdq治疗失败,但需进一步的临床研究。

4.8 含Bdq新方案的探索

包括不同用法的两项Ⅲ期临床试验和Bdq单用或Bdq联合利福喷丁缩短疗程的预防性治疗的动物实验研究。目前推荐和广泛应用的Bdq用法为400 mg,1次/d,使用2周,继以200 mg,3次/周,使用22周。但200 mg,1次/d,使用8周;100 mg,1次/d,使用18周的两项含Bdq方案Ⅲ期临床试验正在验证中[61]。Kaushik等[62]发现Bdq预防性治疗可显著缩短卡介苗免疫接种小鼠的疗程。

针对目前存在Bdq使用中断、高复发率、糖尿病等合并症和不同性别和体质量给药剂量如何调整和疗程如何统一、应用前是否常规进行Bdq表型和基因型DST等问题,为实施DR-TB精准治疗,建议应用Bdq前进行表型DST,根据体质量给药,依据TDM调整剂量,治疗期间检测基因型和表型变化,个体患者适当延长Bdq疗程,背景方案需至少3~4种有效药物。由于Bdq长半衰期的优势可能转化为停药后诱导性耐药的潜在劣势,Bdq停用后背景方案需至少延长半年左右。

总之,Bdq对我国成人和青少年DR-TB患者的安全性和耐受性较好,可提高痰菌培养转阴率和降低病死率,临床使用有利于社区疫情的控制和患者生存率的提高,Bdq可作为DR-TB的核心治疗药物之一,与Dlm、Lzd、Mfx或Cfz等联用更佳。限于目前Bdq引入临床时间短,资料有限,对治疗成功率的积极作用结果尚存在不一致现象,故有待深入探讨。同时需要注意我国无Bdq治疗儿童结核病的相关研究,儿童使用Bdq仍需慎重斟酌。Bdq对QTc间期影响不大,但与其他可延长QTc间期的药物联用,高龄等患者仍有必要加强心脏安全性监测。为提高疗效,降低不良反应发生率和耐药率,加强TDM和耐药监测,Bdq治疗中断后的处理研究,个体化调整疗程和剂量研究,表型-基因型DST相关性研究,含Bdq减少药物种类的短程新方案治疗儿童和成人DR-TB的有效性和安全性等问题可能成为今后研究的重点。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
Martín-GarcíaM, EstebanJ. Evaluating bedaquiline as a treatment option for multidrug-resistant tuberculosis[J]. Expert Opin Pharmacother, 2021, 22(5):535-541. DOI: 10.1080/14656566.2020.1867538.
[2]
AdigunR, SinghR. Tuberculosis[M]. 2022. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing.
[3]
MaretbayevaSM, RakishevaAS, AdenovMM, et al. Culture conversion at six months in patients receiving bedaquiline- and delamanid-containing regimens for the treatment of multidrug-resistant tuberculosis[J]. Int J Infect Dis, 2021, 113Suppl 1:S91-S95. DOI: 10.1016/j.ijid.2021.03.075.
[4]
WuHY, TianY, WangXD, et al. Twenty-four-week interim outcomes of bedaquiline-containing regimensin treatment of adolescents with rifampicin-resistant tuberculosis: A retrospective cohort study in China[J]. J Paediatr Child Health, 2022, 58(1):116-121. DOI: 10.1111/jpc.15672.
[5]
WangMG, WuSQ, HeJQ. Efficacy of bedaquiline in the treatment of drug-resistanttuberculosis: a systematic review and meta-analysis[J]. BMC Infect Dis, 2021, 21(1):970. DOI: 10.1186/s12879-021-06666-8.
[6]
World Health Organization. Global tuberculosis report 2016[M]. Geneva, WHO, 2016.
[7]
GaoJT, XieL, MaLP, et al. Prolonged use of bedaquiline in two patients with pulmonary extensively drug-resistant tuberculosis: Two case reports[J]. World J Clin Cases, 2021, 9(10):2326-2333. DOI: 10.12998/wjcc.v9.i10.2326.
[8]
OlaruID, HeyckendorfJ, AndresS, et al. Bedaquiline-based treatment regimen for multidrug-resistant tuberculosis[J]. Eur Respir J, 2017, 49(5):1700742. DOI: 10.1183/13993003.00742-2017.
[9]
KoiralaS, BorisovS, DanilaE, et al. Outcome of treatment of MDR-TB or drug-resistant patients treated with bedaquiline and delamanid: Results from a large global cohort[J]. Pulmonology, 2021, 27(5):403-412. DOI: 10.1016/j.pulmoe.2021.02.006.
[10]
KangY, MokJ. Treatment outcomes of patients with multidrug-resistant tuberculosis: Concern to Bedaquiline: Authors’ reply[J]. Tuberc Respir Dis (Seoul), 202285(1):98-99. DOI: 10.4046/trd.2021.0135.
[11]
KarmakarM, RodriguesCHM, HoltKE, et al. Empirical ways to identify novel Bedaquiline resistance mutations in AtpE[J/OL]. PLoS One, 2019, 14(5):e0217169. DOI: 10.1371/journal.pone.0217169.
[12]
BrustJCM, GandhiNR, WassermanS, et al. Effectiveness and cardiac safety of bedaquiline-based therapy for drug-resistant tuberculosis: A prospective cohort study[J]. Clin Infect Dis, 2021, 73(11):2083-2092. DOI: 10.1093/cid/ciab335.
[13]
GaoM, GaoJ, XieL, et al. Early outcome and safety of bedaquiline-containing regimens for treatment of MDR- and XDR-TB in China: a multicentre study[J]. Clin Microbiol Infect, 2021, 27(4):597-602. DOI: 10.1016/j.cmi.2020.06.004.
[14]
LiJM, YangGY, CaiQS, et al. Safety, efficacy, and serum concentration monitoring of bedaquiline in Chinese patients with multidrug-resistant tuberculosis[J]. Int J Infect Dis, 2021, 110:179-186. DOI: 10.1016/j.ijid.2021.07.038.
[15]
DooleyKE, RosenkranzSL, ConradieF, et al. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: a phase 2, open-label, randomised, controlled trial[J]. Lancet Infect Dis, 2021, 21(7):975-983. DOI: 10.1016/S1473-3099(20)30770-2.
[16]
HwangH, KangH, KwonYS, et al. Outcomes of multidrug-resistant tuberculosis treated with Bedaquiline or Delamanid[J]. Clin Infect Dis, 2021, 73(8):1362-1369. DOI: 10.1093/cid/ciab304.
[17]
AleneKA, VineyK, YiH, et al. Comparison of the validity of smear and culture conversion as a prognostic marker of treatment outcome in patients with multidrug-resistant tuberculosis[J/OL]. PLoS One, 2018, 3(5):e0197880. DOI: 10.1371/journal.pone.0197880.
[18]
KangH, JoKW, JeonD, et al. Interim treatment outcomes in multidrug-resistant tuberculosis using bedaquiline and/or delamanid in South Korea[J]. Respir Med, 2020, 167:105956. DOI: 10.1016/j.rmed.2020.105956.
[19]
FerlazzoG, MohrE, LaxmeshwarC, et al. Early safety and efficacy of the combination of bedaquiline and delamanid for the treatment of patients with drug-resistant tuberculosis in Armenia, India, and South Africa: a retrospective cohort study[J]. Lancet Infect Dis, 2018, 18(5):536-544. DOI: 10.1016/S1473-3099(18)30100-2.
[20]
TackI, DumichoA, OhlerL, et al. Safety and effectiveness of an all-oral, Bedaquiline-based, shorter treatment regimen for rifampicin-resistantTuberculosisin high human immunodeficiency virus (HIV) burden rural South Africa: A retrospective cohort analysis[J]. Clin Infect Dis, 2021, 73(9):e3563-e3571. DOI: 10.1093/cid/ciaa1894.
[21]
DecrooT, JaiK, AungM, et al. Bedaquiline can act as core drug in a standardized treatment regimen for fluoroquinolone-resistant rifampicin-resistant tuberculosis[J]. Eur Respir J, 2021, 24:2102124. DOI: 10.1183/13993003.02124-2021.
[22]
ChesovD, HeyckendorfJ, AlexandruS, et al. Impact of bedaquiline on treatment outcomes of multidrug-resistant tuberculosis in a high-burden country[J]. Eur Respir J, 2021, 57(6):2002544. DOI: 10.1183/13993003.02544-2020.
[23]
GuglielmettiL, Le DûD, JachymM, et al. Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort[J]. Clin Infect Dis, 2015, 60 (2): 188-194. DOI: 10.1093/cid/ciu786.
[24]
Pecho-SilvaS, Navarro-SolsolAC. First case report in Latin America: Oral treatment of multidrug-resistant tuberculosis with delamanid and bedaquiline in combination with linezolid, moxifloxacin and clofazimine following a DRESS syndrome in a peruvian patient[J]. Pulmonology, 2021, 27(1):77-79.DOI: 10.1016/j.pulmoe.2020.03.005.
[25]
AhmadN, AhujaSD, AkkermanOW, et al. Treatment correlates of successful outcomes in pulmonary multidrugresistant tuberculosis: an individual patient data meta-analysis[J]. Lancet, 2018, 392(10150):821-834. DOI:10.1016/S0140-6736(18)31644-1.
[26]
SolodovnikovaV, KumarAMV, HurevichH, et al. Effectiveness and safety of delamanid- or bedaquiline-containing regimens among children and adolescents with multidrug resistant or extensively drug resistant tuberculosis: A nationwide study from Belarus, 2015-19[J]. Monaldi Arch Chest Dis, 2021, 91(1). DOI: 10.4081/monaldi.2021.1646.
[27]
TweedCD, DawsonR, BurgerDA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial[J]. Lancet Respir Med, 2019, 7(12):1048-1058. DOI: 10.1016/S2213-2600(19)30366-2.
[28]
MulderC, RupertS, SetiawanE, et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis[J]. BMJ Glob Health, 2022, 7(1):e007182. DOI: 10.1136/bmjgh-2021-007182.
[29]
GomezGB, SiapkaM, ConradieF, et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines[J]. BMJ Open, 2021, 11(12):e051521. DOI: 10.1136/bmjopen-2021-051521.
[30]
SinghL, MathibeLJ, BangaleeV. The efficacy of bedaquiline versus kanamycin in multi-drug resistant tuberculosis: A systematic scoping review[J]. Health SA, 2021, 26:1708. DOI: 10.4102/hsag.v26i0.1708.
[31]
ArdhiantoD, Suharjono, Soedarsono, et al. Analysis of the side effect of QTc interval prolongation in the bedaquiline regimen in drug resistant tuberculosis patients[J]. J Basic Clin Physiol Pharmacol, 2021, 32(4):421-427. DOI: 10.1515/jbcpp-2020-0415.
[32]
YangJ, PangY, ZhangTH, et al. Molecular characteristics and in vitro susceptibility to bedaquiline of Mycobacterium tuberculosis isolates circulating in Shaanxi, China[J]. Int J Infect Dis, 2020, 99:163-170. DOI: 10.1016/j.ijid.2020.07.044.
[33]
GaoJT, DuJ, WuGH, et al. Bedaquiline-containing regimens in patients with pulmonary multidrug-resistant tuberculosis in China: focus on the safety[J]. Infect Dis Poverty, 2021, 10(1):32. DOI: 10.1186/s40249-021-00819-2.
[34]
IsrallsS, BaisleyK, NgamE, et al. QT interval prolongation in People treated with Bedaquiline for drug-resistant tuberculosis under programmatic conditions: A retrospective cohort study[J]. Open Forum Infect Dis, 2021, 8(8):ofab413. DOI: 10.1093/ofid/ofab413.
[35]
MoodliarR, AksenovaV, FriasMVG, et al. Bedaquiline for multidrug-resistant TB in paediatric patients[J]. Int J Tuberc Lung Dis, 2021, 25(9):716-724. DOI: 10.5588/ijtld.21.0022.
[36]
TanneauL, SvenssonEM, RossenuS, et al. Exposure-safety analysis of QTc interval and transaminase levels following bedaquiline administration in patients with drug-resistant tuberculosis[J]. CPT Pharmacometrics Syst Pharmacol, 2021, 10(12):1538-1549. DOI: 10.1002/psp4.12722.
[37]
KatrakS, LowenthalP, ShenR, et al. Bedaquiline for multidrug-resistant tuberculosisand QTc prolongation in California[J]. J Clin Tuberc Other Mycobact Dis, 2021, 23:100216. DOI: 10.1016/j.jctube.2021.100216.
[38]
HewisonC, KhanU, BastardM, et al. Safety of treatment regimens containing bedaquiline and delamanid in the end TB cohort[J]. Clin Infect Dis, 202213:ciac019. DOI: 10.1093/cid/ciac019.
[39]
HaasDW, AbdelwahabMT, van BeekSW, et al. Pharmacogenetics of between-individual variability in plasma clearance of Bedaquiline and Clofazimine in South Africa[J]. J Infect Dis, 2022:jiac024. DOI: 10.1093/infdis/jiac024.
[40]
Khoza-ShangaseK, ProdromosM. Impact of drug-resistant tuberculosis treatment on hearing function in South African adults: Bedaquiline versus kanamycin[J]. S Afr J Commun Disord, 2021, 68(1):e1-e8. DOI: 10.4102/sajcd.v68i1.784.
[41]
杨松严晓峰. 贝达喹啉治疗耐多药与广泛耐药结核病的现状和展望[J]. 结核病与肺部健康杂志20198(4):249-252. DOI:10.3969/j.issn.2095-3755.2019.04.004.
YangS, YanXF. Cureent status and future prospects on the treatment of multi/extensively drug-resistant tuberculosis with bedaquiline[J]. Journal of Tuberculosis And Lung Health, 2019, 8(4):249-252. DOI:10.3969/j.issn.2095-3755.2019.04.004.(in Chinese)
[42]
GuglielmettiL. Bedaquiline for the treatment of multidrug-resistant tuberculosis: another missed opportunity?[J]. Eur Respir J, 2017, 49(5):1700738. DOI: 10.1183/13993003.00738-2017.
[43]
HeW, LiuC, LiuD, et al. Prevalence of Mycobacterium tuberculosis resistant to bedaquiline and delamanid in China[J]. J Glob Antimicrob Resist, 2021, 26:241-248. DOI:10.1016/j.jgar.2021.06.007.
[44]
LiuY, GaoM, DuJ, et al. Reduced susceptibility of Mycobacterium tuberculosis to bedaquiline during antituberculosis treatment and its correlation with clinical outcomes in China[J]. Clin Infect Dis, 2020ciaa1002. DOI: 10.1093/cid/ciaa1002.
[45]
WuSH, ChanHH, HsiaoHC, et al. Primary Bedaquiline resistance among cases of drug-resistant tuberculosis in Taiwan[J]. Front Microbiol, 2021, 12:754249. DOI: 10.3389/fmicb.2021.754249.
[46]
ChesovE, ChesovD, MaurerFP, et al. Emergence of bedaquiline-resistance in a high-burden country of tuberculosis[J]. Eur Respir J, 20212100621. DOI: 10.1183/13993003.00621-2021.
[47]
IsmailNA, OmarSV, MoultrieH, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study[J]. Lancet Infect Dis, 2021S1473-3099(21)00470-9. DOI: 10.1016/S1473-3099(21)00470-9.
[48]
NguyenTVA, AnthonyRM, BañulsAL, et al. Bedaquiline resistance: its emergence, mechanism, and prevention[J]. Clin Infect Dis, 2018, 66(10):1625-1630. DOI: 10.1093/cid/cix992.
[49]
IsmailNA, OmarSV, JosephL, et al. Defining Bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: A retrospective cohort study[J]. EBioMedicine, 201828:136-142. DOI: 10.1016/j.ebiom.2018.01.005.
[50]
MokrousovI, AkhmedovaG, MolchanovV, et al. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant Mycobacterium tuberculosis strains in Russia during long-term treatment[J]. Clin Microbiol Infect, 2021, 27(3):478-480. DOI: 10.1016/j.cmi.2020.08.030.
[51]
GhodousiA, RizviAH, BalochAQ, et al. Acquisition of Cross-resistance to Bedaquiline and Clofazimine following treatment for tuberculosis in Pakistan[J]. Antimicrob Agents Chemother, 2019, 63(9):e00915-19. DOI: 10.1128/AAC.00915-19.
[52]
IsmailN, RivièreE, LimberisJ, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis[J]. Lancet Microbe, 2021, 2(11):e604-e616. DOI: 10.1016/s2666-5247(21)00175-0.
[53]
O’DonnellMR, PadayatchiN, WolfA, et al. Bedaquiline adherence measured by electronic dose monitoring predicts clinical outcomes in the treatment of patients with multidrug-resistant tuberculosis and HIV/AIDS[J]. J Acquir Immune Defic Syndr, 2022. DOI: 10.1097/QAI.0000000000002940.
[54]
KeutzerL, Akhondipour SalehabadY, Davies ForsmanL, et al. A modeling-based proposal for safe and efficacious reintroduction of bedaquiline after dose interruption: A population pharmacokinetics study[J]. CPT Pharmacometrics Syst Pharmacol, 2022, 11(5):628-639. DOI: 10.1002/psp4.12768.
[55]
FuL, WengT, SunF, et al. Insignificant difference in culture conversion between bedaquiline-containing and bedaquiline-free all-oral short regimens for multidrug-resistant tuberculosis[J]. Int J Infect Dis, 2021, 111:138-147. DOI: 10.1016/j.ijid.2021.08.055.
[56]
ZimenkovDV, NosovaEY, KulaginaEV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region[J]. J Antimicrob Chemother, 2017, 72(7):1901-1906. DOI: 10.1093/jac/dkx094.
[57]
AlghamdiWA, Al-ShaerMH, KipianiM, et al. Pharmacokinetics of bedaquiline, delamanid and clofazimine in patients with multidrug-resistant tuberculosis[J]. J Antimicrob Chemother, 2021, 76(4):1019-1024. DOI: 10.1093/jac/dkaa550.
[58]
PutraON, HidayatullahAYN. Treatment outcomes of patients with multidrug-resistant tuberculosis: Concern to Bedaquiline[J]. Tuberc Respir Dis (Seoul), 2021, 84(4):338-339. DOI: 10.4046/trd.2021.0115.
[59]
GubkinaMF, KhokhlovaJY, YukhimenkoNV, et al. Prolonged use of bedaquiline in the treatment for MDR-TB in a child[J]. IDCases, 2021, 26:e01311. DOI: 10.1016/j.idcr.2021.e01311.
[60]
GourA, DograA, SharmaS, et al. Effect of disease state on the pharmacokinetics of Bedaquiline in renal-impaired and diabetic rats[J].ACS Omega, 2021, 6(10):6934-6941. DOI: 10.1021/acsomega.0c06165.
[61]
SalingerDH, NedelmanJR, MendelC, et al. Daily dosing for Bedaquiline in patients with tuberculosis[J]. Antimicrob Agents Chemother, 2019, 63(11):e00463-19. DOI: 10.1128/AAC.00463-19.
[62]
KaushikA, AmmermanNC, TasneenR, et al. Efficacy of long-acting Bedaquiline regimens in a mouse model of tuberculosis preventive therapy[J]. Am J Respir Crit Care Med, 2021205(5):570-579. DOI: 10.1164/rccm.202012-4541OC.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词