专题笔谈
《中国糖尿病医学营养治疗指南(2022版)》解读
中华糖尿病杂志, 2022,14(9) : 869-876. DOI: 10.3760/cma.j.cn115791-20220718-00343
摘要

医学营养治疗是糖尿病综合治疗的基础。近年来,糖尿病医学营养和代谢治疗领域的研究取得了诸多进展,由中国医疗保健国际交流促进会营养与代谢管理分会组织来自中国营养学会临床营养分会、中华医学会糖尿病学分会、肠外肠内营养学分会和中国医师协会营养医师专业委员会的相关领域专家,根据最新循证医学依据,对《中国糖尿病医学营养治疗指南(2013)》进行了更新和修订,完成了《中国糖尿病医学营养治疗指南(2022版)》。新版指南的内容涵盖了糖尿病营养预防、治疗及并发症防治、新型植物化学物、肠外肠内营养支持、代谢手术与营养等诸多领域,并结合专家经验制定了诊治流程,具有先进性、规范性、实用性的特点。该文谨对该指南的重点内容进行解读,以期读者快速了解指南更新要点,旨在为糖尿病医学营养诊疗及管理提供临床借鉴。

引用本文: 孙铭遥, 时小东, 陈伟. 《中国糖尿病医学营养治疗指南(2022版)》解读 [J] . 中华糖尿病杂志, 2022, 14(9) : 869-876. DOI: 10.3760/cma.j.cn115791-20220718-00343.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

近50年来,全球糖尿病的患病率持续增长,国际糖尿病联盟2019年公布,全球共有4.63亿人患有糖尿病,平均每11个成人中就有1个罹患糖尿病,预计到2045年糖尿病人数将跃升至7亿1,而我国成人糖尿病患病率已达11.2%2。糖尿病已经成为一个严重危害国人身心健康的重大公共卫生问题。医学营养治疗(medical nutrition therapy,MNT)是糖尿病综合治疗的基础,是糖尿病病程中任何阶段预防和控制必不可少的措施。近年来,糖尿病MNT和代谢治疗领域取得诸多突破性进展,为此中国医疗保健国际交流促进会营养与代谢管理分会组织来自中国营养学会临床营养分会、中华医学会糖尿病学分会、肠外肠内营养学分会和中国医师协会营养医师专业委员会的相关领域专家,根据最新循证医学依据,对《中国糖尿病医学营养治疗指南(2013)》进行了更新和修订,完成了《中国糖尿病医学营养治疗指南(2022版)》(以下简称新版指南)。新版指南内容涵盖糖尿病营养预防、治疗及并发症防治、新型植物化学物、肠外肠内营养支持、代谢手术与营养等诸多领域,参照《中国制订/修订临床诊疗指南的指导原则(2022版)》并以问题为导向,根据推荐分级的评估、制定与评价(grade of recommendations assessment,developmentand evaluation,GRADE)协作网Ⅱ的标准,在每条推荐意见附上证据级别和推荐强度,便于读者迅速掌握要点。为深入理解和掌握新版指南,我们谨对新版指南的主要内容、依据进行诠释,以飨读者。

MNT的目标是保证患者在正常生活和儿童青少年正常生长发育的前提下,纠正已发生的代谢紊乱,减轻胰岛β细胞负荷,从而延缓并减轻糖尿病及并发症的发生和发展,进一步提高其生活质量。已有充分证据表明,对糖尿病前期人群采用MNT进行生活方式干预、减重等可有效预防其发展为2型糖尿病(type 2 diabetes mellitus,T2DM)及降低全因死亡率3, 4。对已确诊T2DM的人群营养干预可改善其血糖及糖化血红蛋白(glycated hemoglobin A1c,HbA1c)等代谢指标5, 6,也能为糖尿病治疗带来成本效益7, 8

一、能量摄入、三大营养素供能比及其他营养素摄入量的推荐强调个体化原则

无论是能量摄入、三大营养素供能比或是其他营养素摄入量推荐,新版指南均强调了个体化原则,并根据患者的不同年龄段、不同生理状态及有无并发症给出了妊娠期、儿童青少年期、成年期、老年期的相关推荐意见。成年人能量推荐摄入标准建议采用通用系数方法,按照每日25~30 kcal/kg计算能量摄入,再根据身高、体重、性别、年龄、活动度、应激状况调整为个体化能量标准29。老年糖尿病患者能量摄入则需根据是否存在营养风险及营养不良酌情增减。三大营养素目标方面推荐糖尿病患者每日碳水化合物供能比为45%~60%,1型糖尿病(type 1 diabetes mellitus,T1DM)儿童和青少年可为50%~55%。每日膳食总脂肪供能建议占总能量的20%~35%,强调脂肪的质量比数量更为重要,建议用多不饱和脂肪酸(polyunsaturated fatty acid,PUFA)及单不饱和脂肪酸取代部分饱和脂肪。若T2DM合并血脂异常,则建议进一步限制饱和脂肪酸和反式脂肪酸。鉴于有研究显示膳食胆固醇增加与低密度脂蛋白胆固醇升高直接相关10,因此新版指南建议T2DM患者每日胆固醇摄入量不超过300 mg。推荐肾功能正常的糖尿病患者蛋白质摄入宜占总能量的15%~20%,T1DM儿童和青少年推荐蛋白质供能比可增加至25%~35%,老年糖尿病患者蛋白摄入量可酌情增加至每日1.0~1.2 g/kg。维生素及微量元素缺乏或过多可能对糖尿病及其并发症的发生发展有重要作用,如铬缺乏可能与糖尿病的发生有关11, 12,补充叶酸可能有利于血糖稳态,降低胰岛素抵抗13, 14,而在维生素D缺乏的人群给予短期、大剂量(>2 000 U/d)补充维生素D有可能降低空腹血糖(fasting blood glucose,FBG)15,但不建议以降糖为目的常规补充维生素D。基于维生素D治疗有助于改善合并维生素D缺乏的T1DM儿童青少年的血糖和血脂水平,降低并发症风险,建议常规监测维生素D水平并及时补充6, 716。需要关注的是,孕前和妊娠早期在平衡膳食的基础上每日额外补充400 μg叶酸,有利于降低妊娠期糖尿病(gestational diabetes mellitus,GDM)的风险,但如果超过800 μg叶酸反而可能增加GDM的风险17

二、推荐采取平衡膳食为指导的糖尿病饮食模式

在膳食模式方面,新版指南推荐采取平衡膳食为指导的糖尿病饮食模式,在保证宏量营养素供能比适宜的前提下,根据代谢目标、合并症、饮食习惯、文化背景等进行个体化推荐。目前已有充分证据支持地中海饮食模式有益于糖尿病的长期防治18, 19, 20,部分证据支持终止高血压膳食疗法饮食可降低T2DM的发病风险1921,降低T2DM的空腹胰岛素水平,但对FBG和胰岛素抵抗指数无显著改善22。对时下流行的限能量饮食、限碳水化合物饮食、低血糖指数(glycemic index,GI)饮食等,新版指南也依据最新证据给出了推荐意见。短期内(<1年)低能量饮食(800~1 500 kcal/d)有助于超重/肥胖糖尿病患者的体重和血糖管理,且无明显不良反应23, 24, 25, 26, 27。因可能发生低血糖等并发症,不推荐长期接受极低能量饮食(<800 kcal/d)28, 29。间歇性能量限制(intermittent energy restriction,IER)和持续性能量限制均有利于肥胖T2DM患者的血糖和体重管理,长期来看两者并无区别30, 31, 32,但有研究提示IER在体重管理方面似乎更有优势33。限碳水化合物饮食,在短期(1年内)有利于T2DM患者的血糖控制,长期来看与平衡膳食相比对血糖的影响并无明显获益34, 35, 36。考虑到可能的安全性问题,不推荐T1DM患者选择极低碳水化合物饮食37。GI是反映不同种类食物对血糖影响大小的参数,而血糖负荷(glycemic load,GL)是GI值和给定食物量中所含有的可用碳水化合物总量的乘积,可用来评价摄入一定数量某种食物后对人体血糖影响的程度38。多项研究证明,低GI/GL饮食均可有效降低HbA1c、FBG39, 40。坚持低GI/GL膳食还通过良好的血糖控制、减少波动有益于糖尿病患者并发症的控制41

三、强调糖尿病自我管理教育个体化的必要性

糖尿病自我管理教育是糖尿病营养治疗中至关重要的部分,新版指南亦强调了其个体化的必要性。实施个体化管理目标和治疗方案,应考虑患者的年龄、文化程度、工作状况、身体活动、饮食习惯、家庭及社会支持状况和文化水平等诸多因素。多项研究表明,对于大多数超重和肥胖的T2DM患者通过生活方式干预(主要包括营养疗法、增加身体活动、对患者进行教育和支持),患者的体重和体重指数(body mass index,BMI)有所下降,血糖、HbA1c均有明显改善,同时血压、血脂也有所改善42, 43, 44, 45。在糖尿病的综合治疗小组中,应由1名熟悉MNT的营养师/医师发挥主导作用,同时由熟知MNT的小组成员贯彻实施营养教育46。糖尿病自我管理教育与支持需贯穿糖尿病病程的始终,争取最大限度地提高糖尿病患者的生活质量。将常用食物按其所含营养素和能量的近似值归类,计算出每类食物每份所含的营养素值、能量值和食物重量,然后将每类食物的内容列出表格供交换用,最后计算出各类食物的交换份数和实际重量,并按每份食物等值交换表选择食物,操作较为简便,便于患者根据日常需求制定个性化食谱。在推荐总能量基础上,通过食物交换份法合理安排饮食计划,有助于糖尿病患者控制总能量和血糖水平。相较于传统食物交换份法,结合低GL食物交换份法的MNT更有利于血糖控制,有助于改善体重、BMI和血脂代谢47, 48。而碳水化合物计数法则是通过计算一日正餐和点心所摄入食物中含有的碳水化合物克数与餐后血糖水平相对准确地联系起来,有助于控制T1DM和T2DM患者的血糖。相较于食物交换份法,碳水化合物计数法计算起来较复杂,因此为了制定合理的目标并学习测量或估算食物份量,大多数患者需要接受专业营养师指导下关于碳水化合物计算法的专门培训。

四、营养治疗对糖尿病并发症的进展及改善具有影响

糖尿病并发症主要包括糖尿病肾脏病、糖尿病神经病变、糖尿病足,除相应专科治疗外,营养治疗也对并发症的进展及改善起到一定影响。低蛋白饮食对于糖尿病肾脏病患者的肾功能或预后的影响目前存在争议,施行低蛋白饮食方案容易发生营养不良,建议可通过摄入充足能量来预防营养不良,若需口服营养补充,建议选用肾脏病适用型营养补充剂。对于维生素D缺乏的糖尿病肾脏病患者,口服补充维生素D3对血清维生素D状态和血脂异常有益处49, 50,但不作为常规推荐。维生素B12的衍生物(甲钴胺)可改善糖尿病自发性肢体疼痛、麻木、神经反射及传导障碍,并且甲钴胺联合α-硫辛酸较单纯甲钴胺治疗的效果更显著。补充大剂量维生素D可能有利于改善T2DM患者的神经病变症状,改善生活质量,但仍有待进一步大样本、高质量的多中心随机对照试验(randomized controlled trial,RCT)结果证实。糖尿病足的营养状况与感染严重程度和临床结局独立相关,营养不良是糖尿病足预后不良的危险因素51。目前已有较多临床研究结果显示糖尿病足接受营养治疗、补充特定营养素可促进糖尿病足创面愈合52, 53, 54, 55, 56, 57, 58, 59, 60,如精氨酸、维生素D、锌、镁等。

五、药物治疗及代谢手术与营养具有关联

除膳食营养相关推荐外,新版指南亦涉及糖尿病综合治疗中的药物治疗及代谢手术与营养的关联。糖尿病治疗药物中胰高糖素样肽-1受体激动剂、钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter 2 inhibitor,SGLT2i)均有助于减重,但应用SGLT2i过程中建议避免极低能量摄入,并且维持碳水化合物供能比不低于每日膳食能量的40%,以免诱发正常血糖型或高血糖型糖尿病酮症酸中毒。长期服用二甲双胍(超过2年)或日剂量超过1 500 mg的糖尿病患者容易出现维生素B12缺乏,建议常规进行维生素B12筛查。多项临床研究已证实代谢手术能缓解T2DM,改善多种糖尿病并发症,并优于单纯内科治疗61, 62, 63。代谢手术围手术期营养管理有助于控制血糖,降低手术风险,改善手术预后,故营养管理应贯穿代谢手术全程。T2DM代谢手术后蛋白质摄入量应满足60~120 g/d,并定期监测铁、维生素D、维生素B12、维生素A等微营养素情况,并按需补充。术后建议以高纤维含量的谷物和水果为主要碳水化合物来源,增加新鲜蔬菜摄入,减少高能量、高脂肪食物的摄入。对于出现代谢术后低血糖的T2DM患者,建议采用高纤维素、低GI膳食或低碳水化合物高蛋白膳食。

六、糖尿病营养学术研究的其他热点问题

在糖尿病营养学术研究热点如特殊营养素、益生菌、甜味剂、精准营养等方面新版指南也给予了关注。植物化学物为广泛存在于水果、蔬菜、豆类、谷物和茶等植物的次生代谢产物,越来越多的研究表明,长期适量摄入植物化学物可能通过其较强的抗炎、抗氧化等作用对T2DM起到一定的防治作用。有研究提示,植物化学物多酚可能对糖尿病及并发症的防治有益64, 65,原花青素可能对血糖控制有益66, 67,尚需更多研究来支持植物化学物对T2DM患者血糖的调节作用。补充ω-3 PUFA有助于降低T2DM患者的甘油三酯水平68, 69, 70,但目前证据尚不支持糖尿病患者常规使用ω-3膳食补充剂改善血脂紊乱。补充ω-3 PUFA对血糖控制影响的相关研究异质性较大,未来还需更多研究进一步探讨。添加膳食纤维可延长糖尿病患者的胃排空时间,延缓葡萄糖的消化与吸收,改善餐后血糖代谢和长期糖尿病控制。高膳食纤维饮食(25~36 g/d或12~14 g/1 000 kcal),特别是保证可溶性膳食纤维摄入(10~20 g/d),有助于控制T1DM和T2DM患者的血糖,降低全因死亡率71, 72。益生菌、益生元、合生元可能通过促进短链脂肪酸产生进而诱导能影响血糖水平的肠道激素分泌,并可增强免疫调节、增加抗炎细胞因子的产生、降低肠道渗透性和减少氧化应激等预防和延缓T2DM的发生发展73, 74。现有证据显示,补充特定益生菌如干酪乳杆菌、嗜酸乳酸杆菌、罗伊乳杆菌等有可能改善T2DM患者的血糖控制75, 76, 77。甜味剂因其高甜度、低能量特性,被广泛用于替代糖类用于食品添加。研究显示,成人T2DM患者短期摄入小剂量果糖甜味剂或阿洛酮糖并不升高餐后血糖。在血糖控制达标的T2DM患者中78,以木糖醇替代葡萄糖对餐后2 h血糖无显著影响79,非营养性甜味剂对T2DM患者的FBG、HbA1c和BMI没有显著影响80, 81, 82。结合个体生物学数据(如微生物组、基因组和代谢组)、生活方式因素(如睡眠和锻炼)信息等的个性化饮食有助于糖尿病前期、肥胖等T2DM患者及高危人群的餐后血糖控制。2021年的一项RCT研究探索了个体化餐后血糖靶向性饮食干预对糖尿病前期的血糖改善,并将其与公认的健康饮食地中海饮食的干预效果进行对比,发现为期6个月的个体化餐后血糖靶向性饮食干预有更好的血糖控制作用,为个性化的精准营养研究迈出重要一步83

MNT是根据患者的医学状况、生活方式和个人因素制定的个体化营养处方,是糖尿病管理中不可或缺的一部分,包括营养评估、诊断、干预及持续监测以支持长期的生活方式改变,并根据个体需要修改干预措施484。与常规营养诊疗流程一致,糖尿病患者营养方案制定前,尤其是合并急性疾病或应激高血糖时需经过营养风险筛查及个体化营养评估。根据患者个体情况建立包括现病史、既往史、药物史在内的营养治疗档案,并进行膳食调查、人体测量、相关生化临床检查等以做出个体化营养评估是整个糖尿病医学营养诊疗流程中的关键环节。在完成筛查、评估并做出营养诊断后,方可制定糖尿病综合营养治疗方案。与肠外营养相比,肠内营养(enteral nutrition,EN)对血糖代谢的影响更轻,若糖尿病患者正常膳食无法满足其营养需求时,EN可作为糖尿病营养支持的首选方法。EN配方选择方面,糖尿病特定EN配方对胰岛素需要量、FBG、HbA1c的影响优于标准配方85, 86, 87,同时规范使用糖尿病特定EN配方还可减少医疗资源耗费88, 89, 90。综合治疗方案确定后,后期的实施、监测调整评估不可或缺,根据患者是否出现糖尿病并发症及血糖、代谢指标达标情况,治疗方案需做出个体化的调整。

综上所述,新版指南结合国内外最新循证医学证据,强调了MNT在糖尿病综合治疗和管理中具有重要地位,并在不同营养素、不同人群、不同并发症等方面给出了相关推荐。新版指南还提供了糖尿病医学营养诊疗的规范流程图,为今后我国糖尿病患者的营养诊疗提供了实用的参考意见。新版指南内容翔实,依据充分,临床医务工作者可根据指南推荐意见的证据级别和推荐强度确定临床应用,同时也应注意,证据级别和推荐强度具有时效性,推荐意见有可能在更多新的研究成果不断涌现的情况下发生改变。

利益冲突
利益冲突

所有作者声明无利益冲突

参考文献
[1]
International Diabetes Federation. IDF Diabetes Atlas. 9th ed[EB/OL]. [2022-06-22]. http://www.diabetesatlas.org.
[2]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4):315-409. DOI: 10.3760/cma.j.cn115791-20210221-00095.
[3]
GongQ, ZhangP, WangJ, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study[J]. Lancet Diabetes Endocrinol, 2019, 7(6):452-461. DOI: 10.1016/S2213-8587(19)30093-2.
[4]
EvertAB, DennisonM, GardnerCD, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report[J]. Diabetes Care, 2019, 42(5):731-754. DOI: 10.2337/dci19-0014.
[5]
LeanM, LeslieWS, BarnesAC, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(5):344-355. DOI: 10.1016/S2213-8587(19)30068-3.
[6]
Look AHEAD Research Group, Pi-SunyerX, BlackburnG, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial[J]. Diabetes Care, 2007, 30(6): 1374-1383. DOI: 10.2337/dc07-0048.
[7]
Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS[J]. Diabetes Care, 2012, 35(4):723-730. DOI: 10.2337/dc11-1468.
[8]
EspelandMA, GlickHA, BertoniA, et al. Impact of an intensive lifestyle intervention on use and cost of medical services among overweight and obese adults with type 2 diabetes: the action for health in diabetes[J]. Diabetes Care, 2014, 37(9):2548-2556. DOI: 10.2337/dc14-0093.
[9]
中华人民共和国国家卫生和计划生育委员会. WS/T 429-2013 成人糖尿病患者膳食指导[S].北京: 中华人民共和国国家卫生和计划生育委员会, 2013.
[10]
VincentMJ, AllenB, PalaciosOM, et al. Meta-regression analysis of the effects of dietary cholesterol intake on LDL and HDL cholesterol[J]. Am J Clin Nutr, 2019, 109(1):7-16. DOI: 10.1093/ajcn/nqy273.
[11]
ForteG, BoccaB, PeruzzuA, et al. Blood metals concentration in type 1 and type 2 diabetics[J]. Biol Trace Elem Res, 2013, 156(1-3):79-90. DOI: 10.1007/s12011-013-9858-6.
[12]
刘宋芳, 王述进, 杜军辉, . 血清中微量元素铬浓度与糖尿病罹患风险相关性的Meta分析[J]. 中国临床研究, 2017, 30(6):789-792. DOI: 10.13429/j.cnki.cjcr.2017.06.019.
[13]
SudchadaP, SaokaewS, SridetchS, et al. Effect of folic acid supplementation on plasma total homocysteine levels and glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis[J]. Diabetes Res Clin Pract, 2012, 98(1):151-158. DOI: 10.1016/j.diabres.2012.05.027.
[14]
ZhaoJV, SchoolingCM, ZhaoJX. The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials[J]. Ann Epidemiol, 2018, 28(4):249-257.e1. DOI: 10.1016/j.annepidem.2018.02.001.
[15]
LiX, LiuY, ZhengY, et al. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: a systematic review and meta-analysis[J]. Nutrients, 2018, 10(3):375. DOI: 10.3390/nu10030375.
[16]
RazazJM, RahmaniJ, VarkanehHK, et al. The health effects of medical nutrition therapy by dietitians in patients with diabetes: a systematic review and meta-analysis: nutrition therapy and diabetes[J]. Prim Care Diabetes, 2019, 13(5):399-408. DOI: 10.1016/j.pcd.2019.05.001.
[17]
LiQ, ZhangY, HuangL, et al. High-dose folic acid supplement use from prepregnancy through midpregnancy is associated with increased risk of gestational diabetes mellitus: a prospective cohort study[J]. Diabetes Care, 2019, 42(7):e113-e115. DOI: 10.2337/dc18-2572.
[18]
Salas-SalvadóJ, BullóM, EstruchR, et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial[J]. Ann Intern Med, 2014, 160(1):1-10. DOI: 10.7326/M13-1725.
[19]
JannaschF, KrögerJ, SchulzeMB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies[J]. J Nutr, 2017, 147(6):1174-1182. DOI: 10.3945/jn.116.242552.
[20]
NeuenschwanderM, HoffmannG, SchwingshacklL, et al. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis[J]. Eur J Epidemiol, 2019, 34(9):837-852. DOI: 10.1007/s10654-019-00534-1.
[21]
EspositoK, ChiodiniP, MaiorinoMI, et al. Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies[J]. Endocrine, 2014, 47(1):107-116. DOI: 10.1007/s12020-014-0264-4.
[22]
ShiraniF, Salehi-AbargoueiA, AzadbakhtL. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials[J]. Nutrition, 2013, 29(7-8):939-947. DOI: 10.1016/j.nut.2012.12.021.
[23]
OshakbayevK, DukenbayevaB, TogizbayevaG, et al. Weight loss technology for people with treated type 2 diabetes: a randomized controlled trial[J]. Nutr Metab (Lond), 2017, 14:11. DOI: 10.1186/s12986-017-0163-9.
[24]
BrownA, DornhorstA, McGowanB, et al. Low-energy total diet replacement intervention in patients with type 2 diabetes mellitus and obesity treated with insulin: a randomized trial[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001012. DOI: 10.1136/bmjdrc-2019-001012.
[25]
MorrisE, AveyardP, DysonP, et al. A food-based, low-energy, low-carbohydrate diet for people with type 2 diabetes in primary care: a randomized controlled feasibility trial[J]. Diabetes Obes Metab, 2020, 22(4):512-520. DOI: 10.1111/dom.13915.
[26]
RuggenentiP, AbbateM, RuggieroB, et al. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: a randomized controlled trial[J]. Diabetes, 2017, 66(1):75-86. DOI: 10.2337/db16-0607.
[27]
LeanME, LeslieWS, BarnesAC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial[J]. Lancet, 2018, 391(10120):541-551. DOI: 10.1016/S0140-6736(17)33102-1.
[28]
李春睿, 陈国芳, 狄红杰, . 短期极低热量限食对2型糖尿病患者胰岛β细胞功能及糖脂代谢的影响[J]. 中华内分泌代谢杂志, 2014, 30(6):473-476. DOI: 10.3760/cma.j.issn.1000-6699.2014.06.006.
[29]
李春睿, 刘超. 短期极低热量限食对2型糖尿病患者糖脂代谢及用药剂量的影响[J]. 江苏医药, 2015, 41(3):343-344.
[30]
CarterS, CliftonPM, KeoghJB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial[J]. Diabetes Res Clin Pract, 2016, 122:106-112. DOI: 10.1016/j.diabres.2016.10.010.
[31]
CarterS, CliftonPM, KeoghJB. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial[J]. JAMA Netw Open, 2018, 1(3):e180756. DOI: 10.1001/jamanetworkopen.2018.0756.
[32]
CarterS, CliftonPM, KeoghJB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial[J]. Diabetes Res Clin Pract, 2019, 151:11-19. DOI: 10.1016/j.diabres.2019.03.022.
[33]
WangX, LiQ, LiuY, et al. Intermittent fasting versus continuous energy-restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: a systematic review and meta-analysis of randomized controlled trials[J]. Diabetes Res Clin Pract, 2021, 179:109003. DOI: 10.1016/j.diabres.2021.109003.
[34]
McArdlePD, GreenfieldSM, RilstoneSK, et al. Carbohydrate restriction for glycaemic control in type 2 diabetes: a systematic review and meta-analysis[J]. Diabet Med, 2019, 36(3):335-348. DOI: 10.1111/dme.13862.
[35]
van ZuurenEJ, FedorowiczZ, KuijpersT, et al. Effects of low-carbohydrate-compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments[J]. Am J Clin Nutr, 2018, 108(2):300-331. DOI: 10.1093/ajcn/nqy096.
[36]
SilveriiGA, BotarelliL, DicembriniI, et al. Low-carbohydrate diets and type 2 diabetes treatment: a meta-analysis of randomized controlled trials[J]. Acta Diabetol, 2020, 57(11):1375-1382. DOI: 10.1007/s00592-020-01568-8.
[37]
TurtonJL, RaabR, RooneyKB. Low-carbohydrate diets for type 1 diabetes mellitus: a systematic review[J]. PLoS One, 2018, 13(3):e0194987. DOI: 10.1371/journal.pone.0194987.
[38]
AugustinL, KendallC, JenkinsD, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC)[J]. Nutr Metab Cardiovasc Dis, 2015, 25(9):795-815. DOI: 10.1016/j.numecd.2015.05.005.
[39]
OjoO, OjoOO, AdebowaleF, et al. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2018, 10(3):373. DOI: 10.3390/nu10030373.
[40]
ZafarMI, MillsKE, ZhengJ, et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis[J]. Am J Clin Nutr, 2019, 110(4):891-902. DOI: 10.1093/ajcn/nqz149.
[41]
KaushikS, WangJJ, WongTY, et al. Glycemic index, retinal vascular caliber, and stroke mortality[J]. Stroke, 2009, 40(1):206-212. DOI: 10.1161/STROKEAHA.108.513812.
[42]
KatangweT, BhattacharyaD, TwiggMJ. A systematic review exploring characteristics of lifestyle modification interventions in newly diagnosed type 2 diabetes for delivery in community pharmacy[J]. Int J Pharm Pract, 2019, 27(1):3-16. DOI: 10.1111/ijpp.12512.
[43]
FanR, XuM, WangJ, et al. Sustaining effect of intensive nutritional intervention combined with health education on dietary behavior and plasma glucose in type 2 diabetes mellitus patients[J]. Nutrients, 2016, 8(9):560. DOI: 10.3390/nu8090560.
[44]
GalléF, Di OnofrioV, CirellaA, et al. Self-management of type 2 diabetes in overweight and inactive patients through an educational and motivational intervention addressing diet and physical activity: a prospective study in Naples, South Italy[J]. Diabetes Ther, 2017, 8(4):875-886. DOI: 10.1007/s13300-017-0283-2.
[45]
Alonso-DomínguezR, García-OrtizL, Patino-AlonsoMC, et al. Effectiveness of a multifactorial intervention in increasing adherence to the Mediterranean diet among patients with diabetes mellitus type 2: a controlled and randomized study (EMID Study)[J]. Nutrients, 2019, 11(1):162. DOI: 10.3390/nu11010162.
[46]
American Diabetes Association. Standards of medical care in diabetes--2010[J]. Diabetes Care, 2010, 33Suppl 1(Suppl 1):S11-S61. DOI: 10.2337/dc10-S011.
[47]
牛瑞, 晏曼, 杨西宁. 基于血糖负荷概念的饮食教育对2型糖尿病病人血糖及血脂影响的Meta分析[J]. 循证护理, 2020, 6(2):116-123. DOI: 10.12102/j.issn.2095-8668.2020.02.003.
[48]
高元秀, 李翠吟. 基于低血糖生成负荷联合食物交换份法的饮食教育方法应用于2型糖尿病患者的效果[J]. 中外医学研究, 2021, 19(8):176-178. DOI: 10.14033/j.cnki.cfmr.2021.08.064.
[49]
XiaoX, WangY, HouY, et al. Vitamin D deficiency and related risk factors in patients with diabetic nephropathy[J]. J Int Med Res, 2016, 44(3):673-684. DOI: 10.1177/0300060515593765.
[50]
BarzegariM, SarbakhshP, MobasseriM, et al. The effects of vitamin D supplementation on lipid profiles and oxidative indices among diabetic nephropathy patients with marginal vitamin D status[J]. Diabetes Metab Syndr, 2019, 13(1):542-547. DOI: 10.1016/j.dsx.2018.11.008.
[51]
ZhangSS, TangZY, FangP, et al. Nutritional status deteriorates as the severity of diabetic foot ulcers increases and independently associates with prognosis[J]. Exp Ther Med, 2013, 5(1):215-222. DOI: 10.3892/etm.2012.780.
[52]
SajidN, MiyanZ, ZaidiS, et al. Protein requirement and its intake in subjects with diabetic foot ulcers at a tertiary care hospital[J]. Pak J Med Sci, 2018, 34(4):886-890. DOI: 10.12669/pjms.344.15399.
[53]
AranaV, PazY, GonzálezA, et al. Healing of diabetic foot ulcers in L-arginine-treated patients[J]. Biomed Pharmacother, 2004, 58(10):588-597. DOI: 10.1016/j.biopha.2004.09.009.
[54]
TattiP, BarberAE. The use of a specialized nutritional supplement for diabetic foot ulcers reduces the use of antibiotics[J]. J Endocrinol Metab. 2012, 2(1):26-31.DOI: 10.4021/jem64w.
[55]
RahmanNMA, Al-ShammaK, Al-Ahmady1SK. Study the effect of Zinc/or Vit.D3 on percentage of healing of diabetic foot ulcer in Iraqi patients[J]. International Journal Of Advances In Pharmacy, Biology and Chemistry. 2013, 2(4):600-604.
[56]
Halschou-JensenPM, SauerJ, BoucheloucheP, et al. Improved healing of diabetic foot ulcers after high-dose vitamin D: a randomized double-blinded clinical trial[J]. Int J Low Extrem Wounds, 2021:15347346211020268. DOI: 10.1177/15347346211020268.
[57]
Mozaffari-KhosraviH, Haratian-ArabM, TavakkoliHM, et al. Comparative effect of two different doses of vitamin D on diabetic foot ulcer and inflammatory indices among the type 2 diabetic patients: a randomized clinical trial[J]. Iranian Journal of Diabetes and Obesity, 2016, 8(4):164-171.
[58]
Momen-HeraviM, BarahimiE, RazzaghiR, et al. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial[J]. Wound Repair Regen, 2017, 25(3):512-520. DOI: 10.1111/wrr.12537.
[59]
RazzaghiR, PidarF, Momen-HeraviM, et al. Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial[J]. Biol Trace Elem Res, 2018, 181(2):207-215. DOI: 10.1007/s12011-017-1056-5.
[60]
AfzaliH, Jafari KashiAH, Momen-HeraviM, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial[J]. Wound Repair Regen, 2019, 27(3):277-284. DOI: 10.1111/wrr.12701.
[61]
MingroneG, PanunziS, De GaetanoA, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial[J]. Lancet, 2021, 397(10271):293-304. DOI: 10.1016/S0140-6736(20)32649-0.
[62]
CourcoulasAP, GallagherJW, NeibergRH, et al. Bariatric surgery vs lifestyle intervention for diabetes treatment: 5-year outcomes from a randomized trial[J]. J Clin Endocrinol Metab, 2020, 105(3):866-876. DOI: 10.1210/clinem/dgaa006.
[63]
AzevedoFR, SantoroS, Correa-GiannellaML, et al. A prospective randomized controlled trial of the metabolic effects of sleeve gastrectomy with transit bipartition[J]. Obes Surg, 2018, 28(10):3012-3019. DOI: 10.1007/s11695-018-3239-3.
[64]
RaimundoAF, FélixF, AndradeR, et al. Combined effect of interventions with pure or enriched mixtures of (poly)phenols and anti-diabetic medication in type 2 diabetes management: a meta-analysis of randomized controlled human trials[J]. Eur J Nutr, 2020, 59(4):1329-1343. DOI: 10.1007/s00394-020-02189-1.
[65]
HoseiniA, NamaziG, FarrokhianA, et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease[J]. Food Funct, 2019, 10(9):6042-6051. DOI: 10.1039/c9fo01075k.
[66]
YangL, LingW, YangY, et al. Role of purified anthocyanins in improving cardiometabolic risk factors in Chinese men and women with prediabetes or early untreated diabetes-a randomized controlled trial[J]. Nutrients, 2017, 9(10):1104. DOI: 10.3390/nu9101104.
[67]
RochaD, CaldasA, da SilvaBP, et al. Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: a systematic review[J]. Crit Rev Food Sci Nutr, 2019, 59(11):1816-1828. DOI: 10.1080/10408398.2018.1430019.
[68]
HartwegJ, PereraR, MontoriV, et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus[J]. Cochrane Database Syst Rev, 2008, 2008(1):CD003205. DOI: 10.1002/14651858.CD003205.pub2.
[69]
WangF, LiuHC, LiuXS, et al. [Effects of ω-3 polyunsaturated fatty acids from different sources on glucolipid metabolism in type 2 diabetic patients with dyslipidemia][J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2019, 53(6):570-575. DOI: 10.3760/cma.j.issn.0253-9624.2019.06.006.
[70]
Jacobo-CejudoMG, Valdés-RamosR, Guadarrama-LópezAL, et al. Effect of n-3 polyunsaturated fatty acid supplementation on metabolic and inflammatory biomarkers in type 2 diabetes mellitus patients[J]. Nutrients, 2017, 9(6): 573. DOI: 10.3390/nu9060573.
[71]
SchoenakerDA, ToellerM, ChaturvediN, et al. Dietary saturated fat and fibre and risk of cardiovascular disease and all-cause mortality among type 1 diabetic patients: the EURODIAB Prospective Complications Study[J]. Diabetologia, 2012, 55(8):2132-2141. DOI: 10.1007/s00125-012-2550-0.
[72]
BurgerKN, BeulensJW, van der SchouwYT, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus[J]. PLoS One, 2012, 7(8):e43127. DOI: 10.1371/journal.pone.0043127.
[73]
YadavH, LeeJH, LloydJ, et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion[J]. J Biol Chem, 2013, 288(35):25088-25097. DOI: 10.1074/jbc.M113.452516.
[74]
CaniPD, PossemiersS, Van de WieleT, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58(8):1091-1103. DOI: 10.1136/gut.2008.165886.
[75]
TonucciLB, Olbrich Dos SantosKM, Licursi de OliveiraL, et al. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study[J]. Clin Nutr, 2017, 36(1):85-92. DOI: 10.1016/j.clnu.2015.11.011.
[76]
KhaliliL, AlipourB, Asghari Jafar-AbadiM, et al. The effects of lactobacillus casei on glycemic response, serum sirtuin1 and fetuin-a levels in patients with type 2 diabetes mellitus: a randomized controlled trial[J]. Iran Biomed J, 2019, 23(1):68-77. DOI: 10.29252/.23.1.68.
[77]
HsiehMC, TsaiWH, JhengYP, et al. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blinded, placebo-controlled trial[J]. Sci Rep, 2018, 8(1):16791. DOI: 10.1038/s41598-018-35014-1.
[78]
NoronhaJC, BraunsteinCR, GlennAJ, et al. The effect of small doses of fructose and allulose on postprandial glucose metabolism in type 2 diabetes: a double-blind, randomized, controlled, acute feeding, equivalence trial[J]. Diabetes Obes Metab, 2018, 20(10):2361-2370. DOI: 10.1111/dom.13374.
[79]
ArgianaV, Kanellos, EleftheriadouI, et al. Low-glycemic-index/load desserts decrease glycemic and insulinemic response in patients with type 2 diabetes mellitus[J]. Nutrients, 2020, 12(7):2153. DOI: 10.3390/nu12072153.
[80]
MezitisNH, MaggioCA, KochP, et al. Glycemic effect of a single high oral dose of the novel sweetener sucralose in patients with diabetes[J]. Diabetes Care, 1996, 19(9):1004-1005. DOI: 10.2337/diacare.19.9.1004.
[81]
GrotzVL, HenryRR, McGillJB, et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes[J]. J Am Diet Assoc, 2003, 103(12):1607-1612. DOI: 10.1016/j.jada.2003.09.021.
[82]
BarriocanalLA, PalaciosM, BenitezG, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. a pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics[J]. Regul Toxicol Pharmacol, 2008, 51(1):37-41. DOI: 10.1016/j.yrtph.2008.02.006.
[83]
Ben-YacovO, GodnevaA, ReinM, et al. Personalized postprandial glucose response-targeting diet versus mediterranean diet for glycemic control in prediabetes[J]. Diabetes Care, 2021, 44(9):1980-1991. DOI: 10.2337/dc21-0162.
[84]
FranzMJ, MacLeodJ, EvertA, et al. Academy of Nutrition and Dietetics Nutrition practice guideline for type 1 and type 2 diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process[J]. J Acad Nutr Diet, 2017, 117(10):1659-1679. DOI: 10.1016/j.jand.2017.03.022.
[85]
OjoO, WeldonSM, ThompsonT, et al. The Effect of diabetes-specific enteral nutrition formula on cardiometabolic parameters in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials[J]. Nutrients, 2019, 11(8):1905. DOI: 10.3390/nu11081905.
[86]
DoolaR, DeaneAM, TolcherDM, et al. The effect of a low carbohydrate formula on glycaemia in critically ill enterally-fed adult patients with hyperglycaemia: a blinded randomised feasibility trial[J]. Clin Nutr ESPEN, 2019, 31:80-87. DOI: 10.1016/j.clnesp.2019.02.013.
[87]
ShaoY, HengW, LiS, et al. Tube feeding with a diabetes-specific enteral formula improves glycemic control in severe acute ischemic stroke patients[J]. JPEN J Parenter Enteral Nutr, 2018, 42(5):926-932. DOI: 10.1002/jpen.1035.
[88]
Sanz-ParisA, Boj-CarcellerD, Lardies-SanchezB, et al. Health-care costs, glycemic control and nutritional status in malnourished older diabetics treated with a hypercaloric diabetes-specific enteral nutritional formula[J]. Nutrients, 2016, 8(3):153. DOI: 10.3390/nu8030153.
[89]
HanYY, LaiSR, PartridgeJS, et al. The clinical and economic impact of the use of diabetes-specific enteral formula on ICU patients with type 2 diabetes[J]. Clin Nutr, 2017, 36(6):1567-1572. DOI: 10.1016/j.clnu.2016.09.027.
[90]
HamdyO, ErnstFR, BaumerD, et al. Differences in resource utilization between patients with diabetes receiving glycemia-targeted specialized nutrition vs standard nutrition formulas in U.S. hospitals[J]. JPEN J Parenter Enteral Nutr, 2014, 38(2Suppl):86S-91S. DOI: 10.1177/0148607114550315.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词