参考文献[2]
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志, 2021, 13(4):315-409. .
[3]
GongQ, ZhangP, WangJ, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study[J]. Lancet Diabetes Endocrinol, 2019, 7(6):452-461. .
[4]
EvertAB, DennisonM, GardnerCD, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report[J]. Diabetes Care, 2019, 42(5):731-754. .
[5]
LeanM, LeslieWS, BarnesAC, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(5):344-355. .
[6]
Look AHEAD Research Group, Pi-SunyerX, BlackburnG, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial[J]. Diabetes Care, 2007, 30(6): 1374-1383. .
[7]
Diabetes Prevention Program Research Group. The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS[J]. Diabetes Care, 2012, 35(4):723-730. .
[8]
EspelandMA, GlickHA, BertoniA, et al. Impact of an intensive lifestyle intervention on use and cost of medical services among overweight and obese adults with type 2 diabetes: the action for health in diabetes[J]. Diabetes Care, 2014, 37(9):2548-2556. .
[9]
中华人民共和国国家卫生和计划生育委员会. WS/T 429-2013 成人糖尿病患者膳食指导[S].北京: 中华人民共和国国家卫生和计划生育委员会, 2013.
[10]
VincentMJ, AllenB, PalaciosOM, et al. Meta-regression analysis of the effects of dietary cholesterol intake on LDL and HDL cholesterol[J]. Am J Clin Nutr, 2019, 109(1):7-16. .
[11]
ForteG, BoccaB, PeruzzuA, et al. Blood metals concentration in type 1 and type 2 diabetics[J]. Biol Trace Elem Res, 2013, 156(1-3):79-90. .
[12]
刘宋芳, 王述进, 杜军辉, 等. 血清中微量元素铬浓度与糖尿病罹患风险相关性的Meta分析[J]. 中国临床研究, 2017, 30(6):789-792. .
[13]
SudchadaP, SaokaewS, SridetchS, et al. Effect of folic acid supplementation on plasma total homocysteine levels and glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis[J]. Diabetes Res Clin Pract, 2012, 98(1):151-158. .
[14]
ZhaoJV, SchoolingCM, ZhaoJX. The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials[J]. Ann Epidemiol, 2018, 28(4):249-257.e1. .
[15]
LiX, LiuY, ZhengY, et al. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: a systematic review and meta-analysis[J]. Nutrients, 2018, 10(3):375. .
[16]
RazazJM, RahmaniJ, VarkanehHK, et al. The health effects of medical nutrition therapy by dietitians in patients with diabetes: a systematic review and meta-analysis: nutrition therapy and diabetes[J]. Prim Care Diabetes, 2019, 13(5):399-408. .
[17]
LiQ, ZhangY, HuangL, et al. High-dose folic acid supplement use from prepregnancy through midpregnancy is associated with increased risk of gestational diabetes mellitus: a prospective cohort study[J]. Diabetes Care, 2019, 42(7):e113-e115. .
[18]
Salas-SalvadóJ, BullóM, EstruchR, et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial[J]. Ann Intern Med, 2014, 160(1):1-10. .
[19]
JannaschF, KrögerJ, SchulzeMB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies[J]. J Nutr, 2017, 147(6):1174-1182. .
[20]
NeuenschwanderM, HoffmannG, SchwingshacklL, et al. Impact of different dietary approaches on blood lipid control in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis[J]. Eur J Epidemiol, 2019, 34(9):837-852. .
[21]
EspositoK, ChiodiniP, MaiorinoMI, et al. Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies[J]. Endocrine, 2014, 47(1):107-116. .
[22]
ShiraniF, Salehi-AbargoueiA, AzadbakhtL. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials[J]. Nutrition, 2013, 29(7-8):939-947. .
[23]
OshakbayevK, DukenbayevaB, TogizbayevaG, et al. Weight loss technology for people with treated type 2 diabetes: a randomized controlled trial[J]. Nutr Metab (Lond), 2017, 14:11. .
[24]
BrownA, DornhorstA, McGowanB, et al. Low-energy total diet replacement intervention in patients with type 2 diabetes mellitus and obesity treated with insulin: a randomized trial[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001012. .
[25]
MorrisE, AveyardP, DysonP, et al. A food-based, low-energy, low-carbohydrate diet for people with type 2 diabetes in primary care: a randomized controlled feasibility trial[J]. Diabetes Obes Metab, 2020, 22(4):512-520. .
[26]
RuggenentiP, AbbateM, RuggieroB, et al. Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: a randomized controlled trial[J]. Diabetes, 2017, 66(1):75-86. .
[27]
LeanME, LeslieWS, BarnesAC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial[J]. Lancet, 2018, 391(10120):541-551. .
[28]
李春睿, 陈国芳, 狄红杰, 等. 短期极低热量限食对2型糖尿病患者胰岛β细胞功能及糖脂代谢的影响[J]. 中华内分泌代谢杂志, 2014, 30(6):473-476. .
[29]
李春睿, 刘超. 短期极低热量限食对2型糖尿病患者糖脂代谢及用药剂量的影响[J]. 江苏医药, 2015, 41(3):343-344.
[30]
CarterS, CliftonPM, KeoghJB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial[J]. Diabetes Res Clin Pract, 2016, 122:106-112. .
[31]
CarterS, CliftonPM, KeoghJB. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial[J]. JAMA Netw Open, 2018, 1(3):e180756. .
[32]
CarterS, CliftonPM, KeoghJB. The effect of intermittent compared with continuous energy restriction on glycaemic control in patients with type 2 diabetes: 24-month follow-up of a randomised noninferiority trial[J]. Diabetes Res Clin Pract, 2019, 151:11-19. .
[33]
WangX, LiQ, LiuY, et al. Intermittent fasting versus continuous energy-restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: a systematic review and meta-analysis of randomized controlled trials[J]. Diabetes Res Clin Pract, 2021, 179:109003. .
[34]
McArdlePD, GreenfieldSM, RilstoneSK, et al. Carbohydrate restriction for glycaemic control in type 2 diabetes: a systematic review and meta-analysis[J]. Diabet Med, 2019, 36(3):335-348. .
[35]
van ZuurenEJ, FedorowiczZ, KuijpersT, et al. Effects of low-carbohydrate-compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments[J]. Am J Clin Nutr, 2018, 108(2):300-331. .
[36]
SilveriiGA, BotarelliL, DicembriniI, et al. Low-carbohydrate diets and type 2 diabetes treatment: a meta-analysis of randomized controlled trials[J]. Acta Diabetol, 2020, 57(11):1375-1382. .
[37]
TurtonJL, RaabR, RooneyKB. Low-carbohydrate diets for type 1 diabetes mellitus: a systematic review[J]. PLoS One, 2018, 13(3):e0194987. .
[38]
AugustinL, KendallC, JenkinsD, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC)[J]. Nutr Metab Cardiovasc Dis, 2015, 25(9):795-815. .
[39]
OjoO, OjoOO, AdebowaleF, et al. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2018, 10(3):373. .
[40]
ZafarMI, MillsKE, ZhengJ, et al. Low-glycemic index diets as an intervention for diabetes: a systematic review and meta-analysis[J]. Am J Clin Nutr, 2019, 110(4):891-902. .
[41]
KaushikS, WangJJ, WongTY, et al. Glycemic index, retinal vascular caliber, and stroke mortality[J]. Stroke, 2009, 40(1):206-212. .
[42]
KatangweT, BhattacharyaD, TwiggMJ. A systematic review exploring characteristics of lifestyle modification interventions in newly diagnosed type 2 diabetes for delivery in community pharmacy[J]. Int J Pharm Pract, 2019, 27(1):3-16. .
[43]
FanR, XuM, WangJ, et al. Sustaining effect of intensive nutritional intervention combined with health education on dietary behavior and plasma glucose in type 2 diabetes mellitus patients[J]. Nutrients, 2016, 8(9):560. .
[44]
GalléF, Di OnofrioV, CirellaA, et al. Self-management of type 2 diabetes in overweight and inactive patients through an educational and motivational intervention addressing diet and physical activity: a prospective study in Naples, South Italy[J]. Diabetes Ther, 2017, 8(4):875-886. .
[45]
Alonso-DomínguezR, García-OrtizL, Patino-AlonsoMC, et al. Effectiveness of a multifactorial intervention in increasing adherence to the Mediterranean diet among patients with diabetes mellitus type 2: a controlled and randomized study (EMID Study)[J]. Nutrients, 2019, 11(1):162. .
[46]
American Diabetes Association. Standards of medical care in diabetes--2010[J]. Diabetes Care, 2010, 33Suppl 1(Suppl 1):S11-S61. .
[47]
牛瑞, 晏曼, 杨西宁. 基于血糖负荷概念的饮食教育对2型糖尿病病人血糖及血脂影响的Meta分析[J]. 循证护理, 2020, 6(2):116-123. .
[48]
高元秀, 李翠吟. 基于低血糖生成负荷联合食物交换份法的饮食教育方法应用于2型糖尿病患者的效果[J]. 中外医学研究, 2021, 19(8):176-178. .
[49]
XiaoX, WangY, HouY, et al. Vitamin D deficiency and related risk factors in patients with diabetic nephropathy[J]. J Int Med Res, 2016, 44(3):673-684. .
[50]
BarzegariM, SarbakhshP, MobasseriM, et al. The effects of vitamin D supplementation on lipid profiles and oxidative indices among diabetic nephropathy patients with marginal vitamin D status[J]. Diabetes Metab Syndr, 2019, 13(1):542-547. .
[51]
ZhangSS, TangZY, FangP, et al. Nutritional status deteriorates as the severity of diabetic foot ulcers increases and independently associates with prognosis[J]. Exp Ther Med, 2013, 5(1):215-222. .
[52]
SajidN, MiyanZ, ZaidiS, et al. Protein requirement and its intake in subjects with diabetic foot ulcers at a tertiary care hospital[J]. Pak J Med Sci, 2018, 34(4):886-890. .
[53]
AranaV, PazY, GonzálezA, et al. Healing of diabetic foot ulcers in L-arginine-treated patients[J]. Biomed Pharmacother, 2004, 58(10):588-597. .
[54]
TattiP, BarberAE. The use of a specialized nutritional supplement for diabetic foot ulcers reduces the use of antibiotics[J]. J Endocrinol Metab. 2012, 2(1):26-31..
[55]
RahmanNMA, Al-ShammaK, Al-Ahmady1SK. Study the effect of Zinc/or Vit.D3 on percentage of healing of diabetic foot ulcer in Iraqi patients[J]. International Journal Of Advances In Pharmacy, Biology and Chemistry. 2013, 2(4):600-604.
[56]
Halschou-JensenPM, SauerJ, BoucheloucheP, et al. Improved healing of diabetic foot ulcers after high-dose vitamin D: a randomized double-blinded clinical trial[J]. Int J Low Extrem Wounds, 2021:15347346211020268. .
[57]
Mozaffari-KhosraviH, Haratian-ArabM, TavakkoliHM, et al. Comparative effect of two different doses of vitamin D on diabetic foot ulcer and inflammatory indices among the type 2 diabetic patients: a randomized clinical trial[J]. Iranian Journal of Diabetes and Obesity, 2016, 8(4):164-171.
[58]
Momen-HeraviM, BarahimiE, RazzaghiR, et al. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial[J]. Wound Repair Regen, 2017, 25(3):512-520. .
[59]
RazzaghiR, PidarF, Momen-HeraviM, et al. Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial[J]. Biol Trace Elem Res, 2018, 181(2):207-215. .
[60]
AfzaliH, Jafari KashiAH, Momen-HeraviM, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial[J]. Wound Repair Regen, 2019, 27(3):277-284. .
[61]
MingroneG, PanunziS, De GaetanoA, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial[J]. Lancet, 2021, 397(10271):293-304. .
[62]
CourcoulasAP, GallagherJW, NeibergRH, et al. Bariatric surgery vs lifestyle intervention for diabetes treatment: 5-year outcomes from a randomized trial[J]. J Clin Endocrinol Metab, 2020, 105(3):866-876. .
[63]
AzevedoFR, SantoroS, Correa-GiannellaML, et al. A prospective randomized controlled trial of the metabolic effects of sleeve gastrectomy with transit bipartition[J]. Obes Surg, 2018, 28(10):3012-3019. .
[64]
RaimundoAF, FélixF, AndradeR, et al. Combined effect of interventions with pure or enriched mixtures of (poly)phenols and anti-diabetic medication in type 2 diabetes management: a meta-analysis of randomized controlled human trials[J]. Eur J Nutr, 2020, 59(4):1329-1343. .
[65]
HoseiniA, NamaziG, FarrokhianA, et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease[J]. Food Funct, 2019, 10(9):6042-6051. .
[66]
YangL, LingW, YangY, et al. Role of purified anthocyanins in improving cardiometabolic risk factors in Chinese men and women with prediabetes or early untreated diabetes-a randomized controlled trial[J]. Nutrients, 2017, 9(10):1104. .
[67]
RochaD, CaldasA, da SilvaBP, et al. Effects of blueberry and cranberry consumption on type 2 diabetes glycemic control: a systematic review[J]. Crit Rev Food Sci Nutr, 2019, 59(11):1816-1828. .
[68]
HartwegJ, PereraR, MontoriV, et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus[J]. Cochrane Database Syst Rev, 2008, 2008(1):CD003205. .
[69]
WangF, LiuHC, LiuXS, et al. [Effects of ω-3 polyunsaturated fatty acids from different sources on glucolipid metabolism in type 2 diabetic patients with dyslipidemia][J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2019, 53(6):570-575. .
[70]
Jacobo-CejudoMG, Valdés-RamosR, Guadarrama-LópezAL, et al. Effect of n-3 polyunsaturated fatty acid supplementation on metabolic and inflammatory biomarkers in type 2 diabetes mellitus patients[J]. Nutrients, 2017, 9(6): 573. .
[71]
SchoenakerDA, ToellerM, ChaturvediN, et al. Dietary saturated fat and fibre and risk of cardiovascular disease and all-cause mortality among type 1 diabetic patients: the EURODIAB Prospective Complications Study[J]. Diabetologia, 2012, 55(8):2132-2141. .
[72]
BurgerKN, BeulensJW, van der SchouwYT, et al. Dietary fiber, carbohydrate quality and quantity, and mortality risk of individuals with diabetes mellitus[J]. PLoS One, 2012, 7(8):e43127. .
[73]
YadavH, LeeJH, LloydJ, et al. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion[J]. J Biol Chem, 2013, 288(35):25088-25097. .
[74]
CaniPD, PossemiersS, Van de WieleT, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability[J]. Gut, 2009, 58(8):1091-1103. .
[75]
TonucciLB, Olbrich Dos SantosKM, Licursi de OliveiraL, et al. Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study[J]. Clin Nutr, 2017, 36(1):85-92. .
[76]
KhaliliL, AlipourB, Asghari Jafar-AbadiM, et al. The effects of lactobacillus casei on glycemic response, serum sirtuin1 and fetuin-a levels in patients with type 2 diabetes mellitus: a randomized controlled trial[J]. Iran Biomed J, 2019, 23(1):68-77. .
[77]
HsiehMC, TsaiWH, JhengYP, et al. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blinded, placebo-controlled trial[J]. Sci Rep, 2018, 8(1):16791. .
[78]
NoronhaJC, BraunsteinCR, GlennAJ, et al. The effect of small doses of fructose and allulose on postprandial glucose metabolism in type 2 diabetes: a double-blind, randomized, controlled, acute feeding, equivalence trial[J]. Diabetes Obes Metab, 2018, 20(10):2361-2370. .
[79]
ArgianaV, KanellosPΤ, EleftheriadouI, et al. Low-glycemic-index/load desserts decrease glycemic and insulinemic response in patients with type 2 diabetes mellitus[J]. Nutrients, 2020, 12(7):2153. .
[80]
MezitisNH, MaggioCA, KochP, et al. Glycemic effect of a single high oral dose of the novel sweetener sucralose in patients with diabetes[J]. Diabetes Care, 1996, 19(9):1004-1005. .
[81]
GrotzVL, HenryRR, McGillJB, et al. Lack of effect of sucralose on glucose homeostasis in subjects with type 2 diabetes[J]. J Am Diet Assoc, 2003, 103(12):1607-1612. .
[82]
BarriocanalLA, PalaciosM, BenitezG, et al. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. a pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics[J]. Regul Toxicol Pharmacol, 2008, 51(1):37-41. .
[83]
Ben-YacovO, GodnevaA, ReinM, et al. Personalized postprandial glucose response-targeting diet versus mediterranean diet for glycemic control in prediabetes[J]. Diabetes Care, 2021, 44(9):1980-1991. .
[84]
FranzMJ, MacLeodJ, EvertA, et al. Academy of Nutrition and Dietetics Nutrition practice guideline for type 1 and type 2 diabetes in adults: systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process[J]. J Acad Nutr Diet, 2017, 117(10):1659-1679. .
[85]
OjoO, WeldonSM, ThompsonT, et al. The Effect of diabetes-specific enteral nutrition formula on cardiometabolic parameters in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials[J]. Nutrients, 2019, 11(8):1905. .
[86]
DoolaR, DeaneAM, TolcherDM, et al. The effect of a low carbohydrate formula on glycaemia in critically ill enterally-fed adult patients with hyperglycaemia: a blinded randomised feasibility trial[J]. Clin Nutr ESPEN, 2019, 31:80-87. .
[87]
ShaoY, HengW, LiS, et al. Tube feeding with a diabetes-specific enteral formula improves glycemic control in severe acute ischemic stroke patients[J]. JPEN J Parenter Enteral Nutr, 2018, 42(5):926-932. .
[88]
Sanz-ParisA, Boj-CarcellerD, Lardies-SanchezB, et al. Health-care costs, glycemic control and nutritional status in malnourished older diabetics treated with a hypercaloric diabetes-specific enteral nutritional formula[J]. Nutrients, 2016, 8(3):153. .
[89]
HanYY, LaiSR, PartridgeJS, et al. The clinical and economic impact of the use of diabetes-specific enteral formula on ICU patients with type 2 diabetes[J]. Clin Nutr, 2017, 36(6):1567-1572. .
[90]
HamdyO, ErnstFR, BaumerD, et al. Differences in resource utilization between patients with diabetes receiving glycemia-targeted specialized nutrition vs standard nutrition formulas in U.S. hospitals[J]. JPEN J Parenter Enteral Nutr, 2014, 38(2Suppl):86S-91S. .