专题笔谈
胰高糖素样肽-1受体激动剂对糖尿病肾脏病保护的作用机制
中华糖尿病杂志, 2022,14(Z1) : 9-14. DOI: 10.3760/cma.j.cn115791-20220721-00355
摘要

糖尿病肾脏病是糖尿病的主要并发症之一,是导致终末期肾病的主要原因。胰高糖素样肽-1受体激动剂(GLP-1RA)目前被广泛用于2型糖尿病患者的治疗。一系列的基础实验研究结果表明,GLP-1RA可以通过抑制氧化应激、炎症反应、缓解肾内皮功能障碍和促进尿钠排泄发挥独立于降糖作用之外的肾保护作用。GLP-1RA与钠-葡萄糖共转运蛋白2抑制剂联合治疗还可能产生肾脏保护协同作用,为糖尿病肾脏病患者的临床用药提供更多选择。

引用本文: 侯鲁鲁, 逄曙光. 胰高糖素样肽-1受体激动剂对糖尿病肾脏病保护的作用机制 [J] . 中华糖尿病杂志, 2022, 14(Z1) : 9-14. DOI: 10.3760/cma.j.cn115791-20220721-00355.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

糖尿病肾脏病(diabetic kidney disease,DKD)是糖尿病的主要并发症之一,是造成终末期肾脏病(end stage renal disease,ESRD)的主要原因1。由于糖尿病发病率的增加和血糖控制达标率低,DKD的发病率逐年增高并呈年轻化趋势。我国糖尿病患者中DKD患病率约为33.6%2。在过去的几十年,其他糖尿病并发症(如心肌梗死、卒中、下肢截肢和死亡率)的发病率下降了一半以上,而DKD导致的肾功能衰竭仅下降了28%3, 4。近年来,包括ESRD在内的糖尿病并发症在青年和中年人群中的发病率增加5。因此,有效治疗糖尿病以及预防和延缓DKD的发生与进展尤为重要。胰高糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonist,GLP-1RA)是一种安全有效的新型降糖药物,对2型糖尿病(type 2 diabetes mellitus,T2DM)的心肾预后有良好的作用。笔者针对GLP-1RA对DKD保护作用机制进行综述。

一、GLP-1RA概述

胰高糖素样肽-1(glucagon-like peptide-1,GLP-1)是一种肽类激素,由回肠末端和结肠内的肠内分泌L细胞以及脑干内孤立核中的一群神经元产生6, 7。GLP-1作为人体的内源性受体激动剂,主要通过与GLP-1受体结合产生生理效应。GLP-1受体被激活后,可导致循环中环磷酸单腺苷和细胞内钙水平快速升高,进而导致葡萄糖依赖性胰岛素释放8。研究发现,GLP-1受体不仅表达于胰腺组织,在其他器官和组织中也有广泛分布,包括心、脑、肺、肝、肾、脂肪、皮肤等。在小鼠的肾小球毛细血管和血管壁、肾小管均有GLP-1受体的表达9。对不易患肾病的C57BL/6-Akita小鼠GLP-1受体敲除后,表现易患DKD,提示GLP-1可能在预防DKD中发挥重要作用10

GLP-1易被二肽基肽酶Ⅳ(dipeptidyl peptidase Ⅳ,DPP-4)快速灭活,而在N端和C端某些位置的氨基酸修饰也直接参与受体的相互作用,抑制DPP-4的活性,从而延长GLP-1作用的时间和半衰期11。为克服内源性GLP-1半衰期短的缺点,主要采用两种方法,即合成GLP-1RA和DPP-4抑制剂,这两种方法均旨在延长循环GLP-1的寿命12。GLP-1RA是一种相对安全有效的新型降糖药物,荟萃分析结果显示,钠-葡萄糖共转运蛋白2抑制剂(sodium-glucose cotransporter-2 inhibitor,SGLT2i)和GLP-1RA对T2DM的心肾预后有良好的作用13, 14, 15, 16。伴有严重肾功能损害的T2DM患者不符合SGLT2i类药物的适应证,GLP-1RA可能是这些患者的一个重要的治疗选择17, 18。《改善心血管和肾脏结局的新型抗高血糖药物临床应用中国专家建议》推荐,对于合并冠心病/伴有冠心病高危因素的T2DM患者、慢性肾脏病[估算的肾小球滤过率(estimated glomerular filtration rate,eGFR)≥15 ml·min-1·(1.73 m2-1]合并T2DM患者以及超重/肥胖合并T2DM的患者,可以首选具有心血管、肾脏保护作用的GLP-1RA19

二、GLP-1RA的肾脏保护机制

1.抑制氧化应激、炎症反应:GLP-1RA通过激活蛋白激酶A(protein kinase A,PKA)和产生环磷酸单腺苷减少烟酰胺腺苷酸氧化酶4来抑制肾氧化应激1020。奥美沙坦和艾塞那肽联合使用可以降低胰岛素抵抗OLETF大鼠肾脏烟酰胺腺苷酸氧化酶4的表达21。Hendarto等22报道,利拉鲁肽通过PKA介导的肾烟酰胺腺苷酸氧化酶抑制来减轻链脲佐菌素糖尿病大鼠的氧化应激和蛋白尿。Liljedahl等23研究发现,利拉鲁肽增加了链脲佐菌素诱导的糖尿病小鼠肾脏中参与氧化应激反应的蛋白的丰度。转录因子核因子红样2相关因子2(Nrf2)和kelch样ech相关蛋白1(Keap1)信号通路在预防氧化应激中发挥重要作用24。研究发现,exendin-4可以激活血管平滑肌细胞25和视网膜色素上皮细胞26中的Nrf2信号通路,但exendin-4在DKD中是否通过Nrf2信号通路发挥肾保护作用还需进一步研究。

核因子κB(nuclear factor kappa-B,NF-κB)在DKD发生发展的炎症通路中起着核心作用。高血糖诱导的GLP-1受体下调参与了系膜细胞中NF-κB的激活和随后的炎症反应27。研究发现,利拉鲁肽可减轻肥胖相关肾小球病模型小鼠足细胞的形态和结构损伤,在机制上,他们发现利拉鲁肽抑制这些小鼠肾脏肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)表达和NF-κB以及MAPK通路的激活28。在肾小管中存在类似的现象,重组人GLP-1可以通过抑制人近端肾小管细胞(HK-2细胞)中MAPK和NF-κB的磷酸化来减轻晚期糖基化终末产物(advanced glycation end product,AGE)诱导的肾小管间质损伤29。而在肥胖诱导的大鼠慢性肾脏病模型中,利拉鲁肽通过激活Sirt1/AMPK/PGC1α通路来减少肾脂质积累并改善线粒体功能30。除MAPK通路外,JAK/STAT信号通路也参与了利拉鲁肽诱导的肾保护。Zitman-Gal等31发现,利拉鲁肽可减弱AGE刺激的db/db小鼠内皮细胞和肾脏中JAK2和STAT3的磷酸化。此外,有学者报道,艾塞那肽可通过增加超氧化物歧化酶和降低丙二醛水平,从而降低链脲佐菌素诱导的糖尿病大鼠的肾脏炎症指数,包括降低TNF-α、白细胞介素6、高敏C反应蛋白和血清趋化因子5水平32。以上研究结果提示,GLP-1RA通过抑制氧化应激和炎症反应发挥肾脏保护作用,提示GLP-1RA可能是治疗糖尿病肾脏病的重要药物选择。

2.减轻纤维化:GLP-1RA可以减轻肾纤维化。exendin-4可以通过p53抑制减少miR-192的表达,从而降低高糖诱导的人肾小管上皮细胞系HK-2中纤维连接蛋白和Ⅰ型胶原蛋白的表达33。利拉鲁肽可以通过抑制TGF-β及其下游信号通路,包括Smad3和ERK1/2,可以减轻单侧输尿管梗阻诱导的肾小管间质纤维化34。GLP-1RA对肾纤维化的这些保护作用也是通过减弱肾小管细胞的上皮-间充质转化来介导的2934。此外,GLP-1RA还通过调节典型的Wnt/β-连环蛋白信号通路来减少纤维化。GLP-1RA可以恢复糖尿病肾脏病大鼠和细胞系中的Wnt/β-连环蛋白信号通路,这减少了糖尿病肾脏病大鼠的细胞外基质蛋白蛋白沉积,抑制肾小球基底膜增厚和系膜扩张,从而改善组织学改变,抑制纤维化35。研究发现,艾塞那肽周制剂通过调节SVS6蛋白的表达改善了糖尿病肾脏病小鼠的肾小管间质纤维化,但SVS6在肾脏中的表达和作用尚未被研究,推测GLP-1RA可能直接与肾小管中的GLP-1受体结合,调节SVS6的表达,最终改善肾小管损伤9

3.增加尿钠排泄:在动物实验模型36, 37和人体研究38, 39中均发现,输注GLP-1RA可刺激利尿和利钠。此结果可能与近端肾小管中Na+/H+交换器3(NHE3)的抑制有关。GLP-1RA与其受体结合PKA,随后NHE3被磷酸化,导致钠在近端小管中的重吸收被抑制40, 41, 42。长期使用利司那肽可以降低超重T2DM患者的NHE3活性。在一项研究中,35例受试者被随机分配到利司那肽(20 mg)组或每日1次的谷赖胰岛素治疗组,随访8周后,与每日1次的谷赖胰岛素治疗相比,利司那肽增加了NHE3的磷酸化,降低了其活性42

GLP-1RA诱导的利尿与这些药物的肾脏保护作用之间的直接联系尚未被证实。一种可能性是,由于NHE3活性降低导致远端氯化钠浓度增加可以激活肾管-球反馈,从而降低肾小球高滤过和压力43。在正常大鼠模型中观察到经GLP-1RA治疗后eGFR降低,但在T2DM患者的临床研究中未观察到上述现象4044, 45。因此,激活肾管-球反馈是GLP-1RA肾脏保护的一种假设的潜在机制18。此外,心肌细胞GLP-1受体在利钠过程中起着重要作用。研究表明,利拉鲁肽以Epac2依赖的方式促进心肌细胞分泌心房利钠肽促进利尿46。值得注意的是,肠促胰岛素药物可导致收缩压适度降低(2~3 mmHg,1 mmHg=0.133 kPa)4247, 48, 49, 50,利钠产生的血压降低可能间接促进GLP-1RA对肾脏的益处。

4.改善内皮功能:DKD与内皮功能障碍相关51。Sukumaran等52研究发现,利拉鲁肽通过增加肾脏内皮一氧化氮合酶的表达来改善肥胖高盐饮食Zucker大鼠的肾内皮功能障碍。利司那肽可以防止游离脂肪酸诱导的内皮细胞中内皮一氧化氮合酶磷酸化的降低53。此外,exendin-4已被证明通过增加ABC转运体α1介导的胆固醇外排来减轻糖尿病apoe缺陷小鼠的脂肪毒性诱导的肾小球内皮细胞功能障碍54。在血管紧张素Ⅱ诱导的小鼠高血压模型中,内皮细胞GLP-1受体参与了内皮功能障碍55

三、局限与展望

在以心血管结局为主要研究终点的LEADER研究56、SUSTAIN-6研究57、REWIND研究47中均观察到GLP-1RA减少大量蛋白尿的发生,但这些临床试验中eGFR的结果却存在矛盾。目前正在进行的评估司美格鲁肽对肾脏预后影响的FLOW试验被赋予很高的期望,在这个研究中将eGFR持续下降≥50%、ESRD发生率和肾脏疾病死亡或心血管疾病死亡作为主要终点58。相比之下,SGLT2i对DKD蛋白尿和DKD eGFR下降的有益影响通过EMPA-REG OUTCOME研究59、CANVAS研究60、ECLARE-TIMI58研究61、CREDENCE研究62等临床研究被证实。El-Sherbiny等63将利拉鲁肽和达格列净联合用于糖尿病大鼠的治疗,发现联合治疗比单药显示出更好的肝肾保护作用。一项荟萃分析显示,GLP-1RA和SGLT2i联合治疗比SGLT2i单药治疗可以更好地减少糖化血红蛋白(0.74%)、体重(1.61 kg)、收缩压(3.32 mmHg)64,提示这两类药物的联合应用可能诱发叠加的肾保护作用。

综上,GLP-1RA被广泛应用于T2DM的治疗。一系列的基础实验研究表明,GLP-1RA可以通过抑制氧化应激、炎症反应、缓解肾内皮功能障碍和促进尿钠排泄发挥独立于降糖作用之外的肾保护作用。GLP-1RA与SGLT2i的联合治疗可能产生肾脏保护协同作用,为糖尿病肾病患者的临床用药提供更多选择。

利益冲突
利益冲突

所有作者声明无利益冲突

参考文献
[1]
AlicicRZ, RooneyMT, TuttleKR. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12):2032-2045. DOI: 10.2215/CJN.11491116.
[2]
杨文英. 中国糖尿病的流行特点及变化趋势[J].中国科学(生命科学), 2018, 48(8):812-819. DOI: 10.1360/N052018-00005.
[3]
GreggEW, LiY, WangJ, et al. Changes in diabetes-related complications in the United States, 1990-2010[J]. N Engl J Med, 2014, 370(16):1514-1523. DOI: 10.1056/NEJMoa1310799.
[4]
HardingJL, PavkovME, MaglianoDJ, et al. Global trends in diabetes complications: a review of current evidence[J]. Diabetologia, 2019, 62(1):3-16. DOI: 10.1007/s00125-018-4711-2.
[5]
GreggEW, HoraI, BenoitSR. Resurgence in diabetes-related complications[J]. JAMA, 2019, 321(19):1867-1868. DOI: 10.1001/jama.2019.3471.
[6]
CdG, DonnellyD, WoottenD, et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes[J]. Pharmacol Rev, 2016, 68(4):954-1013. DOI: 10.1124/pr.115.011395.
[7]
HoltMK, RichardsJE, CookDR, et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food[J]. Diabetes, 2019, 68(1):21-33. DOI: 10.2337/db18-0729.
[8]
HuangJH, ChenYC, LeeTI, et al. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes[J]. Peptides, 2016, 78:91-98. DOI: 10.1016/j.peptides.2016.02.007.
[9]
LiR, SheD, YeZ, et al. Glucagon-like peptide 1 receptor agonist improves renal tubular damage in mice with diabetic kidney disease[J]. Diabetes Metab Syndr Obes, 2022, 15:1331-1345. DOI: 10.2147/DMSO.S353717.
[10]
FujitaH, MoriiT, FujishimaH, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential[J]. Kidney Int, 2014, 85(3):579-589. DOI: 10.1038/ki.2013.427.
[11]
GuptaV. Glucagon-like peptide-1 analogues: an overview[J]. Indian J Endocrinol Metab, 2013, 17(3):413-421. DOI: 10.4103/2230-8210.111625.
[12]
GuglielmiV, SbracciaP. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products[J]. Eat Weight Disord, 2017, 22(2):231-240. DOI: 10.1007/s40519-016-0352-y.
[13]
GiuglianoD, MaiorinoMI, BellastellaG, et al. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials[J]. Diabetes Obes Metab, 2019, 21(11):2576-2580. DOI: 10.1111/dom.13847.
[14]
ZelnikerTA, WiviottSD, RazI, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus[J]. Circulation, 2019, 139(17):2022-2031. DOI: 10.1161/CIRCULATIONAHA.118.038868.
[15]
KristensenSL, RørthR, JhundPS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endocrinol, 2019, 7(10):776-785. DOI: 10.1016/S2213-8587(19)30249-9.
[16]
CaoH, LiuT, WangL, et al. Comparative efficacy of novel antidiabetic drugs on cardiovascular and renal outcomes in patients with diabetic kidney disease: a systematic review and network meta-analysis[J]. Diabetes Obes Metab, 2022, 24(8):1448-1457. DOI: 10.1111/dom.14702.
[17]
SattarN, LeeM, KristensenSL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials[J]. Lancet Diabetes Endocrinol, 2021, 9(10):653-662. DOI: 10.1016/S2213-8587(21)00203-5.
[18]
TuttleKR, LakshmananMC, RaynerB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial[J]. Lancet Diabetes Endocrinol, 2018, 6(8):605-617. DOI: 10.1016/S2213-8587(18)30104-9.
[19]
葛均波, 霍勇, 高秀芳, . 改善心血管和肾脏结局的新型抗高血糖药物临床应用中国专家建议[J].中华高血压杂志, 2020, 28(3):31-39. DOI: 10.16439/j.cnki.1673-7245.2020.03.012.
[20]
YinW, JiangY, XuS, et al. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats[J]. J Diabetes Investig, 2019, 10(3):613-625. DOI: 10.1111/jdi.12956.
[21]
RodriguezR, EscobedoB, LeeAY, et al. Simultaneous angiotensin receptor blockade and glucagon-like peptide-1 receptor activation ameliorate albuminuria in obese insulin-resistant rats[J]. Clin Exp Pharmacol Physiol, 2020, 47(3):422-431. DOI: 10.1111/1440-1681.13206.
[22]
HendartoH, InoguchiT, MaedaY, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases[J]. Metabolism, 2012, 61(10):1422-1434. DOI: 10.1016/j.metabol.2012.03.002.
[23]
LiljedahlL, PedersenMH, McGuireJN, et al. The impact of the glucagon-like peptide 1 receptor agonist liraglutide on the streptozotocin-induced diabetic mouse kidney proteome[J]. Physiol Rep, 2019, 7(4):e13994. DOI: 10.14814/phy2.13994.
[24]
WangC, LiC, PengH, et al. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes[J]. Cell Physiol Biochem, 2014, 34(3):891-902. DOI: 10.1159/000366307.
[25]
ZhouT, ZhangM, ZhaoL, et al. Activation of Nrf2 contributes to the protective effect of Exendin-4 against angiotensin II-induced vascular smooth muscle cell senescence[J]. Am J Physiol Cell Physiol, 2016, 311(4):C572-C582. DOI: 10.1152/ajpcell.00093.2016.
[26]
CuiR, TianL, LuD, et al. Exendin-4 protects human retinal pigment epithelial cells from H2O2-induced oxidative damage via activation of NRF2 signaling[J]. Ophthalmic Res, 2020, 63(4):404-412. DOI: 10.1159/000504891.
[27]
KangZ, ZengJ, ZhangT, et al. Hyperglycemia induces NF-κB activation and MCP-1 expression via downregulating GLP-1R expression in rat mesangial cells: inhibition by metformin[J]. Cell Biol Int, 2019, 43(8):940-953. DOI: 10.1002/cbin.11184.
[28]
YeY, ZhongX, LiN, et al. Protective effects of liraglutide on glomerular podocytes in obese mice by inhibiting the inflammatory factor TNF-α-mediated NF-κB and MAPK pathway[J]. Obes Res Clin Pract, 2019, 13(4):385-390. DOI: 10.1016/j.orcp.2019.03.003.
[29]
YinW, XuS, WangZ, et al. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats[J]. Biochem Biophys Res Commun, 2018, 495(1):793-800. DOI: 10.1016/j.bbrc.2017.11.076.
[30]
WangC, LiL, LiuS, et al. GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis[J]. PLoS One, 2018, 13(3):e0193473. DOI: 10.1371/journal.pone.0193473.
[31]
Zitman-GalT, EinbinderY, OhanaM, et al. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells[J]. J Diabetes, 2019, 11(8):656-664. DOI: 10.1111/1753-0407.12891.
[32]
WangX, LiZ, HuangX, et al. An experimental study of exenatide effects on renal injury in diabetic rats1[J]. Acta Cir Bras, 2019, 34(1):e20190010000001. DOI: 10.1590/s0102-865020190010000001.
[33]
JiaY, ZhengZ, GuanM, et al. Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells[J]. Exp Mol Med, 2018, 50(5):1-13. DOI: 10.1038/s12276-018-0084-3.
[34]
LiYK, MaDX, WangZM, et al. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis[J]. Pharmacol Res, 2018, 131:102-111. DOI: 10.1016/j.phrs.2018.03.004.
[35]
HuangL, LinT, ShiM, et al. Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling[J]. Am J Physiol Renal Physiol, 2020, 319(3):F458-468. DOI: 10.1152/ajprenal.00128.2020.
[36]
JensenEP, PoulsenSS, KissowH, et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow[J]. Am J Physiol Renal Physiol, 2015, 308(8):F867-877. DOI: 10.1152/ajprenal.00527.2014.
[37]
RonnJ, JensenEP, Wewer AlbrechtsenNJ, et al. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors[J]. Physiol Rep, 2017, 5(23): 13503. DOI: 10.14814/phy2.13503.
[38]
MuskietMH, TonneijckL, SmitsMM, et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men[J]. Diabetes Obes Metab, 2016, 18(2):178-185. DOI: 10.1111/dom.12601.
[39]
TonneijckL, MuskietM, SmitsMM, et al. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: an 8-week, randomised, open-label trial[J]. Diabetes Obes Metab, 2017, 19(12):1669-1680. DOI: 10.1111/dom.12985.
[40]
FarahLX, ValentiniV, PessoaTD, et al. The physiological role of glucagon-like peptide-1 in the regulation of renal function[J]. Am J Physiol Renal Physiol, 2016, 310(2):F123-127. DOI: 10.1152/ajprenal.00394.2015.
[41]
Carraro-LacroixLR, MalnicG, GirardiAC. Regulation of Na+/H+exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells[J]. Am J Physiol Renal Physiol, 2009, 297(6):F1647-1655. DOI: 10.1152/ajprenal.00082.2009.
[42]
TonneijckL, MuskietM, BlijdorpCJ, et al. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus[J]. Am J Physiol Renal Physiol, 2019, 316(2):F231-240. DOI: 10.1152/ajprenal.00432.2018.
[43]
van BaarM, van der AartAB, HoogenbergK, et al. The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists[J]. Ther Adv Endocrinol Metab, 2019, 10:2042018819865398. DOI: 10.1177/2042018819865398.
[44]
MannJ, HansenT, IdornT, et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials[J]. Lancet Diabetes Endocrinol, 2020, 8(11):880-893. DOI: 10.1016/S2213-8587(20)30313-2.
[45]
TonneijckL, SmitsMM, MuskietM, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial[J]. Diabetologia, 2016, 59(7):1412-1421. DOI: 10.1007/s00125-016-3938-z.
[46]
KimM, PlattMJ, ShibasakiT, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure[J]. Nat Med, 2013, 19(5):567-575. DOI: 10.1038/nm.3128.
[47]
GersteinHC, ColhounHM, DagenaisGR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial[J]. Lancet, 2019, 394(10193):121-130. DOI: 10.1016/S0140-6736(19)31149-3.
[48]
MuskietM, TonneijckL, HuangY, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial[J]. Lancet Diabetes Endocrinol, 2018, 6(11):859-869. DOI: 10.1016/S2213-8587(18)30268-7.
[49]
HusainM, BirkenfeldAL, DonsmarkM, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2019, 381(9):841-851. DOI: 10.1056/NEJMoa1901118.
[50]
刘雨晨, 周尊海, 杨架林, . 胰高糖素样肽-1受体激动剂周制剂对2型糖尿病患者血糖波动的影响:1项多中心、前瞻性研究[J].中华糖尿病杂志, 2022, 14(6):555-562. DOI: 10.3760/cma.j.cn115791-20211130-00640.
[51]
ChenSJ, LvLL, LiuBC, et al. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease[J]. Cell Prolif, 2020, 53(3):e12763. DOI: 10.1111/cpr.12763.
[52]
SukumaranV, TsuchimochiH, SonobeT, et al. Liraglutide improves renal endothelial function in obese zucker rats on a high-salt diet[J]. J Pharmacol Exp Ther, 2019, 369(3):375-388. DOI: 10.1124/jpet.118.254821.
[53]
ZhaoQ, XuH, ZhangL, et al. GLP-1 receptor agonist lixisenatide protects against high free fatty acids-induced oxidative stress and inflammatory response[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):2325-2332. DOI: 10.1080/21691401.2019.1620248.
[54]
YinQH, ZhangR, LiL, et al. Exendin-4 Ameliorates lipotoxicity-induced glomerular endothelial cell injury by improving ABC transporter A1-mediated cholesterol efflux in diabetic apoe knockout mice[J]. J Biol Chem, 2016, 291(51):26487-26501. DOI: 10.1074/jbc.M116.730564.
[55]
HelmstädterJ, FrenisK, FilippouK, et al. Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1):145-158. DOI: 10.1161/atv.0000615456.97862.30.
[56]
MarsoSP, DanielsGH, Brown-FrandsenK, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):311-322. DOI: 10.1056/NEJMoa1603827.
[57]
MarsoSP, BainSC, ConsoliA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2016, 375(19):1834-1844. DOI: 10.1056/NEJMoa1607141.
[58]
A research study to see how semaglutide works compared to placebo in people with type 2 diabetes and chronic kidney disease (FLOW)[EB/OL]. [2020-06-28]. https://clinicaltrials.gov/ct2/show/NCT03819153.
[59]
WannerC, InzucchiSE, LachinJM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):323-334. DOI: 10.1056/NEJMoa1515920.
[60]
PerkovicV, de ZeeuwD, MahaffeyKW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials[J]. Lancet Diabetes Endocrinol, 2018, 6(9):691-704. DOI: 10.1016/S2213-8587(18)30141-4.
[61]
MosenzonO, WiviottSD, CahnA, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(8):606-617. DOI: 10.1016/S2213-8587(19)30180-9.
[62]
PerkovicV, JardineMJ, NealB, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306. DOI: 10.1056/NEJMoa1811744.
[63]
El-SherbinyM, El-ShafeyM, SaidE, et al. Dapagliflozin, liraglutide, and their combination attenuate diabetes mellitus-associated hepato-renal injury-insight into oxidative injury/inflammation/apoptosis modulation[J]. Life (Basel), 2022, 12(5):764. DOI: 10.3390/life12050764.
[64]
CastellanaM, CignarelliA, BresciaF, et al. Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: a meta-analysis[J]. Sci Rep, 2019, 9(1):19351. DOI: 10.1038/s41598-019-55524-w.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词