参考文献[1]
AlicicRZ, RooneyMT, TuttleKR. Diabetic kidney disease: challenges, progress, and possibilities[J]. Clin J Am Soc Nephrol, 2017, 12(12):2032-2045. .
[2]
杨文英. 中国糖尿病的流行特点及变化趋势[J].中国科学(生命科学), 2018, 48(8):812-819. .
[3]
GreggEW, LiY, WangJ, et al. Changes in diabetes-related complications in the United States, 1990-2010[J]. N Engl J Med, 2014, 370(16):1514-1523. .
[4]
HardingJL, PavkovME, MaglianoDJ, et al. Global trends in diabetes complications: a review of current evidence[J]. Diabetologia, 2019, 62(1):3-16. .
[5]
GreggEW, HoraI, BenoitSR. Resurgence in diabetes-related complications[J]. JAMA, 2019, 321(19):1867-1868. .
[6]
CdG, DonnellyD, WoottenD, et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes[J]. Pharmacol Rev, 2016, 68(4):954-1013. .
[7]
HoltMK, RichardsJE, CookDR, et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food[J]. Diabetes, 2019, 68(1):21-33. .
[8]
HuangJH, ChenYC, LeeTI, et al. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities of HL-1 cardiomyocytes[J]. Peptides, 2016, 78:91-98. .
[9]
LiR, SheD, YeZ, et al. Glucagon-like peptide 1 receptor agonist improves renal tubular damage in mice with diabetic kidney disease[J]. Diabetes Metab Syndr Obes, 2022, 15:1331-1345. .
[10]
FujitaH, MoriiT, FujishimaH, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential[J]. Kidney Int, 2014, 85(3):579-589. .
[11]
GuptaV. Glucagon-like peptide-1 analogues: an overview[J]. Indian J Endocrinol Metab, 2013, 17(3):413-421. .
[12]
GuglielmiV, SbracciaP. GLP-1 receptor independent pathways: emerging beneficial effects of GLP-1 breakdown products[J]. Eat Weight Disord, 2017, 22(2):231-240. .
[13]
GiuglianoD, MaiorinoMI, BellastellaG, et al. GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials[J]. Diabetes Obes Metab, 2019, 21(11):2576-2580. .
[14]
ZelnikerTA, WiviottSD, RazI, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus[J]. Circulation, 2019, 139(17):2022-2031. .
[15]
KristensenSL, RørthR, JhundPS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endocrinol, 2019, 7(10):776-785. .
[16]
CaoH, LiuT, WangL, et al. Comparative efficacy of novel antidiabetic drugs on cardiovascular and renal outcomes in patients with diabetic kidney disease: a systematic review and network meta-analysis[J]. Diabetes Obes Metab, 2022, 24(8):1448-1457. .
[17]
SattarN, LeeM, KristensenSL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials[J]. Lancet Diabetes Endocrinol, 2021, 9(10):653-662. .
[18]
TuttleKR, LakshmananMC, RaynerB, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial[J]. Lancet Diabetes Endocrinol, 2018, 6(8):605-617. .
[19]
葛均波, 霍勇, 高秀芳, 等. 改善心血管和肾脏结局的新型抗高血糖药物临床应用中国专家建议[J].中华高血压杂志, 2020, 28(3):31-39. .
[20]
YinW, JiangY, XuS, et al. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats[J]. J Diabetes Investig, 2019, 10(3):613-625. .
[21]
RodriguezR, EscobedoB, LeeAY, et al. Simultaneous angiotensin receptor blockade and glucagon-like peptide-1 receptor activation ameliorate albuminuria in obese insulin-resistant rats[J]. Clin Exp Pharmacol Physiol, 2020, 47(3):422-431. .
[22]
HendartoH, InoguchiT, MaedaY, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases[J]. Metabolism, 2012, 61(10):1422-1434. .
[23]
LiljedahlL, PedersenMH, McGuireJN, et al. The impact of the glucagon-like peptide 1 receptor agonist liraglutide on the streptozotocin-induced diabetic mouse kidney proteome[J]. Physiol Rep, 2019, 7(4):e13994. .
[24]
WangC, LiC, PengH, et al. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes[J]. Cell Physiol Biochem, 2014, 34(3):891-902. .
[25]
ZhouT, ZhangM, ZhaoL, et al. Activation of Nrf2 contributes to the protective effect of Exendin-4 against angiotensin II-induced vascular smooth muscle cell senescence[J]. Am J Physiol Cell Physiol, 2016, 311(4):C572-C582. .
[26]
CuiR, TianL, LuD, et al. Exendin-4 protects human retinal pigment epithelial cells from H2O2-induced oxidative damage via activation of NRF2 signaling[J]. Ophthalmic Res, 2020, 63(4):404-412. .
[27]
KangZ, ZengJ, ZhangT, et al. Hyperglycemia induces NF-κB activation and MCP-1 expression via downregulating GLP-1R expression in rat mesangial cells: inhibition by metformin[J]. Cell Biol Int, 2019, 43(8):940-953. .
[28]
YeY, ZhongX, LiN, et al. Protective effects of liraglutide on glomerular podocytes in obese mice by inhibiting the inflammatory factor TNF-α-mediated NF-κB and MAPK pathway[J]. Obes Res Clin Pract, 2019, 13(4):385-390. .
[29]
YinW, XuS, WangZ, et al. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats[J]. Biochem Biophys Res Commun, 2018, 495(1):793-800. .
[30]
WangC, LiL, LiuS, et al. GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis[J]. PLoS One, 2018, 13(3):e0193473. .
[31]
Zitman-GalT, EinbinderY, OhanaM, et al. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells[J]. J Diabetes, 2019, 11(8):656-664. .
[32]
WangX, LiZ, HuangX, et al. An experimental study of exenatide effects on renal injury in diabetic rats1[J]. Acta Cir Bras, 2019, 34(1):e20190010000001. .
[33]
JiaY, ZhengZ, GuanM, et al. Exendin-4 ameliorates high glucose-induced fibrosis by inhibiting the secretion of miR-192 from injured renal tubular epithelial cells[J]. Exp Mol Med, 2018, 50(5):1-13. .
[34]
LiYK, MaDX, WangZM, et al. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis[J]. Pharmacol Res, 2018, 131:102-111. .
[35]
HuangL, LinT, ShiM, et al. Liraglutide suppresses production of extracellular matrix proteins and ameliorates renal injury of diabetic nephropathy by enhancing Wnt/β-catenin signaling[J]. Am J Physiol Renal Physiol, 2020, 319(3):F458-468. .
[36]
JensenEP, PoulsenSS, KissowH, et al. Activation of GLP-1 receptors on vascular smooth muscle cells reduces the autoregulatory response in afferent arterioles and increases renal blood flow[J]. Am J Physiol Renal Physiol, 2015, 308(8):F867-877. .
[37]
RonnJ, JensenEP, Wewer AlbrechtsenNJ, et al. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors[J]. Physiol Rep, 2017, 5(23): 13503. .
[38]
MuskietMH, TonneijckL, SmitsMM, et al. Acute renal haemodynamic effects of glucagon-like peptide-1 receptor agonist exenatide in healthy overweight men[J]. Diabetes Obes Metab, 2016, 18(2):178-185. .
[39]
TonneijckL, MuskietM, SmitsMM, et al. Postprandial renal haemodynamic effect of lixisenatide vs once-daily insulin-glulisine in patients with type 2 diabetes on insulin-glargine: an 8-week, randomised, open-label trial[J]. Diabetes Obes Metab, 2017, 19(12):1669-1680. .
[40]
FarahLX, ValentiniV, PessoaTD, et al. The physiological role of glucagon-like peptide-1 in the regulation of renal function[J]. Am J Physiol Renal Physiol, 2016, 310(2):F123-127. .
[41]
Carraro-LacroixLR, MalnicG, GirardiAC. Regulation of Na+/H+exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells[J]. Am J Physiol Renal Physiol, 2009, 297(6):F1647-1655. .
[42]
TonneijckL, MuskietM, BlijdorpCJ, et al. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus[J]. Am J Physiol Renal Physiol, 2019, 316(2):F231-240. .
[43]
van BaarM, van der AartAB, HoogenbergK, et al. The incretin pathway as a therapeutic target in diabetic kidney disease: a clinical focus on GLP-1 receptor agonists[J]. Ther Adv Endocrinol Metab, 2019, 10:2042018819865398. .
[44]
MannJ, HansenT, IdornT, et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials[J]. Lancet Diabetes Endocrinol, 2020, 8(11):880-893. .
[45]
TonneijckL, SmitsMM, MuskietM, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial[J]. Diabetologia, 2016, 59(7):1412-1421. .
[46]
KimM, PlattMJ, ShibasakiT, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure[J]. Nat Med, 2013, 19(5):567-575. .
[47]
GersteinHC, ColhounHM, DagenaisGR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial[J]. Lancet, 2019, 394(10193):121-130. .
[48]
MuskietM, TonneijckL, HuangY, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial[J]. Lancet Diabetes Endocrinol, 2018, 6(11):859-869. .
[49]
HusainM, BirkenfeldAL, DonsmarkM, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2019, 381(9):841-851. .
[50]
刘雨晨, 周尊海, 杨架林, 等. 胰高糖素样肽-1受体激动剂周制剂对2型糖尿病患者血糖波动的影响:1项多中心、前瞻性研究[J].中华糖尿病杂志, 2022, 14(6):555-562. .
[51]
ChenSJ, LvLL, LiuBC, et al. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease[J]. Cell Prolif, 2020, 53(3):e12763. .
[52]
SukumaranV, TsuchimochiH, SonobeT, et al. Liraglutide improves renal endothelial function in obese zucker rats on a high-salt diet[J]. J Pharmacol Exp Ther, 2019, 369(3):375-388. .
[53]
ZhaoQ, XuH, ZhangL, et al. GLP-1 receptor agonist lixisenatide protects against high free fatty acids-induced oxidative stress and inflammatory response[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):2325-2332. .
[54]
YinQH, ZhangR, LiL, et al. Exendin-4 Ameliorates lipotoxicity-induced glomerular endothelial cell injury by improving ABC transporter A1-mediated cholesterol efflux in diabetic apoe knockout mice[J]. J Biol Chem, 2016, 291(51):26487-26501. .
[55]
HelmstädterJ, FrenisK, FilippouK, et al. Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1):145-158. .
[56]
MarsoSP, DanielsGH, Brown-FrandsenK, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):311-322. .
[57]
MarsoSP, BainSC, ConsoliA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes[J]. N Engl J Med, 2016, 375(19):1834-1844. .
[59]
WannerC, InzucchiSE, LachinJM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes[J]. N Engl J Med, 2016, 375(4):323-334. .
[60]
PerkovicV, de ZeeuwD, MahaffeyKW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials[J]. Lancet Diabetes Endocrinol, 2018, 6(9):691-704. .
[61]
MosenzonO, WiviottSD, CahnA, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial[J]. Lancet Diabetes Endocrinol, 2019, 7(8):606-617. .
[62]
PerkovicV, JardineMJ, NealB, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy[J]. N Engl J Med, 2019, 380(24):2295-2306. .
[63]
El-SherbinyM, El-ShafeyM, SaidE, et al. Dapagliflozin, liraglutide, and their combination attenuate diabetes mellitus-associated hepato-renal injury-insight into oxidative injury/inflammation/apoptosis modulation[J]. Life (Basel), 2022, 12(5):764. .
[64]
CastellanaM, CignarelliA, BresciaF, et al. Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: a meta-analysis[J]. Sci Rep, 2019, 9(1):19351. .