参考文献[References][1]
TorrianiM, TownsendE, ThomasBJ, et al. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol, 2012, 41(4): 437-445.
[2]
CoenPM, GoodpasterBH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab, 2012, 23(8): 391-398.
[3]
MarcusRL, AddisonO, KiddeJP, et al. Skeletal muscle fat infiltration: Impact of age, inactivity, and exercise. J Nutr Health Aging, 2010, 14(5): 362-366.
[4]
NardoL, KarampinosDC, LansdownDA, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson Imaging, 2014, 39(5): 1178-1185.
[5]
HwangI, LeeJM, LeeKB, et al. Hepatic steatosis in living liver donor candidates: preoperative assessment by using breath-hold triple-echo MR imaging and 1H MR spectroscopy. Radiology, 2014, 271(3): 730-738.
[6]
UlbrichEJ, FischerMA, ManoliuA, et al. Age and gender dependent liver fat content in a healthy normal BMI population as quantified by fat-water separating DIXON MR imaging. PloS One, 2015, 10(11): e0141691.
[7]
KimHK, SeraiS, MerrowAC, et al. Objective measurement of minimal fat in normal skeletal muscles of healthy children using T2 relaxation time mapping (T2 maps) and MR spectroscopy. Pediatr Radiol, 2014, 44(2): 149-157.
[8]
KimJY, ParkJS, RheeYG. Can preoperative magnetic resonance imaging predict the reparability of massive rotator cuff tears?. Am J Sports Med, 2017, 45(7): 1654-1663.
[9]
KimHK, LaorT, HornPS, et al. T2 mapping in duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology, 2010, 255(3): 899-908.
[10]
TeichtahlAJ, UrquhartDM, WangY, et al. Fat infiltration of paraspinal muscles is associated with low back pain, disability and structural abnormalities in community-based adults. Spine J, 2015, 15(7): 1593-1601.
[11]
WokkeBH, BosC, ReijnierseM, et al. Comparison of dixon and T1- weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging, 2013, 38(3): 619-624.
[12]
YuWB, LiYH. Application of MR technology in accurate and quantitative fat content in nonalcoholic fatty liver disease. Chin J Magn Reson Imaging, 2016, 7(10): 797-800.
郁伟斌,李跃华. 磁共振技术在非酒精性脂肪肝病中准确定量脂肪含量的应用. 磁共振成像, 2016, 7(10): 797-800.[13]
HwangJH, ChoiCS. Use of in vivo magnetic resonance spectroscopy for studying metabolic diseases. Exp Mol Med, 2015, 47: e139.
[14]
FischerMA, NanzD, ShimakawaA, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology, 2013, 266(2): 555-563.
[15]
ForbesSC, WalterGA, RooneyWD, et al. Skeletal muscles of ambulant children with duchenne muscular dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy. Radiology, 2013, 269(1): 198-207.
[16]
SunPY, SongYR, ChenQY, et al. 1H magnetic resonance spectroscopy study on the short term changes of skeletal muscle after treatment in type 2 diabetes mellitus. Chin J Magn Reson Imaging, 2015, 6(11): 833-837.
孙沛毅,宋英儒,陈青云, 等. 2型糖尿病治疗后近期骨骼肌改变的MR氢谱研究. 磁共振成像, 2015, 6(11): 833-837.[17]
PezeshkP, AlianA, ChhabraA. Role of chemical shift and Dixon based techniques in musculoskeletal MR imaging. Eur J Radiol, 2017, 94: 93-100.
[18]
AgtenCA, RosskopfAB, GerberC, et al. Quantification of early fatty infiltration of the rotator cuff muscles: comparison of multi-echo Dixon with single-voxel MR spectroscopy. Eur Radiol, 2016, 26(10): 3719-3727.
[19]
WrenTA, BlumlS, Tseng-OngL, et al. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in duchenne muscular dystrophy: preliminary study. AJR Am J Roentgenol, 2008, 190(1): 8-12.
[20]
NozakiT, TasakiA, HoriuchiS, et al. Predicting retear after repair of full-thickness rotator cuff tear: Two-point dixon MR imaging quantification of fatty muscle degeneration-initial experience with 1-year follow-up. Radiology, 2016, 280(2): 500-509.
[21]
ReederSB, MckenzieCA, PinedaAR, et al. Water-fat separation with IDEAL gradient-echo imaging. J Magn Reson Imaging, 2007, 25(3):644-652.
[22]
GlaserC. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am, 2005, 43(4): 641-653.
[23]
MamischTC, TrattnigS, QuirbachS, et al. Quantitative T2 mapping of knee cartilage: Differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading—initial results. Radiology, 2010, 254(3): 818-826.
[24]
XieGY, YangHT, LüFR, et al. Quantitative T2 mapping to monitor the process of lumbar intervertebral disc degeneration in a rabbit model. Chin J Magn Reson Imaging, 2016, 7(3): 213-217.
谢光友,杨海涛,吕富荣, 等. T2 mapping动态定量监测兔腰椎间盘退变模型. 磁共振成像, 2016, 7(3): 213-217.[25]
SunLL, ZhangXL, PanSN, et al. The value of MR T2-mapping in muscular disorders. Int J Med Radiol, 2014, 37(5): 462-466.
孙露露,张祥林,潘诗农, 等. MR T2 mapping在肌肉疾病中的应用价值. 国际医学放射学杂志, 2014, 37(5): 462-466.[26]
MatsukiK, WatanabeA, OchiaiS, et al. Quantitative evaluation of fatty degeneration of the supraspinatus and infraspinatus muscles using T2 mapping. J Shoulder Elbow Surg, 2014, 23(5): 636-641.
[27]
JohnstonJH, KimHK, MerrowAC, et al. Quantitative skeletal muscle MRI: Part 1, derived T2 fat map in differentiation between boys with duchenne muscular dystrophy and healthy boys. AJR Am J Roentgenol, 2015, 205(2): 207-215.
[28]
LiangYY, CaoJQ, LingJ, et al. Study on T2 mapping in thigh muscles of patients with Duchenne muscular dystrophy. Chin J Contemp Neurol Neurosurg, 2015, 15(6): 437-441.
梁颖茵,操基清,凌坚, 等. Duchenne型肌营养不良症患儿大腿肌肉T2 mapping成像研究.中国现代神经疾病杂志, 2015, 15(6): 437-441.[29]
MahJK, KorngutL, DykemanJ, et al. A systematic review and meta-analysis on the epidemiology of duchenne and becker muscular dystrophy. Neuromuscul Disord, 2014, 24(6): 482-491.
[30]
ArpanI, ForbesSC, LottDJ, et al. T2 mapping provides multiple approaches to characterize muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15 year old boys with duchenne muscular dystrophy. Nmr in Biomedicine, 2013, 26(3): 320-328.
[31]
ForbesSC, WillcocksRJ, TriplettWT, et al. Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with duchenne muscular dystrophy: A multicenter cross sectional study. PloS One, 2014, 9(9): e106435.
[32]
ArpanI, WillcocksRJ, ForbesSC, et al. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology, 2014, 83(11): 974-980.
[33]
LinD, QiY, HuangC, et al. Associations of lipid parameters with insulin resistance and diabetes: A population-based study. Clin Nutr, 2017, 37(4): 1423-1429.
[34]
BrønsC, GrunnetLG. Mechanisms in endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?. Eur J Endocrinol, 2017, 176(2): R67-R78.
[35]
KimJK. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. Methods Mol Biol, 2009, 560: 221-238.
[36]
JazetIM, SchaartG, GastaldelliA, et al. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients. Diabetologia, 2008, 51(2): 309-319.
[37]
LaracastroC, NewcomerBR, RowellJ, et al. Effects of short-term very low calorie diet on intramyocellular lipid and insulin sensitivity in non-diabetics and type 2 diabetic patients. J Clin Endocrinol Metab, 2008, 57(1): 1-8.
[38]
TamuraY, TanakaY, SatoF, et al. Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab, 2005, 90(6): 3191-3196.
[39]
BolinderJ, LjunggrenÖ, KullbergJ, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab, 2010, 97(3): 1020-1031.
[40]
KalichmanL, CarmeliE, BeenE. The association between imaging parameters of the paraspinal muscles, spinal degeneration, and low back pain. Biomed Res Int, 2017, 2017: 2562957.
[41]
ShahidiB, ParraCL, BerryDB, et al. Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine, 2016, 42(8): 616-623.
[42]
KjaerP, BendixT, SorensenJS, et al. Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?. BMC Med, 2007, 5: 2.
[43]
HildebrandtM, FankhauserG, MeichtryA, et al. Correlation between lumbar dysfunction and fat infiltration in lumbar multifidus muscles in patients with low back pain. Bmc Musculoskeletal Disorders, 2017, 18(1): 12.
[44]
CrawfordRJ, FilliL, ElliottJM, et al. Age and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol, 2016, 37(4): 742-748.
[45]
FischerMA, NanzD, ShimakawaA, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology, 2013, 266(2): 555-563.
[46]
MengiardiB, SchmidMR, BoosN, et al. Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology, 2006, 240(3): 786-792.
[47]
LiXF, XieWJ, ShengLX, et al. Treatment degenerative rotator cuff lesion by athroscopy in elderly patients. J Practical Orthopaedics, 2016, 22(2): 107-110.
李小飞,谢文瑾,盛路新, 等. 老年退变性肩袖损伤的肩关节镜治疗.实用骨科杂志, 2016, 22(2): 107-110.[48]
LimHK, HongSH, YooHJ, et al. Visual MRI grading system to evaluate atrophy of the supraspinatus muscle. Korean J Radiol, 2014, 15(4): 501-507.
[49]
ValenciaAP, LaiJK, IyerSR, et al. Fatty infiltration is a prognostic marker of muscle function after rotator cuff tear. Am J Sports Med, 2018, 46(9): 2161-2169.
[50]
LapnerPL, JiangL, ZhangT, et al. Rotator cuff fatty infiltration and atrophy are associated with functional outcomes in anatomic shoulder arthroplasty. Clin Orthop Relat Res, 2015, 473(2): 674-682.
[51]
KuzelBR, GrindelS, PapandreaR, et al. Fatty infiltration and rotator cuff atrophy. J Am Acad Orthop Surg, 2013, 21(10): 613-623.
[52]
GilbertF, BöhmD, EdenL, et al. Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle. Bmc Musculoskeletal Disorders, 2016, 17(1): 355.
[53]
WangX, QuJ, LeiXW, et al. Quantitative evaluation of muscle atrophy and fatty infiltration in chronic supraspinatus tendon tear. Int J Med Radiol, 2017, 40(4): 391-394.
王翔,屈瑾,雷新玮, 等. 慢性冈上肌腱损伤肌肉萎缩及脂肪浸润的定量研究. 国际医学放射学杂志, 2017, 40(4): 391-394.[54]
NozakiT, TasakiA, HoriuchiS, et al. Quantification of fatty degeneration within the supraspinatus muscle by using a 2-point dixon method on 3-T MRI. AJR Am J Roentgenol, 2015, 205(1): 116-122.