综述
脑胶质瘤IDH基因型的磁共振功能成像研究进展
磁共振成像, 2019,10(6) : 452-455. DOI: 10.12015/issn.1674-8034.2019.06.012
摘要

异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)基因突变存在于70%~80%的Ⅱ~Ⅲ级胶质瘤和90%的继发性胶质母细胞瘤。越来越多的研究表明,IDH基因突变与胶质瘤的发生、生物学行为、临床表现及预后相关。IDH基因型作为新的生物标志物,在胶质瘤精确诊断、疗效评估、临床决策等方面发挥重要作用。当前检测胶质瘤IDH基因的方法主要包括有创性免疫组化和基因测序。近年来,随着多模态MRI的发展,影像学研究已深入到影像基因组学和遗传学领域,以影像手段实现IDH基因型的术前无创评估对脑胶质瘤个体化精准诊疗具有重要意义,有关磁共振功能成像术前评价胶质瘤患者IDH基因型的研究也日益增多。笔者简要概述脑胶质瘤中IDH突变及其临床意义,并对近年来磁共振功能成像预测脑胶质瘤IDH基因型的研究进展进行综述。

引用本文: 闫海丽, 张辉. 脑胶质瘤IDH基因型的磁共振功能成像研究进展 [J] . 磁共振成像, 2019, 10(6) : 452-455. DOI: 10.12015/issn.1674-8034.2019.06.012.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

弥漫性脑胶质瘤是成人颅内最常见的原发性脑肿瘤。异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)突变存在于70%~80%的Ⅱ~Ⅲ级胶质瘤和90%的继发性胶质母细胞瘤,是脑胶质瘤发生发展的重要生物学标志物。2016年,WHO中枢神经系统肿瘤分类将弥漫性胶质瘤重新分类,在原有组织学分型基础上增加了IDH基因分型[1]。2008年,Parsons等[2]利用全基因组测序首次证实12%的胶质母细胞瘤中存在IDH1突变。进一步研究表明[3,4,5],IDH基因突变在胶质瘤患者预后评估、疗效预测、个体化治疗方案选择以及靶向药物应用等方面发挥重要作用,成为评估预后和监测疗效的可靠生物标志物。目前检测胶质瘤IDH基因型的方法包括免疫组化法和基因测序法,都需要获取组织标本,属于有创性检测,且诊断结果稍显滞后,因而限制了其临床应用。近年来,磁共振成像技术的快速发展,磁共振波谱成像(magnetic resonance spectroscopy,MRS)、动态磁敏感对比增强成像(dynamic susceptibility contrast,DSC)、扩散张量成像(diffusion tensor imaging,DTI)、扩散峰度成像(diffusion kurtosis imaging,DKI)、酰胺质子转移(amide proton transfer,APT)成像等技术的应用,不仅能够在术前提供准确的胶质瘤解剖结构及功能代谢信息(例如肿瘤细胞代谢改变、细胞构筑变化、出血、钙化、肿瘤血管生成分布等),还可以术前非侵入性地评估胶质瘤分子分型,具有较大的临床价值。本文简要介绍脑胶质瘤IDH突变及其临床意义,并对近年来磁共振新技术无创性评估脑胶质瘤IDH基因型的研究进行综述。

1 脑胶质瘤中IDH突变及其临床意义

脑胶质瘤细胞中,IDH1突变最常见,绝大多数表现为精氨酸到组氨酸(R132H)的杂合错义突变;IDH2突变较少,多发生于少突胶质细胞瘤并与IDH1突变相互独立[6]。IDH基因突变作为胶质瘤发生的早期事件[7],尽管致癌机制尚不明确,但证据表明突变型IDH获得将α-酮戊二酸(α-ketoglutarate,α-KG)转化为2-羟基戊二酸(2-hydroxyglutarate,2-HG)的新酶活性,此反应导致胶质瘤细胞中产生较多的2-HG[8]。"代谢物"2-HG可以激活α-KG依赖性脯氨酰羟化酶,进而促进缺氧诱导因子-1α(hypoxia-inducible factors-1α,HIF-1α)降解,抑制肿瘤的侵袭性行为(如血管生成)[9]。此外,高水平的2-HG竞争性地抑制含有赖氨酸残基的组蛋白去甲基化酶及DNA羟化酶引起胶质瘤患者全基因组高甲基化,有利于提高患者对放化疗的敏感性。在指导手术治疗中,研究表明,与IDH野生型胶质瘤相比,对IDH突变型胶质瘤患者行最大安全范围肿瘤切除术后患者的总生存期显著延长[4]。此外,胶质瘤IDH突变的发现为肿瘤靶向药物治疗的研究提供新思路,有学者研发针对IDH突变体的新型治疗药物,例如非选择性突变体IDH1/2抑制剂AG-881[10],以期在临床取得实用价值。

2 磁共振功能成像评估脑胶质瘤IDH基因型的应用研究

IDH是胶质瘤精确诊断和个体化治疗的重要生物标志物,术前无创评估IDH基因型具有重要的临床价值。近年来,随着磁共振新技术的发展,多模态影像学研究已深入到影像基因组学和遗传学方面,越来越多的学者从事以影像学特征鉴别肿瘤基因表型的应用研究。

2.1 MRS与IDH基因型

MRS是目前唯一能在活体组织无创性检测分子代谢改变的MRI技术,最先应用于胶质瘤IDH基因型的研究。前述脑胶质瘤细胞突变型IDH介导胶质瘤细胞中2-HG积累,Pope等[11]研究27例胶质瘤患者的术前MRS图像,并对术后标本进行IDH基因测序和液相色谱质谱分析。结果表明,与IDH野生型胶质瘤相比,IDH突变型胶质瘤中2-HG水平升高;且用MRS体内测得的2-HG水平与液相色谱-质谱法离体测得的2-HG浓度具有显著相关性。随后,系列研究[12,13,14]证实MRS定量测量胶质瘤2-HG与IDH基因型相关,进一步研究表明MRS检测IDH突变型胶质瘤中2-HG浓度与肿瘤体积密切相关,且2-HG累积含量较高的胶质瘤患者具有明显的生存获益。因此,IDH突变型胶质瘤细胞中2-HG的累积被认为是神经胶质瘤的积极预后因素。Emir等[15]则使用超高磁场(≥7 T)氢质子磁共振波谱非侵入性定量检测2-HG,结果显示此采集方案不仅可以区分正常组织与肿瘤组织,还可以鉴别细胞质IDH1、线粒体IDH2突变,有助于长期监测肿瘤进展及评估疗效。

目前,2-HG已成为预测胶质瘤IDH基因型的潜在生物标志物,但常规1H-MRS量化肿瘤组织2-HG时易受正常脑组织内丰富的代谢物如谷氨酸、谷氨酰胺和γ-氨基丁酸的干扰,造成较高的假阳性率因而限制其临床应用。有学者已提出优化MRS方法,包括一系列的采集和后处理协议,例如长TE半激光脉冲序列[16],旨在消除混杂的光谱重叠,精确量化IDH突变型胶质瘤的2-HG浓度,以实现IDH基因型的精准预测。

2.2 DSC MRI与IDH基因型

DSC MRI通过评估肿瘤血液动力学信息反映肿瘤血管分布和血流灌注。如前所述,IDH突变型脑胶质瘤细胞中2-HG可以竞争性地结合许多α-KG依赖性双加氧酶进而改变酶活性。Kickingereder等[17]报道了IDH突变对于HIF-1α介导的血管生成信号通路的影响,证实IDH突变型胶质瘤细胞中脯氨酰羟化酶活性增强,同时,HIF-1α及其下游调控因子例如血管内皮生长因子A、血小板衍生生长因子A含量减少。进一步研究不同IDH基因型差异表达的遗传信息能否转化成局部脑血容量(regional cerebral blood volume,rCBV)图像特征,对73例低级别胶质瘤的IDH基因型和rCBV值进行分析,结果显示与IDH突变型胶质瘤相比,野生型胶质瘤患者的rCBV值显著增加。随后,Tan等[18]回顾性分析91例病理确诊的星形细胞瘤的术前DSC MRI数据,探讨DSC MRI对星形细胞瘤IDH基因状态的无创性评估价值。结果表明,IDH野生型星形细胞瘤的rCBV值均高于同级别IDH突变型星形细胞瘤。因此,DSC MRI可无创性表征脑胶质瘤IDH基因型,尤其rCBV灌注参数在星形细胞瘤分子分型诊断中具有独特优势。

2.3 扩散成像与IDH基因型

DWI可以通过测量表观扩散系数(apparent diffusion coefficient,ADC)值来反映水分子的扩散运动和脑肿瘤的微观细胞构筑改变。有文献报道[19,20,21]DWI-ADC值在鉴别高低级别胶质瘤的同时可以区分星形细胞瘤的不同IDH突变状态。

DTI是一种高级的扩散加权成像形式,通过计算ADC、各向异性分数(fractional anisotropy,FA)等值定量定向地评价脑白质的各向异性,在脑胶质瘤的术前诊断、分子分型、指导手术入路、术后评估等方面发挥重要价值。Tan等[22]回顾性分析了112例星形细胞瘤的DTI图像,研究发现不同级别不同IDH基因型星形细胞瘤的最小ADC值差异均存在统计学意义,Ⅱ/Ⅲ级IDH野生型和突变型胶质瘤的最大FA值差异具有统计学意义,证实DTI成像参数可无创性评估不同级别星形细胞瘤的IDH基因型。Xiong等[23]报道不同IDH基因型的少突胶质细胞瘤最大FA值及最小ADC值之间存在显著差异。更进一步研究表明[24]DTI扫描参数可用于预测少突胶质细胞肿瘤IDH基因型,但是与1p/19q缺乏相关性,且DTI与常规MRI扫描相结合可以提高IDH基因型诊断的准确性。此外,也有研究人员[25]将DTI新技术同机器学习算法相结合,使用纹理量化方法和神经网络分类器对DTI纹理信息及肿瘤体积进行综合分析,构建Ⅱ/Ⅲ级胶质瘤IDH基因型的预测模型。

DKI基于体内水分子非高斯扩散运动原理,量化真实状态水分子扩散与理想状态高斯分布扩散的位移偏离大小,表征水分子扩散受限程度和扩散不均质性,此成像技术同时获得DTI和DKI两套参数,更适合表征组织微观结构的变化。Hempel等[26]评估DKI平均峰度(mean kurtosis,MK)值对胶质瘤IDH基因型的诊断效能,结果显示IDH突变型患者MK值明显低于IDH野生型患者。由此可见,DKI MK值可用于非侵入性预测神经胶质瘤IDH突变状态。

2.4 APT与IDH基因型

APT是基于化学位移饱和传递原理的一种新兴磁共振功能成像技术,可无创性反映组织内游离蛋白、多肽含量以及pH值,被广泛用于脑肿瘤鉴别诊断、分级诊断及治疗后反应评估等[27,28,29]。Doll等[30]应用定量蛋白组学研究IDH1突变型脑胶质瘤细胞的信号传导通路以及蛋白表达的改变,结果表明IDH1突变型肿瘤细胞中全组蛋白表达下调。随后,基于APT成像技术反映肿瘤组织内蛋白含量的优势以及不同IDH基因型脑胶质瘤的蛋白表达差异,Jiang等[31]研究不同IDH基因型的WHO Ⅱ级脑胶质瘤患者的APT成像特征,发现与IDH野生型胶质瘤相比,IDH突变型胶质瘤具有较低的APT信号强度。此外,Paech等[32]利用7 T弛豫补偿多腔化学位移饱和传递技术实现脑胶质瘤IDH基因型的术前预测以及高低级别胶质瘤的分级诊断。因此,APT成像技术有望成为评估脑胶质瘤IDH基因型的成像标志物。但有关化学位移饱和传递成像特征与脑胶质瘤分子分型的相关性研究尚少,仍需进一步探讨不同APT成像特征与肿瘤分子改变之间的关联。

3 小结

功能磁共振成像能够提供常规成像不能提供的关于肿瘤代谢、血管生成分布以及细胞构筑等微观层面的信息,在胶质瘤IDH基因型诊断方面具有突出价值。采用MRI新技术以影像学方法术前无创评估胶质瘤IDH基因型有助于患者个体化诊疗方案的制订及预后评估。本文对部分MRI新技术的成像特点及其在鉴别IDH基因型中的优势进行了系统综述,然而,胶质瘤微观结构及代谢改变在空间和时间上都具有异质性,单一的成像方式已不足以全面反映其复杂程度,联合应用多模态MRI新技术开展优势互补,有望进一步提高胶质瘤IDH基因型的术前诊断效能,为脑胶质瘤临床诊疗及预后提供更多有价值的信息。

利益冲突
利益冲突:

无。

参考文献[References]
[1]
LouisDN, PerryA, ReifenbergerG, et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol, 2016, 131(6): 803-820.
[2]
ParsonsDW, JonesS, ZhangX, et al. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897): 1807-1812.
[3]
HartmannC, HentschelB, WickW, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol, 2010, 120(6): 707-718.
[4]
BeikoJ, SukiD, HessKR, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol, 2014, 16(1): 81-91.
[5]
QiS, YuL, GuiS, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci, 2012, 103(2): 269-273.
[6]
HartmannC, MeyerJ, BalssJ, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol, 2009, 118(4): 469-474.
[7]
LaiA, KharbandaS, PopeWB, et al. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol, 2011, 29(34): 4482-4490.
[8]
DangL, WhiteDW, GrossS, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 2009, 462(7274): 739-744.
[9]
KoivunenP, LeeS, DuncanC, et al. Transformation by the (R)- enantiomer of 2-hydroxyglutarate linked to EglN activation. Nature,2012, 483(7390): 484-488.
[10]
MaR, YunCH. Crystal structures of pan-IDH inhibitor AG-881 in complex with mutant human IDH1 and IDH2. Biochem Biophys Res Commun, 2018, 503(4): 2912-2917.
[11]
PopeWB, PrinsRM, Albert ThomasM, et al. Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol, 2012, 107(1): 197-205.
[12]
ChoiC, RaisanenJM, GanjiSK, et al. Prospective longitudinal analysis of 2-Hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility for the management of patients with IDH-mutant glioma. J Clin Oncol, 2016, 34(33): 4030-4039.
[13]
De la FuenteMI, YoungRJ, RubelJ, et al. Integration of 2- hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro Oncol, 2016, 18(2): 283-290.
[14]
NatsumedaM, IgarashiH, NomuraT, et al. Accumulation of 2-hydroxyglutarate in gliomas correlates with survival: a study by 3.0-tesla magnetic resonance spectroscopy. Acta Neuropathol Commun, 2014, 2: 158.
[15]
EmirUE, LarkinSJ, De PenningtonND, et al. Non-invasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res, 2016, 76(1): 43-49.
[16]
BerringtonA, VoetsNL, PlahaP, et al. Improved localisation for 2-hydroxyglutarate detection at 3T using long-TE semi-LASER. Tomography, 2016, 2(2): 94-105.
[17]
KickingerederP, SahmF, Radbruch,A, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep, 2015, 5: 16238.
[18]
TanW, XiongJ, HuangW, et al. Noninvasively detecting isocitrate dehydrogenase 1 gene status in astrocytoma by dynamic susceptibility contrast MRI. J Magn Reson Imaging, 2017, 45(2): 492-499.
[19]
LeuK, OttGA, LaiA, et al. Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade Ⅱ-Ⅲ diffuse gliomas. J Neurooncol, 2017, 134(1): 177-188.
[20]
LiuT, ChengG, KangX, et al. Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging. Neuroradiology, 2018, 60(7): 693-702.
[21]
XingZ, YangX, SheD, et al. Noninvasive assessment of IDH mutational status in World Health Organization grade Ⅱ and III astrocytomas using DWI and DSC-PWI combined with conventional MR Imaging. AJNR Am J Neuroradiol, 2017, 38(6): 1138-1144.
[22]
TanW, HuangW, YinB, et al. Can diffusion tensor imaging noninvasively detect IDH1 gene mutations in astrogliomas? A retrospective study of 112 cases. AJNR Am J Neuroradiol, 2014, 35(5): 920-927.
[23]
XiongJ, TanWL, PanJW, et al. Detecting isocitrate dehydrogenase gene mutations in oligodendroglial tumors using diffusion tensor imaging metrics and their correlations with proliferation and microvascular density. J Magn Reson Imaging, 2016, 43(1): 45-54.
[24]
XiongJ, TanW, WenJ, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours. Eur Radiol, 2016, 26(6): 1705-1715.
[25]
EichingerP, AlbertsE, DelbridgeC, et al. Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade Ⅱ/Ⅲgliomas. Sci Rep, 2017, 7(1): 13396.
[26]
HempelJM, BisdasS, SchittenhelmJ, et al. In vivo molecular profiling of human glioma using diffusion kurtosis imaging. J Neurooncol, 2017, 131(1): 93-101.
[27]
BaiY, LinY, ZhangW, KongL, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget, 2017, 8(4): 5834-5842.
[28]
JiangS, YuH, WangX, et al. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla. Eur Radiol, 2016, 26(1): 64-71.
[29]
MaB, BlakeleyJO, HongX, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging, 2016, 44(2): 456-462.
[30]
DollS, UrismanA, Oses-PrietoJA, et al. Quantitative proteomics reveals fundamental regulatory differences in oncogenic HRAS and isocitrate dehydrogenase (IDH1) driven astrocytoma. Mol Cell Proteomics, 2017, 16(1): 39-56.
[31]
JiangS, ZouT, EberhartCG, et al. Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI. Magn Reson Med, 2017, 78(3): 1100-1109.
[32]
PaechD, WindschuhJ, OberhollenzerJ, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol, 2018, 20(12): 1661-1671.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词