综述
婴儿局灶性白质损伤的MRI研究进展
磁共振成像, 2020,11(8) : 699-703. DOI: 10.12015/issn.1674-8034.2020.08.026
摘要

局灶性白质损伤(punctate white matter lesions,PWML)是婴儿期最为常见的白质损伤性疾病(发生率超过20%),可引起不良神经发育结局,严重威胁患儿的身心健康发展。该损伤具有多变性及扩展性,可导致广泛脑结构及功能变化。笔者主要阐述了PWML病灶特征及其预后评估方面的研究进展,指出现有损伤评估中存在的问题并进行展望。

引用本文: 王苗苗, 刘聪聪, 杨健. 婴儿局灶性白质损伤的MRI研究进展 [J] . 磁共振成像, 2020, 11(8) : 699-703. DOI: 10.12015/issn.1674-8034.2020.08.026.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

孕晚期及生后早期是大脑快速发育的重要时期,但此时脑发育不成熟,极易受到宫内外各类致病因素扰动而出现脑损伤,其中以局灶性白质损伤(punctate white matter lesions,PWML)最为常见,发生率超过20%[1,2]。该损伤在常规MRI的表现为:分布于半卵圆中心及侧脑室旁白质内的点状、线状或簇状T1WI高信号,T2WI等或低信号[3,4]。PWML具有散在和多变的特点,可导致脑瘫、弱视及认知障碍等不良神经发育结局[5,6,7],严重影响儿童的身心健康发展。

1 PWML概念

在PWML被认为是一种特殊类型的损伤之前,经历了一系列概念的发展演变。20世纪90年代初,随着MRI在临床的应用,首次在新生儿头颅MRI图像中观察到这种分布于脑室周围、额叶和枕叶白质的T2WI低信号损伤[8]。2001至2002年,Cornette等[9]及Childs等[10]先后对这种局灶性损伤进行了定义和分级。随后,有学者将该损伤归为缺氧缺血性脑病的一种类型,并认为其可能与胎盘炎症反应程度有关[11,12,13,14]。随着MRI和神经病理学的发展,国内外学者根据其影像学和神经病理学的不同特征,先后将该损伤命名为脑室周围白质软化(periventricular leukomalacia,PVL)/非囊性PVL[15,16]、白质损伤[17]以及PWML[18,19]等。2017年,Volpe[20]将MRI表现与病理相结合,对该领域存在的多种命名方式进行了述评和解析,并提出用"白质损伤"来命名,其中PWML属于中度白质损伤。

2 PWML的危险因素

目前,PWML病因尚不明确。临床多中心研究指出,较大的出生体重、Ⅲ-Ⅳ级脑室内出血及严重的并发症是发生PWML的独立危险因素[21]。也有文献报道PWML与先天性心脏病[22]、缺乏或不完全产前类固醇使用[23]、宫内及生后感染[24,25,26]、围产期窒息[25,27]及阴道分娩[28]等因素有关。由此可见,PWML可能为多因素共同作用的结果,其中以产时和产后因素为主。此外,有学者还发现剖宫产、晚期早产儿及正常出生体重是PWML的保护性因素[23,25]

3 PWML的病理生理基础

尸检研究表明,PWML在镜下表现为白质区域小坏死灶,伴病灶周围轴突肿胀、血管充血以及反应性胶质细胞增生[29,30,31]。随着对损伤病理生理的进一步研究,Miller等[32]指出,PWML主要是缺血缺氧或炎症作用下导致的少突胶质前体细胞受损。尽管损伤周围的少突胶质细胞可以代偿性增殖,但受增殖星形细胞产生的细胞因子影响,再生的少突胶质细胞发育成熟受阻,不能正常髓鞘化,最终引起白质发育延迟。除此之外,PWML还可阻碍神经元迁移及发育成熟,但不伴有轴突和神经元坏死。

4 PWML的影像学评估及演变

为了明确能够准确评估PWML的最优序列,Liauw等[33]的研究表明,T1WI对PWML的检出明显优于相同层厚(4~ 5 mm)的T2WI、液体衰减翻转恢复序列、扩散加权成像以及T1WI增强序列,且具有较好的一致性。与ADC图(层厚4 mm,143个病灶)和磁敏感加权成像的幅度图(层厚2 mm,152个病灶)相比,3D-T1WI (422个病灶)对PWML的检出仍具有明显优势[34]。在不同层厚T1WI中,1 mm的3D-T1WI对PWML的检出(386个病灶)显著高于层厚3 mm的T1WI序列(218个病灶)[16]。尽管相位敏感反转恢复序列可以提高脑组织对比度和图像信噪比,其对PWML的检出效能(24个病灶)仍低于3D-T1WI序列(67个病灶)[35]。因此,高分辨率的3D-T1WI (层厚1 mm)为目前检测PWML的最优序列。

纵向随访研究表明,PWML在常规MRI上主要表现为随时间而逐渐消退的趋势,部分损伤类型可发生相互演变。早产儿矫正到足月时,PWML病灶数目减少、T1WI高信号减低[36],甚至在常规MRI上"消失"(22%~39%)[1,15]。当患儿有多于2个部位的重度感染或机械通气时间延长时,可显著增加PWML进展的风险[37]。线状和簇状PWML(中-重度)在后期则易发展为PVL[5]。由此可见,PWML病灶的动态变化不仅与损伤程度相关,而且与患儿临床病史及治疗方案关系密切。由此,生后及早行高分辨率MRI检查对PWML损伤程度的准确评估具有十分重要的临床意义。

5 PWML对脑结构及功能的影响
5.1 PWML对白质的影响

基于病灶的量化分析表明,PWML区域ADC值在生后1周及2~5周内均显著低于病灶周围及对照组相同解剖区域,认为可能与损伤后细胞内水肿有关[38]。MRS研究表明,PWML区域谷氨酰胺较对照组显著升高,而N-乙酰天门冬氨酸(N-acetylaspartate,NAA)降低,推测与细胞外兴奋性毒性的谷氨酸水平继发性升高有关[39]。重T2*加权的三维梯度回波序列分析结果显示,病灶区R2*值高于对照组,可能与脑组织缺血缺氧后血管内脱氧血红蛋白含量升高、细胞肿胀、胶质细胞增生及再灌注后血浆蛋白渗出等一系列病理改变有关[40]

除损伤病灶区域的变化外,PWML还可导致远隔部位白质微结构的广泛异常。基于DTI的分析显示,PWML可致内囊后肢、视辐射、大脑脚、小脑上脚及脑桥交叉纤维区域的髓鞘化延迟[31,41]。纤维束追踪技术进一步表明,PWML可引起投射纤维、联络纤维及联合纤维微结构属性的改变,且损伤类型与其距病灶的远近程度有关,反映了轴突与少突胶质细胞营养互助关系遭到破坏而导致的髓鞘化进程受阻及神经元胞体受损[2,19]

5.2 PWML对灰质的影响

PWML还可伴有灰质结构异常。基于常规MRI的视觉评估发现,PWML患儿皮层折叠程度减低,可能与白质损伤影响皮层神经元发育有关[42]。MRS在早期即可检测到PWML导致的深部灰质核团的神经元损伤,具体表现为丘脑NAA/Cho及NAA/Cr降低,豆状核NAA/Cho降低[43]。随着损伤进展,可出现丘脑体积减少,且体积减少的程度与PWML体积呈显著负相关[1,2]。丘脑-皮层连接发育于孕中晚期,与发生PWML的时间窗较为一致,因此损伤导致的丘脑-皮层连接的异常,使得丘脑内神经元成熟受阻而造成体积减少[44]

5.3 PWML对脑网络的影响

功能MRI序列对扫描过程中的头部运动敏感,而新生儿耐受性差,难以配合者还需采用镇静药物,因此针对该人群的功能MRI研究较少。目前仅一项静息态功能MRI研究指出,PWML早产儿丘脑-突显网络的连接增加且以病灶较少的左侧明显,而丘脑-感觉运动网络连接无明显变化,增加的丘脑-突显网络连接可能由皮层功能代偿所致[45]

5.4 PWML对脑血流灌注的影响

脑血流及脑氧代谢水平是反映大脑生理功能的重要指标。基于相位对比和T2弛豫自旋标记技术的研究表明,PWML患儿氧摄取分数较对照组显著降低而静脉氧饱和度升高,认为其与缺氧(60.87%合并窒息、呼吸困难)导致神经元退变、坏死有关。同时,红细胞容积在PWML组显著增高,可能与窒息或呼吸困难导致细胞缺氧,进一步降低三磷酸腺苷,降低pH值和血流速度,使血液黏度增加有关[46]

6 PWML的预后评估

PWML发生率高,病灶分布散在且位置多变,已有多项研究对其预后进行评估(表1)。

点击查看表格
表1

PWML的预后研究

Tab. 1

Studies of the relationship between PWML and outcomes in infants

表1

PWML的预后研究

Tab. 1

Studies of the relationship between PWML and outcomes in infants

作者PWML病例数平均胎龄MRI检查年龄合并损伤随访时间
Cornette et al[9]早产:15足月:231周40周35周水肿、囊性PVL、小脑出血、基底节梗死及疱疹性脑炎29.5个月
Dyet et al[47]早产(<30周):1727.4周生后早期矫正到足月小脑出血、基底节异常18~36个月
De Bruine et al[5]早产(<32周):2929.4周40~44周脑室扩大24个月
Beca et al[48]近足月及足月(>36周):5738.7周术前术后7 d3个月先天性心脏病24个月
Kersbergen et al[1]早产:11234周<28周:30周及矫正到足月≥28周:生后早期及矫正到足月出血后脑室扩张、脑室周围出血性梗死、囊性PVL、小脑出血、纹状体梗死、蛛网膜囊肿15个月24个月
Pavaine et al[31]早产(<32周):4428.6周生后2周内生发基质/脑室内出血2岁4岁
Tusor et al[18]早产:11430周矫正到足月20个月
Guo et al[17]早产(24~32周):5827.9周32.1周/矫正到足月脑室内出血及脑室扩大18个月
Arberet et al[49]早产(<32周):1228.8周32~41周9~14岁
Hayman et al[27]近足月及足月:4238.8周生后28 d内<3个月18~24个月围产期窒息、基因异常、低血糖、癫痫、代谢性疾病12个月至12岁
Cayam-Rand et al[6]早产(24~32周):6027.7周32.3周支气管肺发育不良、早产儿视网膜病变、脑室内出血4.5岁
祁英等[50]早产:3934.6周生后2周内0.6~22个月
李艳等[51]早产:3233.1周生后2周内15 d至9个月
刘畅畅等[52]早产:5933.2周生后2周内6个月脑外间隙增宽6个月
作者评估量表研究结果
Cornette et al[9]粗大运动、社交、语言及精细运动适应性问卷预后良好,轻度语言发育迟缓1例
Dyet et al[47]Grifths精神发育量表预后良好
De Bruine et al[5]粗大运动功能分级、贝利婴幼儿发展量表-Ⅲ、儿童行为量表病灶数目≥6的患儿低的贝利评分、重度发育迟缓、脑瘫及更多的行为异常发生率高
Beca et al[48]贝利婴幼儿发展量表-Ⅲ不良预后与脑发育不成熟有关,与PWML无关
Kersbergen et al[1]Grifths精神发育量表/贝利婴幼儿发展量表-ⅢPWML类型及数目与预后无关
Pavaine et al[31]贝利婴幼儿发展量表-Ⅲ贝瑞视觉运动整合量表预后良好
Tusor et al[18]粗大运动功能分级、贝利婴幼儿发展量表-Ⅲ中重度运动功能障碍,PWML体积越大运动功能评分越低
Guo et al[17]贝利婴幼儿发展量表-Ⅲ额顶颞叶PWML体积越大运动预后越差,PWML位于额叶智力预后差
Arberet et al[49]生活质量问卷PWML患儿运动障碍风险增加
Hayman et al[27]Grifths精神发育量表/贝利婴幼儿发展量表-Ⅲ韦氏学龄前/儿童智力量表合并基因异常的PWML患儿预后差
Cayam-Rand et al[6]韦克斯勒学前量表/儿童运动评估(第2版)/脑瘫神经系统评估早期损伤位置可预测学龄前期发育结局(损伤位于前部预后差);加入矫正到足月时的临床指标可增强预测效能
祁英等[50]贝利婴幼儿发展量表-Ⅱ线状及混合型PWML易出现运动发育迟缓、认知障碍等
李艳等[51]Gesell发育量表点状PWML预后较好,线状、混合型及弥漫性预后较差
刘畅畅等[52]Gesell发育量表弥漫性、线状及混合性PWML预后较点簇状差

注:PWML:局灶性白质损伤;PVL:脑室周围白质软化。

PWML的预后研究主要集中于早产儿,且多在生后2周内和(或)校正到足月时行MRI扫描对损伤进行评估。由于纳入研究对象、MRI扫描时间、合并损伤以及预后评估时间的差异,对PWML发育结局判断并不一致。总体而言,其观点随着对PWML的深入认识而不断更新,主要分为以下3个阶段:(1) PWML预后良好,不会导致患儿发生明显后遗症。一方面,受早期研究小样本量(17例)的限制,其研究结果的可信度还有待考量[9,47]。另一方面,临床混杂因素以及合并损伤的严重程度也可能对发育结局的评估产生影响[1,48]。尽管如此,已有部分研究提示,簇状PWML可能会增加发生脑瘫的风险[1]。(2) PWML可致运动功能障碍,且病灶数目和体积与运动结局相关。当病灶数目≥6时,运动异常发生率增加[5];当PWML累及皮质脊髓束且病灶数目>20时,不良运动发育结局的风险明显增高(敏感性57%,特异性94%)[18]。与病灶数目相比,PWML体积是反映损伤程度更为客观的指标,尤其是针对病灶数目一致性较差的簇状病灶。因此,病灶体积为判断预后更为可靠的评估指标[17,18]。(3)PWML还可导致认知发育障碍,且病灶是否累及额叶是判断预后的重要指标。位于大脑前部的损伤病灶可有效判断学龄前期的不良认知(准确度90%)及运动(准确度85%)发育结局[6,17]。但该预测模型是基于极早产儿的重度PWML构建的,故其对不同PWML人群的适用性和准确性还有待进一步评估。

总之,PWML可导致不良运动及认知发育结局。其中运动发育结局与病灶体积相关,病灶体积越大运动预后越差,尤其是损伤累及双侧皮质脊髓束时[5,17,18,50,51,52];认知发育结局与PWML分布位置有关,病灶累及额叶时易发生认知功能障碍[6,17]

7 不足与展望

综上,针对PWML的MRI研究,一方面致力于揭示损伤所致脑结构及功能变化的机制,另一方面则为其诊断和预后评估提供影像学依据。尽管如此,现有研究仍存在以下不足:(1)损伤检测方面:PWML多见于早产儿,而该人群大多在矫正到足月时才进行MRI扫描,这样不仅会低估损伤严重程度,还会对预后判断的准确性产生影响。(2)病灶特征方面:PWML位置是判断预后的重要指标之一[6,17],而病灶散在且位置多变,目前尚缺乏对其时空分布特征的深入研究。此外,PWML病灶与其所致脑结构及功能的变化的对应关系还有待进一步阐明。(3)预后评估方面:已有多项研究对PWML患儿的短期发育结局进行了初步探索[5,6,17,18],但如何进行个体化早期预后评估仍是临床亟需解决的核心问题。

因此,PWML病灶特征刻画及个体化早期预后评估仍是未来研究需要努力的方向。由于PWML可随发育进程逐渐消失,故生后早期(2周内)行高分辨率MRI扫描是对病灶及其脑精细结构变化准确评估的重要环节。基于此,可采用多序列成像的同时,融合不同层次的数据分析方法[2,53],进一步对该人群脑皮层结构和网络属性变化特征进行探究。进而基于个体水平建立脑结构变化关键参量与发育结局的潜在映射关系,明确责任病灶,有望实现PWML患儿预后的早期预测。

利益冲突
利益冲突:

无。

参考文献[References]
[1]
KersbergenKJ, BendersMJ, GroenendaalF, et al. Different patterns of punctate white matter lesions in serially scanned preterm infants. PLoS One, 2014, 9(10): e108904.
[2]
YangJ, LiXJ. Overview and considerations on MRI research of neonatal punctate white matter lesions. J Xi’an Jiaotong University (Med Sci), 2018, 39(2): 153-159.
杨健李贤军新生儿局灶性白质损伤的MRI研究现状及其核心问题的思考西安交通大学学报(医学版), 2018, 39(2): 153-159.
[3]
SunQL, CaoP, ZhangYM, et al. Signal classification by multimodal magnetic resonance imaging on neonatal punctate white matter lesions. J Xi’an Jiaotong University (Med Sci), 2018, 39(2): 160-167.
孙亲利曹盼张育苗多模态磁共振成像对新生儿局灶性脑白质损伤信号分型的研究西安交通大学学报(医学版), 2018, 39(2): 160-167.
[4]
YangJ, WangMM, LiuH, et al. Imaging assessment of brain development of preterm and young infants. Chin J Pract Pediatr, 2017, 32(11): 825-830.
杨健王苗苗刘衡早产儿与小婴儿脑发育影像学评估中国实用儿科杂志, 2017, 32(11): 825-830.
[5]
De BruineFT, van den Berg-HuysmansAA, LeijserLM, et al. Clinical implications of MR imaging findings in the white matter in very preterm infants: a 2-year follow-up study. Radiology, 2011, 261(3): 899-906.
[6]
Cayam-RandD, GuoT, GrunauRE, et al. Predicting developmental outcomes in preterm infants: A simple white matter injury imaging rule. Neurology, 2019, 93(13): e1231-e1240.
[7]
NguyenAL, DingY, SuffrenS, et al. The brain' s kryptonite: Overview of punctate white matter lesions in neonates. Int J Dev Neurosci, 2019, 77: 77-78.
[8]
SteinlinM, DirrR, MartinE, et al. MRI following severe perinatal asphyxia: preliminary experience. Pediatr Neurol, 1991, 7(3): 164-170.
[9]
CornetteLG, TannerSF, RamenghiLA, et al. Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal Ed, 2002, 86(3): 171-177.
[10]
ChildsAM, CornetteL, RamenghiLA, et al. Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol, 2001, 56(8): 647-655.
[11]
ChauV, PoskittKJ, SargentMA, et al. Comparison of computer tomography and magnetic resonance imaging scans on the third day of life in term newborns with neonatal encephalopathy. Pediatrics, 2009, 123(1): 319-326.
[12]
LiAM, ChauV, PoskittKJ, et al. White matter injury in term newborns with neonatal encephalopathy. Pediatr Res, 2009, 65(1): 85-89.
[13]
Martinez-BiargeM, BregantT, WusthoffCJ, et al. White matter and cortical injury in hypoxic-ischemic encephalopathy: antecedent factors and 2-year outcome. J Pediatr, 2012, 161(5): 799-807.
[14]
Neonatologist Chinese medical doctor association. Patterns of brain injury in neonatal hypoxic-ischemic encephalopathy on magnetic resonance imaging: recommendations on classification. Chin J Contemporary Pediatr, 2017, 19(12): 1225-1233.
中国医师协会新生儿科医师分会新生儿缺氧缺血性脑病磁共振诊断与损伤类型的分类建议中国当代儿科杂志, 2017, 19(12): 1225-1233.
[15]
Martinez-BiargeM, GroenendaalF, KersbergenKJ, et al. MRI based preterm white matter injury classification: the importance of sequential imaging in determining severity of injury. PLoS One, 2016, 11(6): e0156245.
[16]
TortoraD, PanaraV, MatteiPA, et al. Comparing 3T T1-weighted sequences in identifying hyperintense punctate lesions in preterm neonates. AJNR Am J Neuroradiol, 2015, 36(3): 581-586.
[17]
GuoT, DuerdenEG, AdamsE, et al. Quantitative assessment of white matter injury in preterm neonates: Association with outcomes. Neurology, 2017, 88(7): 614-622.
[18]
TusorN, BendersMJ, CounsellSJ, et al. Punctate white matter lesions associated with altered brain development and adverse motor outcome in preterm infants. Sci Rep, 2017, 7(1): 13250.
[19]
LiX, GaoJ, WangM, et al. Characterization of extensive microstructural variations associated with punctate white matter lesions in preterm neonates. AJNR Am J Neuroradiol, 2017, 38(6): 1228-1234.
[20]
VolpeJJ. Confusions in nomenclature: "periventricular leukomalacia" and "white matter injury" -identical, distinct, or overlapping?. Pediatr Neurol, 2017, 73: 3-6.
[21]
WagenaarN, ChauV, GroenendaalF, et al. Clinical risk factors for punctate white matter lesions on early magnetic resonance imaging in preterm newborns. J Pediatr, 2017, 182: 34-40.
[22]
GuoT, ChauV, PeyvandiS, et al. White matter injury in term neonates with congenital heart diseases: Topology & comparison with preterm newborns. Neuroimage, 2019, 185: 742-749.
[23]
ParodiA, MalovaM, CardielloV, et al. Punctate white matter lesions of preterm infants: risk factor analysis. Eur J Paediatr Neurol, 2019, 23(5): 733-739.
[24]
ChauV, BrantR, PoskittKJ, et al. Postnatal infection is associated with widespread abnormalities of brain development in premature newborns. Pediatr Res, 2012, 71(3): 274-279.
[25]
YeP, LiY, ZhaoYY, et al. Multifactor analysis of puncate white matter damage in premature infants. J Clin Radiol, 2019, 38(1): 156-160.
叶平李艳赵莹莹早产儿局灶性脑白质损伤的多因素分析临床放射学杂志, 2019, 38(1): 156-160.
[26]
YangXY, LiXH, LeiLL, et al. Analysis of high-risk factors of white matter damage in premature infants. Clin Med Chin, 2016, 32(8): 739-743.
杨晓宇李向红雷丽莉早产儿脑白质损伤临床高危因素分析.中国综合临床, 2016, 32(8): 739-743.
[27]
HaymanM, van Wezel-MeijlerG, van StraatenH, et al. Punctate white-matter lesions in the full-term newborn: underlying aetiology and outcome. Eur J Paediatr Neurol, 2019, 23(2): 280-287.
[28]
FengZJ, MaoJ, ChenD, et al. The etiology and MRI findings of the late high-risk preterm brain injury diagnosed by DWI combined with conventional MRI. Chin J Evid Based Pediatr, 2013, 8(5): 338-345.
冯子鉴毛健陈丹高危晚期早产儿脑损伤病因学及其磁共振发现中国循证儿科杂志, 2013, 8(5): 338-345.
[29]
RutherfordMA, SupramaniamV, EderiesA, et al. Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology, 2010, 52(6): 505-521.
[30]
NiwaT, de VriesLS, BendersMJ, et al. Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging. Neuroradiology, 2011, 53(9): 669-679.
[31]
PavaineJ, YoungJM, MorganBR, et al. Diffusion tensor imaging-based assessment of white matter tracts and visual-motor outcomes in very preterm neonates. Neuroradiology, 2016, 58(3): 301-310.
[32]
MillerS, BackS. 169-pathophysiology of neonatal white matter injury//Fetal and Neonatal Physiology. fifth edition. Philadelphia, Elsevier, 2017: 1695-1703.
[33]
LiauwL, van der GrondJ, van den Berg-HuysmansAA, et al. Hypoxic-ischemic encephalopathy: diagnostic value of conventional MR imaging pulse sequences in term-born neonates. Radiology, 2008, 247(1): 204-212.
[34]
SunQL, ZhangYM, GaoJ, et al. The application of three-dimensional T1 weighted imaging for detecting neonatal punctate white matter lesions. Chin J Magn Reson Imaging, 2018, 9(11): 801-806.
孙亲利张育苗高洁磁共振3D-T1WI序列在新生儿局灶性脑白质损伤病灶检出中的应用磁共振成像, 2018, 9(11): 801-806.
[35]
KimDY, JungWS. Evaluating tissue contrast and detecting white matter injury in the infant brain: a comparison study of synthetic phase-sensitive inversion recovery. AJNR Am J Neuroradiol, 2019, 40(8): 1406-1412.
[36]
MillerSP, CozzioCC, GoldsteinRB, et al. Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol, 2003, 24(8): 1661-1669.
[37]
GanoD, AndersenSK, PartridgeJC, et al. Diminished white matter injury over time in a cohort of premature newborns. J Pediatr, 2015, 166(1): 39-43.
[38]
TongX, XueXD, FuJH, et al. Exploring the clinical significance of continuously measuring apparent diffusion coefficient values in the preterm infants with punctate white matter damage by applying diffusion weighted imaging. Chin J Pediatr, 2014, 52(4): 277-281.
佟欣薛辛东富建华应用弥散加权技术连续测定早产儿局灶性脑白质损伤的表观弥散系数及其价值初探中华儿科杂志, 2014, 52(4): 277-281.
[39]
WisnowskiJL, BlumlS, PaquetteL, et al. Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS One, 2013, 8(2): e56880.
[40]
RenHP, ZhangL, RenZQ, et al. Value of contrast measurement of ESWAN-R2* value in diagnosis of neonatal punctate white matter lesions. Chin J Magn Reson Imaging, 2013, 4(3): 201-205.
任慧鹏张雷任转琴. ESWAN-R2*值对比测量在新生儿局灶性脑白质损伤诊断中的价值磁共振成像, 2013, 4(3): 201-205.
[41]
BassiL, ChewA, MerchantN, et al. Diffusion tensor imaging in preterm infants with punctate white matter lesions. Pediatr Res, 2011, 69(6): 561-566.
[42]
RamenghiLA, FumagalliM, RighiniA, et al. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology, 2007, 49(2): 161-167.
[43]
SunQL, WangMM, LiXJ, et al. Detection of occult abnormalities in the deep gray matter nuclei of neonates with punctate white matter lesions by magnetic resonance spectroscopy. Neuroradiology, 2019, 61(12): 1447-1456.
[44]
WisnowskiJL, CeschinRC, ChoiSY, et al. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury. Neuroradiology, 2015, 57(5): 515-525.
[45]
CaiY, WuX, SuZ, et al. Functional thalamocortical connectivity development and alterations in preterm infants during the neonatal period. Neuroscience, 2017, 356: 22-34.
[46]
QiY, LiuP, LinZ, et al. Hemodynamic and metabolic assessment of neonates with punctate white matter lesions using phase-contrast MRI and T2-relaxation-under-spin-tagging (TRUST) MRI. Front Physiol, 2018, 9: 233.
[47]
DyetLE, KenneaN, CounsellSJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatr, 2006, 118(2): 536-548.
[48]
BecaJ, GunnJK, ColemanL, et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation, 2013, 127(9): 971-979.
[49]
ArberetC, ProisyM, FausserJL, et al. Isolated neonatal MRI punctate white matter lesions in very preterm neonates and quality of life at school age. J Neonatal Perinatal Med, 2017, 10(3): 257-266.
[50]
QiY, WangXM. Early diagnostic and prognostic value of diffusion weighted imaging in premature infants with punctate white matter damage. J Clin Radiol, 2010, 29(4): 515-518.
祁英王晓明扩散加权成像在早期诊断早产儿局灶性脑白质损伤及其预后的价值临床放射学杂志, 2010, 29(4): 515-518.
[51]
LiY, DuY, ChenZQ, et al. DWI on diagnosing and prognosis assessing of premature infants with white matter damage. Chin J Med Imaging, 2017, 15(9): 28-30, 73.
李艳杜奕陈志强弥散加权成像早期诊断早产儿脑白质损伤及预后评估中国医学影像技术, 2014, 30(1): 1-5.
[52]
LiuCC, MaF. The relationship between the different subtypes of WMD by routine MRI examination and the prognosis of children. Chin J CT & MRI, 2017, 15(9): 28-30, 73.
刘畅畅马菲常规MRI检查WMD患儿不同分型与患儿预后的关系.中国CT和MRI杂志, 2017, 15(9): 28-30, 73.
[53]
LiXJ, ChenJ, XiaJ, et al. Quantitative evaluation of the cortical development on neonates based on segmentation of 3D T1WI images using transfer learning. Chin J Magn Reson Imaging, 2019, 10(10): 736-742.
李贤军陈健夏菁基于迁移学习算法对新生儿大脑3D T1WI的灰白质分割及其发育量化研究磁共振成像, 2019, 10(10): 736-742.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词