临床研究
肝型和脑型肝豆状核变性的临床及MRI分析
磁共振成像, 2021,12(3) : 1-5. DOI: 10.12015/issn.1674-8034.2021.03.001
摘要
目的

探讨肝型和脑型肝豆状核变性(Wilson disease,WD)患者头颅MRI影像学表现、眼底检查及其实验室检查的差异性。

材料与方法

回顾性收集陆军军医大学第一附属医院2009年至2019年度经实验室基因检测确诊的89例WD患者(脑型44例,肝型45例)的铜蓝蛋白、血清铜、眼底检查及头颅MRI检查的结果并进行分析,对MRI异常信号进行量化评定标准评分,并对不同临床类型的WD患者临床指标和影像结果进行比较。

结果

脑型和肝型WD患者KF环的阳性率无统计学差异(P=0.946>0.05);脑型WD患者血清铜及铜蓝蛋白的含量明显低于肝型WD患者(P<0.001),WD患者中脑型比肝型发病年龄更早、且发病时长更长(P=0.043,0.013<0.05),脑型WD患者脑部MRI除苍白球、丘脑、小脑外其余各部位出现异常信号比率均高于肝型患者(P<0.05)。两型患者在苍白球、丘脑的信号异常范围评分差异并无统计学意义(P>0.05),而累积程度评分脑型患者明显高于肝型患者(P<0.05);两型患者在小脑区域信号异常范围和累积程度分数差异无统计学意义(P=0.779>0.05)。脑型WD患者脑部MRI的T2序列范围及程度总分与发病时长呈正相关(r=0.315,P=0.038);而肝型WD患者无相关性。

结论

WD患者颅脑影像同时累及基底节区和脑干是肝型和脑型WD患者特征性影像表现。脑型患者颅内异常信号发生率、发病时长、以及颅内病变范围和程度均高于肝型患者。通过MRI检查T2序列的量化性评价可以在一定程度上反映和评估WD患者脑部的病理学阶段和程度。

引用本文: 赵铁牛, 练远书, 胡雪梅, 等.  肝型和脑型肝豆状核变性的临床及MRI分析 [J] . 磁共振成像, 2021, 12(3) : 1-5. DOI: 10.12015/issn.1674-8034.2021.03.001.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

肝豆状核变性又称Wilson病(Wilson disease,WD),是Wilson于1912年首次报道的一种常染色体隐性遗传,铜元素代谢障碍性疾病,其致病基因是ATPase-Cu2+转运β多肽基因(ATP7B),最常见的致病变异位点是Arg778Leu[1]。ATP7B基因突变导致铜离子代谢紊乱,引起合成铜蓝蛋白数量的减少,并导致铜在肝、脑、角膜等器官内病理性沉积[2]。其常见的临床表现包括进行性肝损害、神经精神障碍与角膜色素环(Kayer-Fleischer环, K-F环)等[3]。WD患者根据首发临床症状不同可分四种类型[4]:(1)脑型;(2)肝型;(3)其他类型(肾脏功能损害、骨肌损伤、溶血性贫血等);(4)混合型。笔者通过对89例脑型和肝型WD患者的颅脑MRI图像的影像学特点、血清铜及铜蓝蛋白含量、眼底检查结果进行回顾性总结分析,探讨本病的脑部影像学表现、血清铜及铜蓝蛋白含量、K-F环的阳性率与临床分型的关系。

1 材料与方法
1.1 研究对象

回顾性分析2009年至2019年陆军军医大学第一附属医院经基因检测确诊为WD的89例患者,其中男47例,女42例,平均年龄(24.5±11.7)岁,发病年龄最大的57岁,最小的7岁。本研究经过本单位医学伦理委员会批准(批件号:KY2020081),免除受试者知情同意。纳入标准:(1)基因检测及实验室血清学指标诊断明确;(2)符合“肝豆状核变性的诊断与治疗指南”临床分型的标准[4]。排除标准:(1)患有其他颅脑病变患者或患有其他金属代谢性疾病患者;(2)其他类型WD患者;(3)混合型WD患者;(4)临床资料不完整或检查不全。89例患者按照临床类型分为肝型45例,脑型44例。不同临床类型的纳入标准分别为:(1)肝型WD患者临床表现:Ⅰ血清转氨酶持续性地升高;Ⅱ急性或慢性肝炎;Ⅲ肝硬化;Ⅳ暴发性肝功能衰竭。(2)脑型WD患者临床表现:Ⅰ帕金森症;Ⅱ锥体外系运动障碍,表现为扭转痉挛、舞蹈症状、四肢徐动、步态异常、共济失调等。

1.2 方法

收集WD患者血清铜蓝蛋白、血清铜离子浓度、眼底筛查及头颅MRI检查的结果。通过原子吸收分光光度计火焰法测定血清铜、铜蓝蛋白浓度。通过裂隙灯检查眼底。全部MRI检查均在Siemens Magnetom Spectra 3.0 T磁共振上完成,患者仰卧位,采用8通道头颅线圈。扫描序列为快速自选回波序列,扫描范围:颅底至颅顶。扫描参数:T1WI TR 37 ms,TE 5 ms;T2WI TR 6000 ms,TE 89 ms,层厚5 mm,层间距1 mm。根据SINHA等对MRI异常信号的量化评定标准[5],在T2加权成像上,将WD的异常信号分为高、低、混杂信号三种,采用双盲法,由2名影像科医生分别对苍白球、壳核、尾状核、丘脑、中脑、桥脑、延髓、小脑的病变范围及程度,选取病变最严重的层面进行评分,如意见不一由另一名高年资神经影像专家评估决定。各部位得分0分为阴性,1~3分为阳性。评分标准见表1图1, 2, 3, 4, 5, 6, 7, 8

点击查看表格
表1

Wilson病患者脑部MRI的T2序列评分标准

Tab. 1

T2 sequence scoring criteria for brain MRI in WD patients

表1

Wilson病患者脑部MRI的T2序列评分标准

Tab. 1

T2 sequence scoring criteria for brain MRI in WD patients

病变0分1分2分3分
范围无异常病灶范围<1/3病灶范围<2/3且>1/3病灶范围>2/3
程度无异常大致等于或低于皮质高于皮质信号,低于水信号大致等同于脑室内水信号
点击查看大图
图1
熊猫脸征:红核对称性低信号构成眼睛,侧面的黑质网状部的正常信号构成耳朵,上丘低信号构成嘴巴,犹如熊猫脸
图2
双侧海马回对称性分布的皮层下稍高信号
图3
双侧额叶对称性分布皮层下高信号,右侧顶叶皮层下高信号
图4
双侧苍白球、壳核、尾状核及丘脑稍高信号,大致等于大脑皮质信号,评分1
图5
双侧壳核高信号,高于皮质信号,低于脑室内水信号,评分2
图6
双侧壳核高信号,大致等同于脑室内水信号,评分3
图7
肝型患者,男,32岁,以乏力、纳差、黄疸、腹痛症状就诊,颅脑MRI检查发现双侧丘脑对称性小片状稍高信号,苍白球对称性小片状稍低信号
图8
脑型患者,男,24岁,以手足徐动、共济失调、下肢肌张力减低、异常精神症状就诊,颅脑MRI检查发现双侧苍白球混杂信号,双侧丘脑、尾状核及壳核对称性片状稍高、高信号
Fig. 1
‘Face of giant panda’ sign: The ‘face of giant panda’ sign is delineated by the relative hypointensity of the red nucleus (‘eyes of the panda’) in contrast to the hyperintensity of the superior colliculus (‘mouth of the panda’) and isointensity of reticular part of substantia nigra.
Fig. 2
Bilateral high signal intensity in the hippocampus.
Fig. 3
Bilateral high signal intensity in the frontal lobe and high signal intensity in right parietal lobe.
Fig. 4
Bilateral iso- to slightly hyperintense signal in the globus pallidus, dorsal caudate putamen, caudate nucleus and ganglia, roughly equal to signal in cerebral cortex, score 1.
Fig. 5
Bilateral hyperintense signal in the dorsal caudate putamen, higher than signal in cortical signal and lower than signal in intraventricular, score 2.
Fig. 6
Bilateral hyperintense signal in the dorsal caudate putamen, roughly equal to signal in intraventricular, score 3.
Fig. 7
A patients of liver type, male, 32 years old, with fatigue, anorexia, jaundice, abdominal pain. MRI showed bilateral symmetry flake higher signal in ganglia and bilateral symmetry flake slightly lower signal in globus pallidus.
Fig. 8
Apatients of brain type, male, 24 years old, with hand and foot creep, ataxia, lower extremity muscle tension decreased and abnormal mental symptoms. MRI showed symmetry flake slightly hyperintense signal in dorsal caudate putamen, caudate nucleus and ganglia, and mixed signal intensity in globus pallidus.
点击查看大图
图1
熊猫脸征:红核对称性低信号构成眼睛,侧面的黑质网状部的正常信号构成耳朵,上丘低信号构成嘴巴,犹如熊猫脸
图2
双侧海马回对称性分布的皮层下稍高信号
图3
双侧额叶对称性分布皮层下高信号,右侧顶叶皮层下高信号
图4
双侧苍白球、壳核、尾状核及丘脑稍高信号,大致等于大脑皮质信号,评分1
图5
双侧壳核高信号,高于皮质信号,低于脑室内水信号,评分2
图6
双侧壳核高信号,大致等同于脑室内水信号,评分3
图7
肝型患者,男,32岁,以乏力、纳差、黄疸、腹痛症状就诊,颅脑MRI检查发现双侧丘脑对称性小片状稍高信号,苍白球对称性小片状稍低信号
图8
脑型患者,男,24岁,以手足徐动、共济失调、下肢肌张力减低、异常精神症状就诊,颅脑MRI检查发现双侧苍白球混杂信号,双侧丘脑、尾状核及壳核对称性片状稍高、高信号
Fig. 1
‘Face of giant panda’ sign: The ‘face of giant panda’ sign is delineated by the relative hypointensity of the red nucleus (‘eyes of the panda’) in contrast to the hyperintensity of the superior colliculus (‘mouth of the panda’) and isointensity of reticular part of substantia nigra.
Fig. 2
Bilateral high signal intensity in the hippocampus.
Fig. 3
Bilateral high signal intensity in the frontal lobe and high signal intensity in right parietal lobe.
Fig. 4
Bilateral iso- to slightly hyperintense signal in the globus pallidus, dorsal caudate putamen, caudate nucleus and ganglia, roughly equal to signal in cerebral cortex, score 1.
Fig. 5
Bilateral hyperintense signal in the dorsal caudate putamen, higher than signal in cortical signal and lower than signal in intraventricular, score 2.
Fig. 6
Bilateral hyperintense signal in the dorsal caudate putamen, roughly equal to signal in intraventricular, score 3.
Fig. 7
A patients of liver type, male, 32 years old, with fatigue, anorexia, jaundice, abdominal pain. MRI showed bilateral symmetry flake higher signal in ganglia and bilateral symmetry flake slightly lower signal in globus pallidus.
Fig. 8
Apatients of brain type, male, 24 years old, with hand and foot creep, ataxia, lower extremity muscle tension decreased and abnormal mental symptoms. MRI showed symmetry flake slightly hyperintense signal in dorsal caudate putamen, caudate nucleus and ganglia, and mixed signal intensity in globus pallidus.
1.3 统计学方法

两型WD患者的年龄、血清学指标、发病年龄、发病时长、MRI评分采用t检验比较。性别、K-F环阳性率、异常信号出现比率比较用卡方检验。颅脑异常信号量化指标和临床指标的相关性采用皮尔逊相关性分析。各项数据均应用软件SPSS 25.0分析完成。

2 结果
2.1 不同临床类型WD 患者临床资料

两型WD患者K-F环的阳性率无统计学差异(P>0.05);脑型WD患者血清铜及铜蓝蛋白的含量明显低于肝型WD患者(P<0.001),本组WD患者中脑型比肝型发病年龄更早、且发病时长更长(P<0.05)。其他指标差异均无统计学意义(表2)。

点击查看表格
表2

两型Wilson病患者的基本情况比较

Tab. 2

Comparison of basic conditions of patients with two types of WD patients

表2

两型Wilson病患者的基本情况比较

Tab. 2

Comparison of basic conditions of patients with two types of WD patients

项目脑型(44例)肝型(45例)χ2/tP
性别(男/女,例)27/1720/252.5550.110
年龄(岁,x¯±s)22.68±10.1626.71±12.980.8200.415
发病年龄(岁,x¯±s)20.84±9.7925.89±13.142.0520.043
发病时长(年,x¯±s)2.09±2.081.24±0.832.5340.013
K-F环阳性率[% (阳性/阴性)]70.5 (31/13)71.1 (32/13)0.0050.946
血清铜(11~24 umol/L,x¯±s)7.82±9.5110.52±9.574.730<0.001
铜蓝蛋白(210~530 mg/L,x¯±s)71.25±64.50122.54±98.8216.174<0.001
2.2 两种临床类型WD患者影像学特点

脑型WD患者脑部MRI除苍白球、丘脑、小脑外其余各部位出现异常信号比率均高于肝型患者,差异有统计学意义(P<0.05) (表3)。评分比较结果显示两型患者在苍白球、丘脑的信号异常范围评分差异并无统计学意义(P>0.05) (表4),而累积程度评分脑型患者明显高于肝型患者(P<0.05);小脑区域两型在信号异常范围和累积程度分数差异无统计学意义(P>0.05) (表4)。

点击查看表格
表3

两型Wilson病患者脑内各部位阳性人数比较

Tab. 3

Comparison of positive numbers in different parts of brain of two types of WD patients

表3

两型Wilson病患者脑内各部位阳性人数比较

Tab. 3

Comparison of positive numbers in different parts of brain of two types of WD patients

部位肝型患者(45例)脑型患者(44例)χ2P
阳性(例)阴性(例)阳性(例)阴性(例)
苍白球4234403.0360.081
壳核192638618.824<0.001
尾状核540222215.921<0.001
丘脑3783770.0550.814
中脑936261815.865<0.001
桥脑133224206.0290.014
延髓44115298.4150.004
小脑3426381.1890.276
脑萎缩54011332.9090.088
点击查看表格
表4

两型Wilson病患者MRI的T2序列评分比较分析(x¯±s)

Tab. 4

Comparative analysis of MRI T2 sequence scoring in two types of WD patients(x¯±s)

表4

两型Wilson病患者MRI的T2序列评分比较分析(x¯±s)

Tab. 4

Comparative analysis of MRI T2 sequence scoring in two types of WD patients(x¯±s)

部位病变累及范围评分受累程度评分
肝型脑型tP肝型脑型tP
苍白球2.78±0.7652.82±0.4950.2950.7691.27±0.6181.84±0.8343.697<0.001
壳核0.71±1.0362.00±1.1815.476<0.0010.60±0.8631.43±0.8464.589<0.001
尾状核0.20±0.6611.09±1.2544.206<0.0010.13±0.4050.68±0.8004.094<0.001
丘脑0.89±0.5321.14±0.7651.7750.0790.91±0.5961.45±0.9753.1790.002
中脑0.24±0.5290.91±0.9364.137<0.0010.22±0.4710.75±0.7513.980<0.001
桥脑0.40±0.6881.02±1.1103.1900.0020.31±0.5140.61±0.6552.4270.017
延髓0.11±0.3830.86±1.8872.6200.0100.11±0.3830.39±0.5792.6500.010
小脑0.09±0.3580.14±0.3470.6350.5270.11±0.4870.14±0.3470.2810.779
2.3 患者临床分型和影像学评分关系

不同临床类型WD患者临床指标和MRI指标的相关性结果显示如表5:脑型WD患者发病时长与脑部MRI的T2序列评分呈正相关。肝型WD患者发病时长与脑部MRI的T2序列评分无相关性。两型发病年龄及确诊年龄与脑部MRI的T2序列评分无相关性。肝型、脑型WD患者颅脑各部位T2序列评分与发病时长无相关性(表6)。

点击查看表格
表5

脑内评分和发病年龄、确诊时间、发病时长的相关性分析

Tab. 5

Correlation analysis of intracranial score and age, time of diagnosis and time of pathogenesis

表5

脑内评分和发病年龄、确诊时间、发病时长的相关性分析

Tab. 5

Correlation analysis of intracranial score and age, time of diagnosis and time of pathogenesis

分型rP
发病时长
肝型0.1100.472
脑型0.3150.038
确诊时间
肝型-0.1070.486
脑型0.2180.154
发病年龄
肝型-0.0900.557
脑型0.1550.314
点击查看表格
表6

两型Wilson病患者各部位T2序列评分与发病时长的相关性分析

Tab. 6

Correlation analysis of T2 sequence scores and duration of onset in two types of WD patients

表6

两型Wilson病患者各部位T2序列评分与发病时长的相关性分析

Tab. 6

Correlation analysis of T2 sequence scores and duration of onset in two types of WD patients

分型rP分型rP分型rP
苍白球范围肝型-0.0990.516脑型-0.0920.554
肝型-0.1270.105脑型-0.2900.056桥脑程度
脑型0.0620.491丘脑范围肝型-0.1220.883
苍白球程度肝型-0.1850.224脑型-0.0450.349
肝型-0.2190.149脑型-0.0210.893延髓范围
脑型0.0090.956丘脑程度肝型-0.0870.568
壳核范围肝型-0.1950.200脑型-0.1150.456
肝型-0.0830.590脑型-0.1250.419延髓程度
脑型-0.0610.491中脑范围肝型-0.0870.568
壳核程度肝型-0.1390.362脑型-0.1260.413
肝型-0.0820.590脑型-0.2110.129小脑范围
脑型-0.0620.491中脑程度肝型0.0780.610
尾状核范围肝型-0.1420.352脑型-0.0820.596
肝型-0.0910.551脑型-0.1940.208小脑程度
脑型-0.2890.057桥脑范围肝型0.0440.776
尾状核程度肝型0.0640.678脑型-0.0820.596
3 讨论
3.1 两型WD患者临床表现

WD患者发病年龄大多位于5~35岁[6]。有研究提出[7]以肝功能损害为首发症状的患者(多小于20岁)发病年龄低于以运动功能障碍症状起病的患者(30~40岁)。更多研究表明[8, 9]脑型WD患者发病年龄要早于肝型患者。本组病例中WD脑型患者的平均发病年龄(20.84±9.786)低于肝型平均发病年龄(25.89±13.141),儿童患者均为脑型,30岁以上患者中76.4%(13例)为肝型,与既往研究结果一致。这可能是因为运动障碍症状及异常精神障碍、睡眠障碍和自主神经紊乱等[10]的临床症状相对肝脏损伤的临床症状更易被发现,而晚发型WD患者(>30岁)脑中主要以铜离子沉积为主,对细胞造成的损伤轻微,因此神经和精神症状表现轻[11]

WD的发病机制是由于ATP7B基因突变造成编码蛋白错误的折叠,使得铜离子在肝脏、脑、角膜缘等组织器官中渐进性沉积[12, 13, 14]。本组研究中发现脑型WD患者的血铜、铜蓝蛋白平均含量(7.82±9.51,71.25±64.50)要明显低于肝型患者(10.52±9.57,122.54±98.82),笔者猜测这可能是因为脑型WD患者血脑屏障破坏后,铜离子在脑部沉积导致血铜、铜蓝蛋白含量进一步下降所致。有学者证实[15]合并肝细胞衰竭的患者脑代谢物(NAA、NAA/Cr和NAA/Cho比值)相对无此表现的患者显著降低,提示肝功能衰竭先于并参与神经系统损伤,脑型WD患者的脑内代谢物与肝型WD患者相比明显下降,从而证实了笔者观点。

铜沉积于角膜边缘后,眼底检查时可在角膜缘观测棕黄色的K-F环,这是诊断WD的主要临床证据之一。有学者[16]发现绝大部分脑型患者可检测出K-F环的存在,而以肝脏功能性损害为初始症状的肝型患者仅50%~60%检出K-F环。本组研究中脑型、肝型患者K-F环的阳性率并无统计学差异。这可能是因为本组病例中患者发病时间短,可疑患者统计为阴性所致。

3.2 两型WD患者MRI表现

少数学者认为铜在颅内广泛均匀沉积分布[17],但更多的研究[18]认为,铜在颅内并非均匀分布,而呈对称性分布,本研究结果也佐证了此观点。有研究证实WD患者颅内病变MRI序列中T2序列的敏感度最高,为89.7%,T1和FLAIR序列的敏感度相对稍低,均为76.5%[19],本研究以T2序列作为两型比较主要序列。由于铜最容易沉积在苍白球和黑质中,在T2序列大都显示为对称性低信号;其次为壳核、丘脑,以混杂性的信号为主,这是由于铜离子不均匀沉积造成的顺磁性作用和组织水肿、胶质细胞增生共同作用的结果;尾状核、脑干及小脑相对受累较轻,以组织水肿和胶质细胞增生为主,一般表现为高信号。

本研究中发现脑型WD患者除了苍白球、丘脑以外脑部各部位发病率均高于肝型患者;而两型患者在苍白球、丘脑的发病率、累积范围相近,并无显著差异,其原因在于苍白球和丘脑是脑内最易受累的部位,因此两型患者均可受累,但包括苍白球和丘脑在内的各部位严重程度脑型患者均要高于肝型患者。两型患者小脑的发病率、程度和范围并无显著差异,笔者猜测这主要是因为小脑相对其他部位不易受累,统计样本量不足所致。本研究中同样发现脑型WD患者发病时长与脑部MRI的T2序列范围及程度总分有相关性;肝型WD患者发病时长与脑部MRI的T2序列范围及程度总分无相关性;肝型、脑型WD患者颅脑各部位范围及程度评分与发病时长无相关性。这就提示颅内病变严重程度有可能与血脑屏障的破坏程度、铜的沉积时间、细胞损伤的严重程度有关,但基于个体差异性,颅内病变的严重程度与临床症状并非完全一致。

WD的颅脑MRI表现通常典型,但应与先天遗传代谢性疾病造成的脑部病变、营养不良性脑病、多发性硬化和肝性脑病等[20]进行鉴别。有学者表示在颅脑MRI表现中,“八字征”、“啄木鸟征”、“蝴蝶征”、中脑“大熊猫脸”征、“脑桥中央髓鞘溶解”等并不能作为WD的特异性表现,只有基底节、丘脑和脑干同时出现信号异常才是WD的特异性表现,有助于和上述疾病相鉴别[21]。本研究结果显示5例脑型患者表现为T1对称性高信号,这可能与锰及铁等金属沉积引起的顺磁性相关[22]

综上所述,WD脑型患者发病年龄低于肝型患者,血清中铜蓝蛋白及铜离子浓度均低于肝型患者,两者K-F环的发生率并无显著性差异。同时累及基底节区和脑干是WD患者特征性影像表现。而脑型患者,其颅内异常信号比率、发病时长、以及颅内病变范围和程度均高于肝型患者。以磁共振为基础的量化分析可以在一定程度上[23]反映和评估WD患者脑部的病理阶段、范围和程度,解释临床症状的发生,对临床工作起到一定的指导和帮助。

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
1
谭文婷, 向密, 但芸婕, . 119例肝豆状核变性临床特征及致病基因ATP7B变异谱分析.第三军医大学学报, 2018, 40(18): 1674-1681. DOI:10.16016/j.1000-5404.201806104
TanWT, XiangM, DanYJ, et al. Clinical characteristics and mutation spectrum of the pathogenic gene ATP7B in Chinese patients with Wilson's disease: analysis of 119 cases. J Third Military Medical University, 2018, 40(18): 1674-1681. DOI:10.16016/j.1000-5404.201806104
2
Porlas JrRV, de CastilloLLC, DioquinoCPC, et al. Neurologic wilson disease: case series on a diagnostic and therapeutic emergency. Dialogues Clin Neurosci, 2018, 20(4): 341-345. DOI:10.31887/DCNS.2018.20.4/rporlas
3
CzłonkowskaA, LitwinT, DusekP, et al. Rybakowski, karl heinz weiss, michael l. schilsky. wilson disease. Nat Rev Dis Primers, 2018, 4(1): 21. DOI:10.1038/s41572-018-0018-3
4
中华医学会神经病学分会帕金森病及运动障碍学组, 中华医学会神经病学分会神经遗传病学组. 肝豆状核变性的诊断与治疗指南. 中华神经科杂志, 2008(8): 566-569.
Guidelines for the diagnosis and treatment of Wilson's disease, Neurogenetic Diseases Group of the Chinese Medical Association Neurology Branch. Parkinson's disease and Movement disorders group of the Chinese Medical Association neurology branch. Chin J Neurol, 2008(8): 566-569.
5
SinhaS, TalyAB, RavishankarS, et al. Wilson′s disease: cranial MRI observations and clinical correlation. Neuroradiology, 2006, 48 (9) : 613-621.
6
AnnaC, MariaR, GrazynaG. Late onset Wilson's disease: therapeutic implications. Mov Disord, 2008, 23(6): 896-898. DOI:10.1002/mds.21985
7
HederaP. Wilson's disease: a master of disguise. Parkinsonism Relat Disord, 2019, 59: 140-145. DOI:10.1016/j.parkreldis.2019.02.016
8
年媛媛, 孟宪梅, 张德新, . 111例肝豆状核变性的临床分析. 中华肝脏病杂志, 2013, 21(2): 149-150.
NianYY, MengXM, ZhangDX, et al. Clinical analysis of hepatolenticular degeneration in 111 patients. Chin J Hepatol, 2013, 21(2): 149-150.
9
EmilieF, LaurenceLF, MarieC, et al. Cognitive abilities of children with neurological and liver forms of wilson disease. J Pediatr Gastroenterol Nutrit, 2017, 64(3): 436-439. DOI:10.1097/MPG.0000000000001346
10
SamarB, NeelanjanaP, DasSK. Nonmotor manifestations of Wilson's disease. Int Rev Neurobiol, 2017, 134: 1443-1459. DOI:10.1016/bs.irn.2017.04.010
11
ZhouXX, QinHL, HeRX, et al. Clinical characteristics of patients with delayed hepatolenticular degeneration. Chin J Int Med, 2019, 58(7): 501-507. DOI:10.3760/cma.j.issn.0578-1426.2019.07.004
12
SauerSW, MerleU, OppS, et al. Severe dysfunction of respiratory chain and cholesterol metabolism in Atp7b(-/-) mice as a model for Wilson disease. Biochim Biophys Acta, 2011, 1812(12): 1607-1615. DOI:10.1016/j.bbadis.2011.08.011
13
GerosaC., FanniD., CongiuT. M., et al. Liver pathology in Wilson's disease: From copper overload to cirrhosis. J Inorg Biochem, 2019, 193: 106-111. DOI:10.1016/j.jinorgbio.2019.01.008
14
MeachamKA, CortésMP, WigginsEM, et al. Altered zinc balance in the Atp7b-/- mouse reveals a mechanism of copper toxicity in Wilson disease. Metallomics, 2018, 10(11): 1595-1606. DOI:10.1039/c8mt00199e
15
AlkhalikBM, RefaatR, AhmedAF, et al. Brain magnetic resonance spectroscopy (MRS) as a diagnostic tool for detecting early neurological changes in children with Wilson's disease. Eur J Radiol, 2019, 2, (111): 41-46. DOI:10.1016/j.ejrad.2018.12.013
16
GrupchevDI, RadevaMN, GeorgievaM, et al. In vivo confocal microstructural analysis of corneas presenting Kayser-Fleischer rings in patients with Wilson's disease. Arq Bras Oftalmol, 2018, 81(2):137-143. DOI:10.5935/0004-2749.20180030
17
LitwinT, GromadzkaG, SzpakGM, et al. Brain metal accumulation in Wilson's disease. J Neurol Sci, 2013, 329(1-2): 55-58. DOI:10.1016/j.jns.2013.03.021
18
AshrafA, MichaelidesC, WalkerTA, et al. Regional distributions of iron, copper and zinc and their relationships with glia in a normal aging mouse model. Front Aging Neurosci, 2019, 11(19): 351. DIO: 10.3389/fnagi.2019.00351
19
ZhongW, HuangZH, TangXQ. A study of brain MRI characteristics and clinical features in 76 cases of Wilson's disease. J Clin Neurosci, 2019, 59: 167-174. DOI:10.1016/j.jocn.2018.10.096
20
Fernández-RodriguezR, ContrerasA, De VilloriaJG, et al. Acquired hepatocerebral degeneration: clinical characteristics and MRI findings. Eur J Neurol, 2010, 17(12): 1463-70. DOI:10.1111/j.1468-1331.2010.03076.x
21
PrashanthLK, SinhaS, TalyAB, et al. Do MRI features distinguish Wilson's disease from other early onset extrapyramidal disorders?An analysis of 100 cases. Mov Disord, 2010, 25(6): 672-678.DOI:10.1002/mds.22689
22
马平, 郑彬. 肝豆状核变性颅内病变的影像及临床表现. 医学影像学杂志, 2018, 28(2): 326-328.
MaP, ZhengB. The imaging and clinical manifestations of the intracranial lesions of hepatolenticular degeneration. J Med Imaging, 2018, 28(2): 326-328.
23
李爱萍, 周香雪, 蒲小勇, . 肝豆状核变性的头部磁共振量化及异常信号与临床特点的关系. 实用医学杂志, 2019, 35(13): 2142-2147. DOI:10.3969/j.issn.1006-5725.2019.13.025
LiAP, ZhouXX, PuXY, et al. Relationship between clinical features and abnormal signals tested by quantitative method of brain magnetic resonance imaging in Wilson disease patients. J Pract Med, 2019, 35(13): 2142-2147. DOI:10.3969/j.issn.1006-5725.2019.13.025
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词