综述
磁共振成像评估直肠癌新辅助治疗后疗效的研究进展
磁共振成像, 2021,12(4) : 121-124. DOI: 10.12015/issn.1674-8034.2021.04.031
摘要

直肠癌新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)的广泛应用改善了许多患者的预后,但也有部分患者并不能获益。直肠MRI因其高软组织分辨率的优势,能更好地显示肿瘤周围浸润及直肠壁改变情况,是诊断和全面评估直肠癌治疗反应非常有效的影像技术。笔者从不同MRI技术、MRI联合实验室检查、MRI联合内镜技术及PET-CT方面入手,分别介绍不同方法评估直肠癌新辅助治疗后病理缓解的价值,以期为临床诊治提供一定依据。

引用本文: 李戟玭, 毛蕾, 周雪婷, 等.  磁共振成像评估直肠癌新辅助治疗后疗效的研究进展 [J] . 磁共振成像, 2021, 12(4) : 121-124. DOI: 10.12015/issn.1674-8034.2021.04.031.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。

每年全球有超过10万人被诊断患有直肠癌,70%是局部晚期直肠癌(locally advanced rectal cancer,LACR)[1]。目前局部晚期直肠癌仍以手术治疗为主,新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)联合全直肠系膜切除术(total mesorectal excision,TME)是局部晚期直肠癌的标准治疗方法[2, 3]。新辅助治疗后肿瘤反应各异,部分可能出现疾病缓解,小部分患者可能出现疾病进展[4],直肠癌患者的肿瘤反应与肿瘤局部复发、远处转移密切相关,是影响直肠癌患者治疗后无复发生存时间与总体生存时间的主要因素[5, 6]。局部晚期直肠癌患者在接受新辅助放化疗后肿瘤完全消退被定义为病理完全缓解(pathological complete response,pCR)[7]。有15%~30%的直肠癌患者在接受新辅助治疗后可实现病理完全缓解[8],对于新辅助治疗后达到病理完全缓解的直肠癌患者而言,根治性手术可能会导致术后并发症,例如术后感染、泌尿和性功能障碍等,而并未延长生存时间[9]。因此对于此类患者而言,不进行根治性手术而采用严格的随访和观察策略(watch-and-wait)是可行的[7, 8]。并且及早预测治疗效果有助于预先确定治疗效果良好或较差者,以便及早调整和优化治疗。因此术前对新辅助治疗后肿瘤反应的准确评估有助于确定进一步治疗方案[8]。本文旨在对目前MRI评估直肠癌新辅助治疗后病理完全缓解的研究现状作一综述。

1 MRI评估LACR新辅助治疗后病理完全缓解的价值

2016年欧洲胃肠道和腹部放射学会推荐将盆腔MRI列为所有直肠癌患者术前分期判断的常规检查手段[10]。盆腔MRI能够清楚地显现直肠壁各层组织及周围脂肪间隙,通过三维重建形成各个断面的整体成像,包括直肠系膜的软组织和筋膜[11]。并且高场强的MRI能够更快采集图像,并有更高的空间分辨率及信噪比,能够改善直肠壁的可见性[12],进而为治疗方案的选择提供依据。随着技术发展,除了形态学MRI,越来越多的功能MRI技术应用于临床,如扩散加权成像(diffusion weighted imaging,DWI)、扩散峰度成像(diffusion kurtosis imaging,DKI)、动态对比增强MRI(dynamic contrast-enhanced MRI,DEC-MRI)等。现将不同MRI技术在评估局部晚期直肠癌新辅助治疗的诊断价值进行介绍。

1.1 常规MRI

常规MRI是目前最常用的评估肿瘤反应的技术,其评估新辅助治疗的疗效是基于T2WI持续性肿瘤信号强度及治疗前后肿瘤体积变化。当肿瘤体积缩小且T2WI的信号强度低并均一,表现为组织纤维化且无残留肿瘤信号时,则认为患者达到新辅助治疗后完全缓解[13]。Kim等[14]研究显示先标化治疗后的肿瘤信号强度,再测量不同信号强度的体积有助于提高pCR的诊断率(AUC=0.831),而直接测量整体肿瘤体积的准确度较低(AUC=0.700~0.792)。MERCURY试验组(magnetic resonance imaging in rectal cancer European equivalence study)提出基于MRI的肿瘤消退程度(MRI assessment of tumor regression grading,mrTRG)评估新辅助治疗后肿瘤反应状态,并且广泛用于临床。mrTRG分级系统来源于病理TRG分级,包括Dworak、Mandard、Rayn分级系统等,其中,Mandard分级是目前针对肿瘤消退程度半定量评估最常用的方法之一,可分为5级:mrTRG1级,肿瘤完全消退,纤维组织中无残存的肿瘤细胞;mrTRG2级,纤维组织为主的病灶内有极少残存肿瘤细胞(不易发现或镜下发现);mrTRG3级,纤维组织为主并有少量残存细胞(较易发现),可有黏液存在;mrTRG4级,肿瘤细胞为主,可有纤维化或黏液;mrTRG5级:肿瘤无消退[15]。Jang等[16]研究显示,mrTRG1级诊断pCR的特异度较高(93.5%),但是敏感度较低(32.3%),同样,mrTRG1/2级的敏感度较高(69.9%),特异度也较低(62.2%)。与之相似的是,Bhoday等[17]研究结果显示mrTRG1级诊断pCR的敏感度为27.8%,mrTRG1/2级的敏感度为66.7%。然而常规MRI不易鉴别新辅助治疗导致的纤维化、细胞水肿及坏死与肿瘤残余灶,因此DWI、DKI及DEC-MRI等功能MRI被应用于临床。

1.2 扩散加权成像

DWI以水分子在细胞内外的自由扩散为基础,反映组织内部的微环境。水分子在生物组织中的扩散率取决于许多因素,包括温度、组织细胞密度、细胞外组织情况、细胞膜的完整性和液体的粘度[18]。研究显示,DWI用于评估局部晚期直肠癌新辅助放化疗后是否达到pCR优于常规MRI,其准确度较高[19, 20]。Yang等[21]研究结果表明ADC评估直肠癌pCR的敏感度和特异度分别为78%和96.2%,AUC为0.912~0.945,其诊断价值较高。ADC是评估水分子在组织内扩散的定量参数,与组织细胞密度呈负相关[22],肿瘤细胞限制水分子的扩散,随着肿瘤生长,肿瘤细胞密度增大,并且细胞外组织的结构被破坏,导致ADC值下降[23]。放化疗会使肿瘤细胞坏死,并伴有不同程度的纤维化、水肿和炎症,从而ADC值增加[24]。此外,ADC值增加程度不同也可反映肿瘤组织对新辅助治疗的敏感性不同[22,24]。目前大部分研究通过测量治疗前、治疗中及治疗后ADC值判断肿瘤反应程度,但是结果不完全相同,例如,De Felice等[22]研究发现治疗中的ADC值诊断价值最高,Yang等[21]研究发现治疗后的ADC值诊断价值最高,而Delli Pizzi等[24]研究发现治疗前后ADC变化值的诊断价值最高,这可能与ADC值测量受到MRI硬件和场强、采集方案和测量方法变化的影响有关,因此未来研究可探讨标准化DWI实施方案,进一步提高诊断准确度。

1.3 扩散峰度成像

2005年,Jensen等[25]首次提出DKI模型,其初始目的是为定量测定扩散偏离高斯分布的程度。传统的DWI模型基于水分子的高斯分布,而真实的生物组织中水分子扩散为非高斯分布,水分子的扩散受周围环境的限制程度越大,扩散的非高斯性越显著[26]。DKI通过平均扩散系数(mean diffusion,MD)和平均峰度系数(mean kurtosis,MK)两个定量指标评估水分子的扩散程度和量化扩散差异。程鑫涛等[27]定量分析DKI参数,结果显示新辅助治疗后的MK评估新辅助治疗疗效的价值较高,在最佳阈值下其AUC为0.823,敏感度为76.5%,特异度为63%。Hu等[28]研究显示新辅助治疗后MK诊断价值更高,其敏感度和特异度分别为92.9%、83.3%,AUC为0.908。王莉莉等[29]研究发现DKI与肿瘤的分期及分化程度存在一定相关性,并得出其可用于评估预后和指导治疗。DKI是在DWI基础上进一步发展延伸,作为一种非高斯模式获取生物组织复杂结构特征的多参数成像,较DWI更能反映真实组织的特征。

1.4 动态对比增强MRI

随着技术发展,DCE-MRI被广泛应用,其不仅对肿瘤分期提供重要参考价值,而且在评估肿瘤血管生成方面也有重要作用[30]。血管生成是肿瘤生长所必需的,在恶性病变中新生的微血管内皮不完整,导致血管通透性增加,静脉注射对比剂后病灶局部灌注增多,增强早期即出现明显的强化[31]。DCE-MRI可进行定性、定量及半定量分析组织的特征,Petrillo等[32]通过定性分析得出DCE-MRI诊断pCR的敏感度为81%,特异度为85%。Gollub等[33]联合应用DCE-MRI及常规MRI诊断完全缓解的敏感度、特异度及AUC分别为53%、76%及0.68,相较于单独使用常规MRI的诊断价值较高(敏感度、特异度及AUC分别为42%、77%及0.66)。童彤等[34]通过定量分析转运常数(Ktrans)、细胞外血管外空间的体积分数(Ve)和速率常数(Kep),结果显示Ktrans诊断pCR的AUC为0.837,Ve和Kep的AUC分别为0.655和0.654。Dijkhoff等[30]定量分析得出Ktrans值越高,则肿瘤缓解程度越好;半定量分析得出治疗前的对比摄取曲线的晚期倾斜率越低,则肿瘤缓解越好。DCE-MRI诊断直肠癌新辅助治疗后病理完全缓解的价值较高,但是目前关于半定量分析的研究较少。

1.5 基于MRI影像组学评估LACR新辅助治疗后病理完全缓解的价值

Yi等[35]研究基于T2WI的影像组学评估新辅助治疗后pCR、良好反应组及肿瘤降期组的AUC分别为0.91、0.90和0.93,评估新辅助治疗疗效的价值较高。Aker等[36]研究显示基于T2WI的影像组学可用于评估直肠癌新辅助治疗后的疗效,评估间隔时间为6.2周及10.4周时,其诊断pCR的AUC分别为0.75及0.88。Bulens等[37]研究表明基于T2WI及DWI的影像组学评估pCR的AUC为0.83~0.86。Liu等[1]对2252个nCRT治疗前后影像组学特征进行提取分析并建模,得出基于T2WI及DWI影像组学评估pCR的AUC为0.918~0.971,评估pCR准确度为91.9%~97.1%。舒震宇等[38]关于MRI纹理分析技术在评估直肠癌新辅助治疗疗效研究显示,在不同区域纹理值中熵值的诊断价值最高,其AUC为0.885,敏感度为100%,特异度为66.7%。因此,基于MRI影像组学评估LACR新辅助治疗后pCR的价值较高。近年来关于影像组学评估新辅助治疗后肿瘤反应的临床研究逐渐增多,因为影像组学能从MRI图像中提取海量的影像定量特征,挖掘大量肉眼不能识别的信息,从而得到全面的肿瘤特征信息,达到精准医疗的目的。在精准医学的临床实践中,基于MRI的影像组学评估直肠癌新辅助治疗后肿瘤反应的临床应用前景十分广阔。

2 MRI联合其他诊断方法评估LACR新辅助治疗后病理完全缓解的价值
2.1 MRI联合实验室检查

Yoo等[39]研究了癌胚抗原联合mrTRG诊断pCR的价值,结果显示两者联合明显高于单独使用mrTRG,两者AUC分别为0.728和0.680。Reece等[40]表明通过监测血液中的循环肿瘤DNA (circulating tumour DNA,ctDNA)水平的变化,可以反映对肿瘤治疗后的全身反应。与正常人相比,肿瘤患者体内存在大量ctDNA,它们来自于凋亡或(和)坏死的肿瘤细胞,这些源于肿瘤组织或循环肿瘤细胞的DNA片段携带着肿瘤特异性DNA序列进入血液循环,形成了可在外周血中检测到的循环肿瘤DNA[41]。近年来,ctDNA检测在肿瘤的早期诊断与筛查、疗效判断与预后评估、耐药监测与用药指导中得到广泛应用,但目前关于ctDNA评估新辅助治疗后的肿瘤反应的原始研究较少,期待更多原始研究进一步探讨。但是肿瘤应答率与新辅助治疗结束至手术间隔时间密切相关,目前临床选用6~8周为间隔时间,部分患者在此时间内未达到完全缓解,但是表现出良好的治疗效果,因此,在评估复发、再生长及转移等风险后,在严密的观察及随访下可适当推迟手术时间[42]。因此在后续研究中可进一步探讨最佳间隔时间。

2.2 MRI联合内镜检查

Bhoday等[17]比较了mrTRG与内镜下残留异常黏膜(residual mucosal abnormality,RMA)诊断pCR的准确度,结果显示mrTRG的诊断价值明显高于RMA (OR=10.20),比较两者的假阳性率,mrTRG小于RMA (OR=0.47),联合使用两者的诊断准确度(63%)低于单独使用mrTRG (94%)。然而,Cho等[43]研究显示mrTRG联合内镜诊断pCR的价值(AUC=0.77)高于单独使用mrTRG (AUC=0.57),低于单独使用内镜(AUC=0.82),但是考虑到内镜不能准确评估淋巴结转移情况,仍建议使用联合诊断方法。

2.3 MRI联合PET-CT

Aiba等[44]研究发现MRI联合PET-CT诊断新辅助治疗后肿瘤反应的价值(AUC=0.844~0.846)并没有较MRI单独诊断(AUC=0.849~0.853)的价值高,而Ippolito等[45]研究表明联合使用ADC和标准化摄取值(standardized uptake value,SUV)可提高pCR的诊断准确度。虽然联合使用MRI及PET-CT可提高直肠癌新辅助治疗后的pCR诊断率,但是在临床应用中应权衡两者联合的诊断价值与经济效益。

综上,MRI评估直肠癌新辅助治疗后病理完全缓解有较高的价值,在临床应用中联合多种成像模式可提高诊断价值,影像组学技术的发展为评估直肠癌新辅助治疗疗效提供了新的机遇和方法,基于MRI的影像组学纳入了肿瘤的多个参数,其诊断效能更高,临床应用前景广泛。此外,ctDNA是血液中肿瘤衍生的片段化DNA,属于液体活检,相比于肿瘤组织活检,其操作简便、无创、实时,可多次实施,具有替代传统活检的潜质,但是目前关于MRI联合ctDNA评估直肠癌新辅助治疗疗效的原始研究数量有限,将两者联合用于诊断肿瘤pCR是非常有前景的。

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
1
LiuZ, ZhangXY, ShiYJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Clin Cancer Res, 2017, 23(23): 7253-7262. DOI:10.1158/1078-0432.CCR-17-1038.
2
van de VeldeCJ, BoelensPG, BorrasJM, et al. Eurecca colorectal: Multidisciplinary management: European consensus conference colon & rectum[J]. Eur J Cancer, 2014, 50(1): 1-34. DOI:10.1016/j.ejca.2013.06.048.
3
FujitaS, MizusawaJ, KanemitsuY, et al. Mesorectal excision with or without lateral lymph node dissection for clinical stage II/III lower rectal cancer (Jcog0212): A multicenter, randomized controlled, noninferiority trial[J]. Ann Surg, 2017, 266(2): 201-207. DOI:10.1097/SLA.0000000000002212.
4
RyanJE, WarrierSK, LynchAC, et al. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A systematic review[J]. Colorectal Dis, 2016, 18(3): 234-246. DOI:10.1111/codi.13207.
5
CortazarP, ZhangL, UntchM, et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis[J]. Lancet, 2014, 384(9938): 164-172. DOI:10.1016/S0140-6736(13)62422-8.
6
MaasM, NelemansPJ, ValentiniV, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: A pooled analysis of individual patient data[J]. Lancet Oncol, 2010, 11(9): 835-844. DOI:10.1016/S1470-2045(10)70172-8.
7
Sao JuliaoGP, Habr-GamaA, VailatiBB, et al. New strategies in rectal cancer[J]. Surg Clin North Am, 2017, 97(3): 587-604. DOI:10.1016/j.suc.2017.01.008.
8
RenehanAG, MalcomsonL, EmsleyR, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the Oncore Project): A propensity-score matched cohort analysis[J]. Lancet Oncol, 2016, 17(2): 174-183. DOI:10.1016/S1470-2045(15)00467-2.
9
LiuS, ZhongGX, ZhouWX, et al. Can endorectal ultrasound, MRI, and mucosa integrity accurately predict the complete response for mid-Low rectal cancer after preoperative chemoradiation? A prospective observational study from a single medical center[J]. Dis Colon Rectum, 2018, 61(8): 903-910. DOI:10.1097/DCR.0000000000001135.
10
Beets-TanRGH, LambregtsDMJ, MaasM, et al. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European society of gastrointestinal and abdominal radiology (ESGAR) consensus meeting[J]. Eur Radiol, 2018, 28(4): 1465-1475. DOI:10.1007/s00330-017-5026-2.
11
KSAR study group for rectal cancer. Essential items for structured reporting of rectal cancer MRI: 2016 consensus recommendation from the Korean society of abdominal radiology[J]. Korean J Radiol, 2017, 18(1): 132-151. DOI:10.3348/kjr.2017.18.1.132.
12
JhaveriKS, Hosseini-NikH. MRI of rectal cancer: An overview and update on recent advances[J]. AJR Am J Roentgenol, 2015, 205(1): W42-55. DOI:10.2214/AJR.14.14201.
13
NahasSC, Rizkallah NahasCS, Sparapan MarquesCF, et al. Pathologic complete response in rectal cancer: Can we detect it? lessons learned from a proposed randomized trial of watch-and-wait treatment of rectal cancer[J]. Dis Colon Rectum, 2016, 59(4): 255-263. DOI:10.1097/DCR.0000000000000558.
14
KimS, HanK, SeoN, et al. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2018, 28(12): 5231-5240. DOI:10.1007/s00330-018-5520-1.
15
ShihabOC, TaylorF, SalernoG, et al. MRI predictive factors for long-term outcomes of low rectal tumours[J]. Ann Surg Oncol, 2011, 18(12): 3278-3284. DOI:10.1245/s10434-011-1776-2.
16
JangJK, ChoiSH, ParkSH, et al. MR tumor regression grade for pathological complete response in rectal cancer post neoadjuvant chemoradiotherapy: A systematic review and meta-analysis for accuracy[J]. Eur Radiol, 2020, 30(4): 2312-2323. DOI:10.1007/s00330-019-06565-2.
17
BhodayJ, SmithF, SiddiquiMR, et al. Magnetic resonance tumor regression grade and residual mucosal abnormality as predictors for pathological complete response in rectal cancer postneoadjuvant chemoradiotherapy[J]. Dis Colon Rectum, 2016, 59(10): 925-933. DOI:10.1097/DCR.0000000000000667.
18
BarralM, EvenoC, HoeffelC, et al. Diffusion-weighted magnetic resonance imaging in colorectal cancer[J]. J Visc Surg, 2016, 153(5): 361-369. DOI:10.1016/j.jviscsurg.2016.08.004.
19
ChandramohanA, SiddiqiUM, MittalR, et al. Diffusion weighted imaging improves diagnostic ability of MRI for determining complete response to neoadjuvant therapy in locally advanced rectal cancer[J]. Eur J Radiol Open, 2020, 7: 100223. DOI:10.1016/j.ejro.2020.100223.
20
LambregtsDMJ, Delli PizziA, LahayeMJ, et al. A pattern-based approach combining tumor morphology on MRI with distinct signal patterns on diffusion-weighted imaging to assess response of rectal tumors after chemoradiotherapy[J]. Dis Colon Rectum, 2018, 61(3): 328-337. DOI:10.1097/DCR.0000000000000915.
21
YangL, QiuM, XiaC, et al. Value of high-resolution DWI in combination with texture analysis for the evaluation of tumor response after preoperative chemoradiotherapy for locally advanced rectal cancer[J]. AJR Am J Roentgenol, 2019 Mar 12, 1-8. DOI:10.2214/AJR.18.20689. Online ahead of print.
22
De FeliceF, MagnanteAL, MusioD, et al. Diffusion-weighted magnetic resonance imaging in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy[J]. Eur J Surg Oncol, 2017, 43(7): 1324-1329. DOI:10.1016/j.ejso.2017.03.010.
23
PhamTT, LineyGP, WongK, et al. Functional MRI for quantitative treatment response prediction in locally advanced rectal cancer[J]. Br J Radiol, 2017, 90(1072): 20151078. DOI:10.1259/bjr.20151078.
24
Delli PizziA, CianciR, GenovesiD, et al. Performance of diffusion-weighted magnetic resonance imaging at 3.0 T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy[J]. Abdom Radiol (NY), 2018, 43(9): 2221-2230. DOI:10.1007/s00261-018-1457-8.
25
JensenJH, HelpernJA, RamaniA, et al. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI:10.1002/mrm.20508.
26
YuJ, XuQ, SongJC, et al. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Eur Radiol, 2017, 27(5): 1848-1857. DOI:10.1007/s00330-016-4529-6.
27
程鑫涛, 崔艳芬, 杨晓棠. 弥散峰度成像对局部进展期直肠癌新辅助放化疗疗效的评估价值[J]. 中华解剖与临床杂志, 2019, 24(6): 531-536. DOI:10.3760/cma.j.issn.2095-7041.2019.06.003.
ChengXT, CuiYF, YangXT. Value of diffusion kurtosis imaging in predicting and assessing response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Chin J Anat Clin, 2019, 24(6): 531-536. DOI:10.3760/cma.j.issn.2095-7041.2019.06.003.
28
HuF, TangW, SunY, et al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: A comparison with conventional diffusion- weighted imaging[J]. Oncotarget, 2017, 8(43): 75597-75606. DOI:10.18632/oncotarget.17491.
29
王莉莉, 李生虎, 黄刚, . 基于磁共振扩散峰度成像直肠癌生物学特征研究[J]. 磁共振成像, 2020, 11(1): 35-39. DOI:10.12015/issn.1674-8034.2020.01.008.
WangLL, LiSH, HuangG. Study on biological characteristics of rectal cancer based on magnetic resonance diffusion kurtosis imaging[J]. Chin J Magn Reson Imaging, 2020, 11(1): 35-39. DOI:10.12015/issn.1674-8034.2020.01.008.
30
DijkhoffRAP, Beets-TanRGH, LambregtsDMJ, et al. Value of DCE-MRI for staging and response evaluation in rectal cancer: A systematic review[J]. Eur J Radiol, 2017, 95: 155-168. DOI:10.1016/j.ejrad.2017.08.009.
31
周志鹏, 汤日杰, 谭小军, . 直肠癌微血管生成与MR动态增强成像相关性研究[J]. 医学影像学杂志, 2017, 27(10): 1953-1957.
ZhouZP, TangRJ, TanXJ, et al. Correlation between dynamic contrast-enhanced MRI and tumor angiogenesis in rectal cancer[J]. J Med Imaging, 2017, 27(10): 1953-1957.
32
PetrilloA, FuscoR, PetrilloM, et al. DCE-MRI time-intensity curve visual inspection to assess pathological response after neoadjuvant therapy in locally advanced rectal cancer[J]. Jpn J Radiol, 2018, 36(10): 611-621. DOI:10.1007/s11604-018-0760-1.
33
GollubMJ, BlazicI, FelderS, et al. Value of adding dynamic contrast-enhanced MRI visual assessment to conventional MRI and clinical assessment in the diagnosis of complete tumour response to chemoradiotherapy for rectal cancer[J]. Eur Radiol, 2019, 29(3): 1104-1113. DOI:10.1007/s00330-018-5719-1.
34
童彤, 孙轶群, 蔡三军, . 动态对比增强MRI预测局部进展期直肠癌新辅助放化疗疗效的价值[J]. 中华放射学杂志, 2015, 49(6): 414-418. DOI:10.3760/cma.j.issn.1005-1201.2015.06.005.
TongT, SunYQ, CaiSJ, et al. Value of dynamic contrast-enhanced MRI in predicting response to neoadjuvant chemoradiation in locally advanced rectal cancer[J]. Chin J Radiol, 2015, 49(6): 414-418. DOI:10.3760/cma.j.issn.1005-1201.2015.06.005.
35
YiX, PeiQ, ZhangY, et al. MRI-based radiomics predicts tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer[J]. Front Oncol, 2019, 9: 552. DOI:10.3389/fonc.2019.00552.
36
AkerM, GaneshanB, AfaqA, et al. Magnetic resonance texture analysis in identifying complete pathological response to neoadjuvant treatment in locally advanced rectal cancer[J]. Dis Colon Rectum, 2019, 62(2): 163-170. DOI:10.1097/DCR.0000000000001224.
37
BulensP, CouwenbergA, IntvenM, et al. Predicting the tumor response to chemoradiotherapy for rectal cancer: Model development and external validation using MRI radiomics[J]. Radiother Oncol, 2020, 142: 246-252. DOI:10.1016/j.radonc.2019.07.033.
38
舒震宇, 方松华, 丁忠祥, . 磁共振纹理分析技术在预测直肠癌新辅助放化疗疗效中的应用价值[J]. 中华胃肠外科杂志, 2018, 21(9): 1051-1058. DOI:10.3760/cma.j.issn.1671-0274.2018.06.014.
ShuZY, FangSH, DingZX, et al. Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer[J]. Chin J of Gastroint Surg, 2018, 21(9): 1051-1058. DOI:10.3760/cma.j.issn.1671-0274.2018.06.014.
39
YooGS, ParkHC, YuJI, et al. Carcinoembryonic antigen improves the performance of magnetic resonance imaging in the prediction of pathologic response after neoadjuvant chemoradiation for patients with rectal cancer[J]. Cancer Res Treat, 2020, 52(2): 446-454. DOI:10.4143/crt.2019.261.
40
ReeceM, SalujaH, HollingtonP, et al. The use of circulating tumor DNA to monitor and predict response to treatment in colorectal cancer[J]. Front Genet, 2019, 10: 1118. DOI:10.3389/fgene.2019.01118.
41
姬晓勇. ctDNA在结直肠癌诊断中的应用研究[D]. 广州: 华南理工大学, 2017.
JiXY. ct DNA in the diagnosis of colorectal cancer[D]. Guangzhou: South China University of Technology, 2017.
42
DossaF, ChesneyTR, AcunaSA, et al. A watch-and-wait approach for locally advanced rectal cancer after a clinical complete response following neoadjuvant chemoradiation: A systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2017, 2(7): 501-513. DOI:10.1016/S2468-1253(17)30074-2.
43
ChoMS, KimH, HanYD, et al. Endoscopy and magnetic resonance imaging-based prediction of ypT stage in patients with rectal cancer who received chemoradiotherapy: Results from a prospective study of 110 patients[J]. Medicine (Baltimore), 2019, 98(35): e16614. DOI:10.1097/MD.0000000000016614.
44
AibaT, UeharaK, NihashiT, et al. MRI and FDG-PET for assessment of response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. Ann Surg Oncol, 2014, 21(6): 1801-1808. DOI:10.1245/s10434-014-3538-4.
45
IppolitoD, FiorD, TratteneroC, et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer[J]. World J Radiol, 2015, 7(12): 509-520. DOI:10.4329/wjr.v7.i12.509.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词