综述
磁共振成像技术在强迫症重复经颅磁刺激效果评估中的价值研究进展
磁共振成像, 2021,12(10) : 82-84. DOI: 10.12015/issn.1674-8034.2021.10.021
摘要

目前,针对强迫症的常用治疗方法包括药物治疗、心理治疗和外科手术治疗等,但效果欠佳,仍有一部分患者在治疗后出现强迫症状。重复经颅磁刺激作为一种新兴的无创治疗手段,通过改变脉冲的频率,利用电磁场来调节大脑皮层的活动,从而改善强迫症患者的症状。但在刺激靶点的选择、参数设置等方面尚需进一步深入探讨。本文对重复经颅磁刺激治疗强迫症方面的研究进展进行综述,总结刺激不同靶点产生的临床疗效以及磁共振成像技术在强迫症经重复颅磁刺激治疗效果评估中的价值。

引用本文: 刘肖肖, 杨克硕, 白岩, 等.  磁共振成像技术在强迫症重复经颅磁刺激效果评估中的价值研究进展 [J] . 磁共振成像, 2021, 12(10) : 82-84. DOI: 10.12015/issn.1674-8034.2021.10.021.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。

强迫症(obsessive-compulsive disorder,OCD)是一种以强迫思维和强迫行为为主要临床表现的疾病。通常从四个方面来反映OCD的症状类型:对称的强迫想法和重复、顺序和计数强迫行为;污染和清洗;好斗、性和宗教的强迫想法和检查的强迫行为;囤积的强迫想法和强迫行为。目前常用的OCD治疗方法包括选择性5-羟色胺再摄取抑制剂[1]等药物治疗、认知行为疗法[2]、深部脑刺激(deep brain stimulation,DBS)以及神经外科消融手术等,但部分患者容易对药物治疗产生耐药性,或者经过认知行为治疗后仍持续出现OCD症状,而DBS和神经手术均为有创治疗方法。重复经颅磁刺激[3](transcranial magnetic stimulation,rTMS)是一种新兴的无创治疗手段,能够有效改善OCD患者的症状。功能磁共振成像(functional magnetic resonance imaging,fMRI)是一类能够显示脑功能改变区域性、时变变化的成像方法[4],这些脑功能的变化可能是由任务诱发的认知状态变化或休息时大脑中不受调节的过程造成的结果。fMRI越来越多地被用作疾病的生物标记物,用于监测治疗,或用于研究药物疗效。但是有时候会由于任务设计的不同及被检者执行情况的差异性导致实验的不可比性,静息态功能连接磁共振成像(functional connectivity magnetic resonance imaging, FCMRI)[5]是静息状态应用血氧水平依赖脑功能成像获得脑活动功能图的成像技术,可以很好地避免此种现象的发生。本文重点阐述了fMRI技术在OCD经重复颅磁刺激治疗效果评估中的价值以及在磁共振成像和神经导航技术引导下对不同的治疗靶点的精准定位。

1 rTMS基本技术原理

目前,rTMS作为一种新兴的无创治疗手段,已被广泛应用于OCD、抑郁症等精神疾病的治疗[6]。rTMS的主要作用原理是通过改变脉冲的频率,利用电磁场来调节大脑皮层的活动。高强度电流通过放置在头皮上的磁线圈产生脉冲磁场,该磁场从头皮表面穿透颅骨约2 cm到达相关组织,其神经生物学效果取决于磁场的参数。深度TMS (dTMS)与标准rTMS相比,穿透深度可达3~5 cm[7],通常使用H线圈或通过双锥配置[8]。根据刺激频率的不同,一般分为低频重复性经颅磁刺激(low frequency repetitive transcranial magnetic stimulation, LF-rTMS)和高频重复性经颅磁刺激(high frequency repetitive transcranial magnetic stimulation, HF-rTMS)。刺激频率≤1 Hz为LF-rTMS,通常被认为产生抑制作用。刺激频率≥5 Hz为HF-rTMS,相关症状的脑机制尚未完全明确。因此,rTMS可以通过对靶点施加不同的频率来改变原有的脑活动,从而达到治疗的目的。fMRI技术可以对比显示脑功能区域的异常以及治疗前、后脑功能区域的改变,从而有利于进一步探索OCD的脑机制以及评价rTMS[9]

2 磁共振成像技术在rTMS治疗OCD的脑机制及疗效评估方面的价值

rTMS治疗能够有效改善OCD相估rTMS的疗效。前期研究结果表明,强迫症不仅仅是某个大脑区域的障碍,而且还涉及整个大脑网络的障碍。皮质-纹状体-丘脑-皮质(cortex-striatum-thalamus-cortex,CSTC)环路的功能和结构异常是导致OCD的重要发病机制[10],该环路涉及背外侧前额叶皮层(dorsolateral prefrontal cortex,DLPFC)、眶额皮层(orbital frontal cortex,OFC)、辅助运动区(supplementary motor area,SMA)、前扣带回(anterior cingulate cortex,ACC)、内侧前额叶(medial prefrontal cortex,mPFC)、尾状核、壳核、苍白球、丘脑及基底神经节等多个脑区[11]。该环路存在两种通路,一个是直接或正反馈通路,从皮层产生谷氨酸能神经元投射到基底神经节,减少苍白球内部的抑制作用,从而增加丘脑-皮质驱动;另一个是间接或负反馈通路,通过三个抑制性突触和一个兴奋性突触从苍白球投射到丘脑,从而导致丘脑-皮质输出减少。反刍思想和重复行为的异常存在可能与CSTC环路的直接故障或直接和间接通路之间的不平衡有关[12, 13, 14]。静息态功能连接(resting state functional connectivity,rsFC)分析显示,在OCD患者中,SMA和壳核之间的rsFC增加,CSTC环路过度兴奋。此外,Sun等[15]以OCD小鼠为例,发现基底外侧杏仁核也参与强迫症的病理过程。来自基底外侧杏仁核的谷氨酸能神经元(BLAGlu)同时投射到内侧前额叶皮层谷氨酸神经元(mPFCGlu)和支配mPFCGlu的GABA (mPFCGABA)神经元上,同时,mPFCGlu神经元还接受其核团内部mPFCGABA神经元的抑制性纤维投射。经fMRI证实,强迫样检查行为的存在可能与OCD小鼠的BLA-mPFC功能连接性增加有关,通过抑制BLAGlu→mPFCGABA→Glu环路或者抑制mPFCGABA神经元活性均可以缓解模型小鼠的强迫检查行为。近年来也有研究发现,小脑与广泛的大脑皮层及皮层下结构相联系[16],信息可以从皮层经脑桥到达小脑,后经小脑齿状回流回大脑皮层,形成反馈环路,从而使小脑参与高级认知活动及情感过程。与此同时,结构及功能磁共振研究也发现OCD患者存在小脑结构及功能的异常[17,18]。且这些异常与OCD的认知功能改变及异常思维或行为的产生密切相关。上述研究结果表明,fMRI可以观察到不同脑区之间功能连接性的改变[19,20],rTMS可以通过直接影响受刺激的部位[21],或者间接影响相互连接的脑部深层结构[22],从而改变受刺激部位的活动性以及不同脑区之间的功能连接性,改善患者的OCD症状。

大多数的前期研究仅单单采用耶鲁布朗强迫症量表等来对rTMS治疗前后的疗效进行评价,但是该种评估方式往往带有主观因素的影响,因此可以通过量表与fMRI影像技术的结合来客观、准确评估rTMS的疗效[23, 24]。2020年Mantovani等[25]以SMA为靶点在治疗前、后分别对OCD患者进行结构和功能性MRI扫描以及量表评分来评估rTMS治疗效果。rsFC分析显示,OCD症状的严重程度与双侧SMA和皮层下区域之间更高的连接模式相关。研究结果表明,与基线相比,耶鲁-布朗强迫量表(Y-BOCS)总分下降,双侧SMA与基底节区、丘脑和小脑之间的rsFC减少。证实个性化的rTMS刺激SMA可显著改善OCD症状。Pedapati等[26]假设右背外侧前额叶皮层(rDLPFC)的rTMS刺激会比假rTMS刺激更大程度地抑制与OCD相关的CSTC回路中的活动。在经fMRI引导的rTMS治疗前、后进行fMRI扫描以及量表评分,以此来评估rTMS的疗效。但是结果与预测相反,真rTMS刺激组治疗前、后的血氧水平依赖性(blood oxygen level dependent,BOLD)响应没有发生变化,相反,假rTMS刺激组右下额回和右壳核的BOLD响应显著增加。由于治疗时间过短,Y-BOCS评分未发生变化。在调整了年龄,性别和扫描时间作为协变量之后,结果未发生改变。随着越来越多的人们对强迫症机制的研究,单一的模型已经不足以阐明强迫症的病理生理学,不同的OCD症状维度对应不同的潜在神经机制[27, 28, 29, 30],因此就需要人们根据强迫症患者表现的差异性针对不同的靶点进行个性化的治疗。

3 在磁共振成像和神经导航技术引导下对治疗靶点的精准定位

由于OFC所处头皮位置较深,普通的rTMS较难直接刺激到,所以对该部位的研究较少。前期的研究多以SMA[31, 32, 33, 34, 35]、DLPFC[36, 37, 38, 39, 40]、mPFC[41, 42, 43]为靶点进行研究,但是,由于人们对靶点定位的不准确,刺激同样的靶点,结果有时也可能存在差异。例如,以SMA为靶点,Lee等[32]采用LF-rTMS对患者进行治疗。在治疗的第4周,Y-BOCS得分显著降低。临床总体印象-总体改善在治疗的第二周和第四周也显示出显著变化,并且没有发现明显的不利影响。结果表明,在抗药性OCD患者中,LF-rTMS可能是一种有效且安全的辅助治疗方法。但是,同样的刺激靶点、刺激频率和刺激时间,Pelissolo等[34]得到的结果却是LF-rTMS对重症和药物难治性OCD患者无效。为了让研究结果更具说服力,近年来,不少研究者[42, 43]开始使用神经导航软件结合fMRI技术,即在治疗前对患者行常规MRI检查确定靶点的解剖学位置,同时作fMRI检查进行功能区定位,然后将fMRI信息叠加在MRI的解剖图像上,并登陆在立体定向神经导航仪上,即可对靶点进行精准定位,从而实现对OCD患者的精准治疗。

前期研究表明,rTMS作为一种安全、无创、新兴的治疗手段可有效改善患者的OCD症状,在临床上显现出较好的疗效。但是,依然需要对以下方面进行提升:在研究过程中排除药物对分析结果的影响;开展多中心、大样本量的研究,提高研究结果的可靠性;制定个体化的治疗方案,降低样本间的差异对结果带来的影响;采用多模态磁共振成像技术从多个角度反映更加丰富的信息,更好地评估rTMS治疗前、后的疗效;目前仍存在部分患者对rTMS治疗无反应,因此,在未来需对其他的刺激靶点开展大样本随机对照研究,将治疗设置规范化,将刺激区域细分化,探讨不同的OCD亚型与不同脑区间的关系。

志      谢
ACKNOWLEDGMENTS

National Key R&D Program of China (NO. 2017YFE0103600); National Natural Science Foundation of China (NO. 81720108021).

利益冲突
作者利益冲突声明:

全部作者均声明无利益冲突。

参考文献[References]
[1]
HirschtrittME, BlochMH, MathewsCA. Obsessive-Compulsive Disorder: Advances in Diagnosis and Treatment[J]. JAMA, 2017, 317(13): 1358-1367. DOI:10.1001/jama.2017.2200.
[2]
SauteraudA. Psychotherapy of obsessivecompulsive disorder[J]. Rev Prat, 2020, 70(7): 793-798.
[3]
MikellidesG, MichaelP, TanteleM. Repetitive transcranial magnetic stimulation: an innovative medical therapy[J]. Psychiatriki, 2021, 32(1): 67-74. DOI:10.22365/jpsych.2021.012.
[4]
BalderstonNL, VytalKE, O'ConnellK, et al. Anxiety Patients Show Reduced Working Memory Related dlPFC Activation During Safety and Threat[J]. Depress Anxiety, 2017, 34(1): 25-36. DOI:10.1002/da.22518.
[5]
DinisFC, VarsouO, StringerM, et al. Scanning Conditions in Functional Connectivity Magnetic Resonance Imaging: How to Standardise Resting-State for Optimal Data Acquisition and Visualisation?[J]. Adv Exp Med Biol, 2020, 1235: 35-52. DOI:10.1007/978-3-030-37639-0_3.
[6]
ChouYH, TonTV, SundmanM. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease[J]. Neurobiol Aging, 2020, 86: 1-10. DOI:10.1016/j.neurobiolaging.2019.08.020.
[7]
LusicicA, SchruersKR, PallantiS, et al. Transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder: current perspectives[J]. Neuropsychiatr Dis Treat, 2018, 14: 1721-1736. DOI:10.2147/NDT.S121140.
[8]
TendlerA, BarneaYN, RothY, et al. Deep transcranial magnetic stimulation (dTMS) -beyond depression[J]. Expert Rev Med Devices, 2016, 13(10): 987-1000. DOI:10.1080/17434440.2016.1233812.
[9]
ZhouDD, WangW, WangGM, et al. An updated meta-analysis: Short-term therapeutic effects of repeated transcranial magnetic stimulation in treating obsessive-compulsive disorder[J]. J Affect Disord, 2017, 215: 187-196.
[10]
SteinDJ, CostaD, LochnerC, et al. Obsessive-compulsive disorder[J]. Nat Rev Dis Primers, 2019, 5(1): 52. DOI:10.1038/s41572-019-0102-3.
[11]
LusicicA, SchruersKR, PallantiS, et al. Transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder: current perspectives[J]. Neuropsychiatr Dis Treat, 2018, 14: 1721-1736. DOI:10.2147/NDT.S121140.
[12]
GoncalvesOF, CarvalhoS, LeiteJ, et al. Obsessive Compulsive Disorder as a functional interhemispheric imbalance at the thalamic level[J]. Med Hypotheses, 2011, 77(3): 445-447. DOI:10.1016/j.mehy.2011.06.004.
[13]
MaiaTV, CooneyRE, PetersonBS. The neural bases of obsessive-compulsive disorder in children and adults[J]. Dev Psychopathol, 2008, 20(4): 1251-1283. DOI:10.1017/S0954579408000606.
[14]
RussoM, NaroA, MastroeniC, et al. Obsessive-compulsive disorder: a "sensory-motor" problem?[J]. Int J Psychophysiol, 2014, 92(2): 74-78.DOI:10.1016/j.ijpsycho.2014.02.007.
[15]
SunT, SongZ, TianY, et al. Basolateral amygdala input to the medial prefrontal cortex controls obsessive-compulsive disorder-like checking behavior[J]. Proc Natl Acad Sci U S A, 2019, 116(9): 3799-3804. DOI:10.1073/pnas.1814292116.
[16]
MurayamaK, TomiyamaH, TsurutaS, et al. Aberrant Resting-State Cerebellar-Cerebral Functional Connectivity in Unmedicated Patients With Obsessive-Compulsive Disorder[J]. Front Psychiatry, 2021, 12: 659616. DOI:10.3389/fpsyt.2021.659616.
[17]
EngGK, SimK, ChenSH. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review[J]. Neurosci Biobehav Rev, 2015, 52: 233-257. DOI:10.1016/j.neubiorev.2015.03.002.
[18]
HouJM, WuWJ, LinY, et al. Localization of cerebral functional deficits in patients with obsessive-compulsive disorder: a resting-state fMRI study[J]. J Affect Disord, 2012, 138(3): 313-321. DOI:10.1016/j.jad.2012.01.022.
[19]
NingLP, MakrisN, CamprodonJA, et al. Limits and reproducibility of resting-state functional MRI definition of DLPFC targets for neuromodulation[J]. Brain Stimul, 2019, 12(1): 129-138. DOI:10.1016/j.brs.2018.10.004.
[20]
ThorsenAL, HaglandP, RaduaJ, et al. Emotional Processing in Obsessive-Compulsive Disorder: A Systematic Review and Meta-analysis of 25 Functional Neuroimaging Studies[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3(6): 563-571. DOI:10.1016/j.bpsc.2018.01.009.
[21]
HegdeA, RaviM, VSS, et al. Repetitive Transcranial Magnetic Stimulation Over Presupplementary Motor Area May Not Be Helpful in Treatment-Refractory Obsessive-Compulsive Disorder: A Case Series[J]. J ECT, 2016, 32(2): 139-142. DOI:10.1097/YCT.0000000000000291.
[22]
StrafellaAP, PausT, BarrettJ, et al. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus[J]. J Neurosci, 2001, 21(15): C157.
[23]
BalderstonNL, RobertsC, BeydlerEM, et al. A generalized workflow for conducting electric field-optimized, fMRI-guided, transcranial magnetic stimulation[J]. Nat Protoc, 2020, 15(11): 3595-3614. DOI:10.1038/s41596-020-0387-4.
[24]
DavisSW, LuberB, MurphyD, et al. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function[J]. Hum Brain Mapp, 2017, 38(12): 5987-6004. DOI:10.1002/hbm.23803.
[25]
MantovaniA, NeriF, D'UrsoG, et al. Functional connectivity changes and symptoms improvement after personalized, double-daily dosing, repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: A pilot study[J]. J Psychiatr Res, 2020. DOI:10.1016/j.jpsychires.2020.10.030.
[26]
PedapatiE, DifrancescoM, WuS, et al. Neural correlates associated with symptom provocation in pediatric obsessive compulsive disorder after a single session of sham-controlled repetitive transcranial magnetic stimulation[J]. Psychiatry Res, 2015, 233(3): 466-473. DOI:10.1016/j.pscychresns.2015.07.020.
[27]
BrittonJC, StewartSE, KillgoreWD, et al. Amygdala activation in response to facial expressions in pediatric obsessive-compulsive disorder[J]. Depress Anxiety, 2010, 27(7): 643-651. DOI:10.1002/da.20718.
[28]
JungWH, KangDH, KimE, et al. Abnormal corticostriatal-limbic functional connectivity in obsessive-compulsive disorder during reward processing and resting-state[J]. Neuroimage Clin, 2013, 3: 27-38. DOI:10.1016/j.nicl.2013.06.013.
[29]
Mataix-ColsD, WoodersonS, LawrenceN, et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder[J]. Arch Gen Psychiatry, 2004, 61(6): 564-576. DOI:10.1001/archpsyc.61.6.564.
[30]
van den HeuvelOA, RemijnsePL, Mataix-ColsD, et al. The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems[J]. Brain, 2009, 132(Pt 4): 853-868. DOI:10.1093/brain/awn267.
[31]
HawkenER, DilkovD, KaludievE, et al. Transcranial Magnetic Stimulation of the Supplementary Motor Area in the Treatment of Obsessive-Compulsive Disorder: A Multi-Site Study[J]. Int J Mol Sci, 2016, 17(3): 420. DOI:10.3390/ijms17030420.
[32]
LeeYJ, KooBH, SeoWS, et al. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: An open-label pilot study[J]. J Clin Neurosci, 2017, 44: 264-268. DOI:10.1007/s00347-017-0508-9.
[33]
PallantiS, MarrasA, SalernoL, et al. Better than treated as usual: Transcranial magnetic stimulation augmentation in selective serotonin reuptake inhibitor-refractory obsessive-compulsive disorder, mini-review and pilot open-label trial[J]. J Psychopharmacol, 2016, 30(6): 568-578. DOI:10.1177/0269881116628427.
[34]
PelissoloA, Harika-GermaneauG, RachidF, et al. Repetitive Transcranial Magnetic Stimulation to Supplementary Motor Area in Refractory Obsessive-Compulsive Disorder Treatment: a Sham-Controlled Trial[J]. Int J Neuropsychopharmacol, 2016, 19(8). DOI:10.1093/ijnp/pyw025.
[35]
ArumughamSS, VsS, HnM, et al. Augmentation Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation Over Presupplementary Motor Area in Obsessive-Compulsive Disorder: A Randomized Controlled Trial[J]. J ECT, 2018, 34(4): 253-257. DOI:10.1097/YCT.0000000000000509.
[36]
GargH, KumarS, SinghS, et al. New Onset Obsessive Compulsive Disorder Following High Frequency Repetitive Transcranial Magnetic Stimulation over Left Dorsolateral Prefrontal Cortex for Treatment of Negative Symptoms in a Patient with Schizophrenia[J]. Clin Psychopharmacol Neurosci, 2019, 17(3): 443-445. DOI:10.9758/cpn.2019.17.3.443.
[37]
SeoHJ, JungYE, LimHK, et al. Adjunctive Low-frequency Repetitive Transcranial Magnetic Stimulation over the Right Dorsolateral Prefrontal Cortex in Patients with Treatment-resistant Obsessive-compulsive Disorder: A Randomized Controlled Trial[J]. Clin Psychopharmacol Neurosci, 2016, 14(2): 153-160. DOI:10.9758/cpn.2016.14.2.153.
[38]
GreenbergBD, GeorgeMS, MartinJD, et al. Effect of prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a preliminary study[J]. Am J Psychiatry, 1997, 154(6): 867-869. DOI:10.1176/ajp.154.6.867.
[39]
AlonsoP, PujolJ, CardonerN, et al. Right prefrontal repetitive transcranial magnetic stimulation in obsessive-compulsive disorder: a double-blind, placebo-controlled study[J]. Am J Psychiatry, 2001, 158(7): 1143-1145. DOI:10.1176/appi.ajp.158.7.1143.
[40]
SachdevPS, LooCK, MitchellPB, et al. Repetitive transcranial magnetic stimulation for the treatment of obsessive compulsive disorder: a double-blind controlled investigation[J]. Psychol Med, 2007, 37(11): 1645-1649. DOI:10.1017/S0033291707001092.
[41]
CarmiL, TendlerA, BystritskyA, et al. Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial[J]. Am J Psychiatry, 2019, 176(11): 931-938. DOI:10.1176/appi.ajp.2019.18101180.
[42]
ModirroustaM, ShamsE, KatzC, et al. The efficacy of deep repetitive transcranial magnetic stimulation over the medial prefrontal cortex in obsessive compulsive disorder: results from an open-label study[J]. Depress Anxiety, 2015, 32(6): 445-450. DOI:10.1002/da.22363.
[43]
WilliamsNR, SudheimerKD, ColeEJ, et al. Accelerated neuromodulation therapy for Obsessive-Compulsive Disorder[J]. Brain Stimul, 2021, 14(2): 435-437. DOI:10.1016/j.brs.2021.02.013.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词