综述
儿童孤独症的神经影像学研究进展
磁共振成像, 2021,12(11) : 105-108. DOI: 10.12015/issn.1674-8034.2021.11.026
摘要

孤独症谱系障碍(autism spectrum disorder,ASD)是幼儿时期的广泛神经发育障碍性疾病,其发病率逐年上升且致患儿终生精神残疾、生活不能自理,给社会和家庭带来沉重压力。在患儿发病早期采取有效的检查手段诊断并行干预治疗,对改善预后意义重大,但仅依靠临床症状和医生经验对早期不典型患儿的诊断十分困难。神经影像学通过评估ASD患儿脑结构形态和功能、脑白质纤维束连接以及脑组织代谢等神经病理学改变,有助于临床ASD的早期诊断,为临床干预治疗提供依据。作者就儿童孤独症的神经影像学研究进展进行综述。

引用本文: 胡爽, 李红, 张雅清, 等.  儿童孤独症的神经影像学研究进展 [J] . 磁共振成像, 2021, 12(11) : 105-108. DOI: 10.12015/issn.1674-8034.2021.11.026.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频
以下内容版权所有,任何个人和机构未经授权不得转载、复制和发布,违者必究。

孤独症谱系障碍(autism spectrum disorder,ASD)是幼儿时期一种异质的神经发育障碍性疾病[1],核心症状主要为语言及社会交往障碍、参与度和沟通度降低以及活动受限的重复刻板行为[2, 3],其高发病率及高致残率成为全球重大公共卫生健康问题[4, 5, 6]。研究证实ASD患儿早期神经结构具有可塑性,及早诊断并行有效的干预治疗对患儿的预后具有深远的影响。神经影像学技术因其在探索大脑结构和功能方面具有独特的优势,被广大学者用于ASD诊断中,通过评估脑结构形态、脑白质纤维束的完整性、物质代谢等方面来显示ASD病理生理学的改变,为临床对ASD的早期诊断提供了更可靠、更客观的依据。笔者就儿童孤独症的神经影像学研究进展进行综述。

1 ASD概述

ASD的病因复杂,发病机制尚不完全明确,其可能的假说涵盖遗传学、代谢组学、免疫学、神经生物学等多方面,有研究表明遗传和环境因素共同作用[7]影响大脑神经发育,导致神经元连接不足。研究证实CYFIP1基因的缺失与ASD患者的脑功能和结构连接障碍息息相关[8]。陈永红等[9]认为结构连接和功能连接的神经环路异常导致ASD临床核心症状的重复行为增加及社交行为障碍,推测神经环路异常可能与ASD发病机制相关。这些研究结果有助于理解ASD的发病机制,更好地认识疾病并为临床诊断及早期干预治疗提供可行的方案。

2 临床评估ASD的手段

临床对ASD的诊断主要依靠患儿的行为表现和症状分析,评估ASD儿童行为特征的方法是基于各种量表工具以及对影响因素复杂性的定性分析,临床应用较广泛的筛查量表主要包括孤独症行为检查量表、儿童孤独症评定量表以及儿童孤独症量表;诊断量表包括孤独症诊断观察量表诊断量表和孤独症诊断访谈问卷修订版[10]。这些量表在一定程度上提高ASD的阳性诊断率,但因其主要依赖于临床症状的观察和医生的临床经验,存在一定的主观性,缺乏客观的神经解剖学及功能方面的依据。神经影像学技术可减少主观影响因素,以更客观的影像学证据提高ASD的诊断符合率。

3 神经影像学评估ASD

近年来神经影像学飞速发展,结构磁共振成像(structural magnetic resonance imaging,sMRI)、扩散张量成像(diffusion tensor imaging,DTI)、磁共振波谱成像(magnetic resonance spectroscopy,MRS)、血氧水平依赖功能磁共振成像(blood oxygenation level dependent-functional magnetic resonance imaging,BOLD-fMRI)及功能性近红外光谱(functional near-infrared spectroscopy,fNIRS)技术的应用,能够安全无创、客观地检测ASD患儿脑结构和功能的改变,对临床ASD诊断有十分广泛的应用前景。神经影像学研究表明,孤独症患儿存在脑结构和功能异常,包括脑体积异常、脑白质纤维束连接异常、脑组织代谢物质紊乱等神经病理学变化。

3.1 sMRI

sMRI采集高分辨率的3D T1图像,通过后处理技术对脑体积测量、脑表面皱褶等进行研究。常用分析方法包括基于体素的形态学分析和基于表层的形态学分析[11]

基于体素的形态学分析可反映孤独症患儿脑体积的变化,ASD儿童的神经生长轨迹存在早期差异,他们的大脑似乎比正常发育大脑增长得更快,脑体积增加约10%[12]。储康康等[13]通过纵向对比分析发现ASD患儿额叶和颞叶的脑白质体积增大,而这些脑区主要与社交情感、语言表达等相关,推测这些区域的变化可能是ASD儿童社交和认知障碍的潜在病理基础[14]。一项Meta分析提出,ASD患儿中央后回和颞上回等多个脑区灰质体积增大,且灰质体积的变化与患者的平均智商显著相关,推测这些变化可能是导致ASD患儿智力低下因素[15]

基于表层的形态学分析主要反映微结构的改变,例如脑表面皱褶程度、皮层厚度等。Kohli等[16]研究发现,ASD患儿某些皮质区域的皮层折叠数量趋向于升高,但随着年龄的增长逐渐减少,这可能与ASD患儿早期脑过度发育所致。研究发现ASD患儿的纹状体、额叶皮层和颞叶皮层等情感与认知相关脑区的皮层较正常儿童增厚[17, 18],提示脑皮质的增厚或许与ASD的发生有一定的关系。综上所述,sMRI主要通过脑体积和脑表面皱褶细微结构改变观察ASD患儿脑结构的变化,进而辅助临床诊断ASD。

3.2 DTI

DTI技术是目前唯一能够无创性在活体内定量评估脑白质纤维束的完整性和方向性的检测方法,对生物组织内水分子的扩散十分敏感,能够直观地显示脑白质纤维束的宏观和微观结构以及白质纤维束的传导通路及其发育变化情况[11,19],是当前研究大脑白质结构性连接的最为有效的方法之一。

Steinbrink等[20]首次对ASD儿童行DTI研究发现ASD组腹侧前额叶皮层附近、扣带回前部以及颞顶交界处的白质中部分各向异性(fractional anisotropy,FA)降低,在双侧靠近杏仁核的颞叶、胼胝体和双侧邻近颞上沟附近也可见FA降低的其他簇。近年来许多学者[21, 22, 23, 24]的研究也发现ASD患儿脑白质FA降低,包括弓状束、扣带束、上纵束、内囊和胼胝体压部等,推测ASD相关神经通路的髓鞘和轴突体积较小及密度降低,导致轴突完整性缺陷和髓磷脂存在受限,进而引起ASD患儿相应临床症状的出现,众多研究结果提示白质结构在ASD患儿发育中似乎特别受影响,表现出髓鞘形成减少,FA值降低,这都表明ASD有一种独特的神经发育模式,并且这种潜在的结构差异可能影响学习和社交沟通能力。DTI通过评估脑白质纤维束的完整性及相关参数变化,可观察纤维束是否损伤及损伤程度,或可为ASD的诊断提供新的见解。

3.3 MRS

MRS利用磁共振现象和化学位移作用,以非侵入性技术测量活体脑组织内特定神经化学产物的稳态浓度及其代谢活性,间接反映脑功能状态。目前应用最广泛的是1H-MRS成像,其主要检测的代谢产物包括N-乙酰天冬氨酸(N-acetyl aspartate,NAA)、谷氨酸(glutamate,Glu)、γ-氨基酸(gamma-aminobutyric acid,GABA)等。NAA仅存在中枢神经系统的神经元中,是衡量神经密度、完整性及灵敏度的指标,NAA浓度的降低提示中枢神经元结构的完整性及功能的损伤[11]。有学者[25]发现ASD患者丘脑、扣带回前部区域的NAA浓度降低,且NAA浓度越低,核心症状越严重,推测神经元的损伤可能与ASD的临床症状相关。而Glu、GABA分别是中枢神经系统重要的抑制性和兴奋性神经递质,Puts等[26]研究发现ASD患儿感觉运动区GABA水平降低,并认为这可能是ASD患儿触觉功能改变的基础。而Umesawa等[27]发现ASD患者较对照组患者有更严重的感觉超反应性,ASD患者左侧辅助运动区和左侧腹侧前运动皮层的GABA浓度降低,与感觉超反应的严重程度呈负相关,表明高阶运动区抑制性神经传递GABA减少可能是ASD感觉超反应的基础。另有学者[28]发现ASD儿童双侧视皮层中的GABA浓度与更有效的视觉搜索能力相关,GABA值降低会导致ASD患儿社交障碍症状加重。他们还发现在右颞顶叶交界处的GABA、Glu、GABA/Glu均减少,提示关键网络中枢的神经元功能受损。MRS通过分析中枢神经系统代谢产物含量的变化来反映脑组织损伤程度,在探测ASD患儿神经元发育及损伤情况具有独特的优势。

3.4 BOLD-fMRI

BOLD-fMRI是最基本的功能磁共振成像技术,其原理是脑组织在执行任务时,相应脑功能区神经元被激活,组织血流量和耗氧量增多,氧合血红蛋白/脱氧血红蛋白比值变化,其T2缩短效应减弱,在加权像上表现为信号增强,形成BOLD-fMRI信号。BOLD-fMRI包括静息态及任务态,在ASD患儿的诊疗中研究较多的是静息态,主要通过患儿脑功能连接情况反映相关脑功能的变化。大量研究显示ASD患儿的神经活动存在异常,他们在认知、语言等区域的脑功能连接较正常儿童减少[29, 30, 31, 32, 33]。在一项基于局部一致性(regionalhomogeneity,ReHo)的研究中,学者发现ASD患儿存在多个脑区的自发活动改变,特别是ASD的视觉和语言相关区域的改变[30]。Chen等[31]发现ASD默认网络的影像学标志物与社会反应度的原始评分和模型因子呈负相关。Borras-Ferris等[32]发现ASD儿童默认网络区域之间的低连接性,并且左侧颞中回与右侧颞极之间、左侧眶额前额皮质与右侧额上回之间的脑功能连接降低程度往往与患者社交沟通能力呈正相关。Kim等[33]研究ASD患儿对日常用语的理解能力时发现,患儿右侧额下回的脑激活程度较对照组明显减少,提示语言功能相关的额叶受损。最近一项研究发现杏仁核-背侧前扣带回/内侧前额叶皮层连通性降低与ASD社交障碍严重程度相关,而杏仁核纹状体连接与ASD个体的限制性、重复性行为症状严重程度相关[34]。由上可知,BOLD-fMRI可发现ASD患儿脑功能连接中的异常,推测相关区域之间的低连接性与ASD的发病有关。

3.5 fNIRS

fNIRS是一种新兴的非侵入性脑功能神经影像学技术,通过向特定脑功能区照射近红外光(650~950 nm),利用近红外光窗口内生物组织的相对透明度,以神经元激活后局部血氧浓度的变化观察神经活动,进而探测大脑功能[35, 36]。fNIRS具有设备便携、可移动的优点,可在更自然的环境中研究大脑活动,这意味着fNISR可以更准确地探索ASD的社交沟通障碍[37]。Mazzoni等[37]发现与对照组相比,ASD儿童具有更高的半球间连通性,两侧血流动力学活动有0.02 Hz的波动。有学者[38]发现ASD儿童在额中下回及颞上中回皮质激活与ASD严重程度相关,与对照组儿童显示双侧对称激活不同,ASD的儿童在额中下回显示出更多的左侧激活,在颞上中回显示右侧化激活。此外,左额中下回较低的激活和更严重的重复的行为相关联。另有学者[39]发现右半球的血流动力学信号在ASD和正常儿童之间的差异性比左半球更高。Haweel等[40]也发现ASD幼儿的血氧饱和水平检测信号呈偏侧化,在左侧前侧的颞上叶皮层出现低活化,并且这种异常偏侧性随着年龄的增长而增加。fNIRS可探测神经活动引起的局部脑血流变化评估大脑活动状态,因其具有便携和较低的环境要求,在婴幼儿ASD中的应用十分广泛。

4 总结与展望

ASD是一种复杂的神经发育障碍性疾病,其病因及发病机制至今尚不明确,对它的研究也一直是热点及难点。目前广大学者公认早期对ASD患者行干预治疗对他们的预后具有十分重大的意义,临床亟待各种更加有效的方法对ASD患者进行早期诊断。目前,神经影像学在反映ASD神经病理学改变的研究中取得较好的成果,但与临床症状、基因学的相关性研究仍有不足,单纯的神经影像学表现作为诊断ASD的依据尚不能令人信服。未来需要影像组学、基因组学以及人工智能从宏观、微观水平为临床ASD的诊断提供更可靠、更客观的依据。

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
PayabvashS, PalaciosEM, OwenJP, et al. White matter connectome edge density in children with autism spectrum disorders: potential imaging biomarkers using machine-learning models[J]. Brain Connect, 2019, 9(2): 209-220. DOI:10.1089/brain.2018.0658.
[2]
HymanSL, LevySE, MyersSM. Council on children with disabilities, section on developmental and behavioral pediatrics. identification, evaluation, and management of children with autism spectrum disorder[J]. Pediatrics, 2020, 145(1): e20193447. DOI:10.1542/peds.2019-3447.
[3]
YamasueH, DomesG. Oxytocin and autism spectrum disorders[J]. Curr Top Behav Neurosci, 2018, 35: 449-465. DOI:10.1007/7854_2017_24.
[4]
刘贤, 林穗方, 陈文雄, . 中国儿童孤独症谱系障碍患病率Meta分析[J]. 中国儿童保健杂志, 2018, 26(4): 402-406. DOI:10.11852/zgetbjzz2018-26-04-15.
LiuX, LinSF, ChenWX, et al. A Meta-analysis of the prevalence of autism spectrum disorders in Chinese children[J]. Chin J Child Health Care, 2018, 26(4): 402-406. DOI:10.11852/zgetbjzz2018-26-04-15.
[5]
MaennerMJ, ShawKA, BaioJ, et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016[J]. MMWR Surveill Summ, 2020, 69(4): 1-12. DOI:10.15585/mmwr.ss6904a1.
[6]
SunX, AllisonC, WeiLP, et al. Autism prevalence in China is comparable to western prevalence[J]. Mol Autism, 2019, 10: 7. DOI:10.1186/s13229-018-0246-0.
[7]
SaxenaR, BabadiM, NamvarhaghighiH, et al. Role of environmental factors and epigenetics in autism spectrum disorders[J]. Prog Mol Biol Transl Sci, 2020, 173: 35-60. DOI:10.1016/bs.pmbts.2020.05.002.
[8]
EllegoodJ. Is there a hemispheric disconnect in neurodevelopmental disorders?[J]. Trends Neurosci, 2019, 42(12): 843-844. DOI:10.1016/j.tins.2019.10.005.
[9]
陈永红, 杨烨, 蔚洪恩. 孤独症谱系障碍的神经环路机制[J]. 中华行为医学与脑科学杂志, 2020, 29(12), 1148-1152. DOI:10.3760/cma.j.cn371468-20200706-01536.
ChenYH, YangY, WeiHE. The neural circuitry mechanism of autism spectrum disorder[J]. Chin J Behav Med Brain Sci, 2020, 29(12): 1148-1152. DOI:10.3760/cma.j.cn371468-20200706-01536.
[10]
金映彤, 陈苏琴, 包韵歆, . 儿童孤独症谱系障碍评估工具的研究进展[J]. 护理实践与研究, 2021, 18(9): 1325-1329. DOI:10.3969/j.issn.1672-9676.2021.09.016.
JinYT, ChenSQ, BaoYX, et al. Research progress of assessment tools for children with autism spectrum disorders[J]. Nursing Practice and Res, 2021, 18(9), 1325-1329. DOI:10.3969/j.issn.1672-9676.2021.09.016.
[11]
吴晨青. 孤独症谱系障碍的MRI研究进展[J]. 国际医学放射学杂志, 2019, 42(6): 664-667. DOI:10.19300/j.2019.Z7121.
WuCQ. Advances in MRI studies of autism spectrum disorders[J]. Int J Med Radiol, 2019, 42(6): 664-667. DOI:10.19300/j.2019.Z7121.
[12]
CoburnKL, WilliamsDL. Development of neural structure and function in autism spectrum disorder: potential implications for learning language[J]. Am J Speech Lang Pathol, 2020, 29(4): 1783-1797. DOI:10.1044/2020_AJSLP-19-00209.
[13]
储康康, 祝敬溪, 肖婷, . 2~3岁孤独症谱系障碍患儿脑白质体积的2年随访研究[J]. 中华实用儿科临床杂志, 2018, 33(24): 1845-1850. DOI:10.3760/cma.j.issn.2095-428X.2018.24.002.
ChuKK, ZhuJX, XiaoT, et al. A 2-year follow-up study of white matter volume in children aged 2 to 3 years with autism spectrum disorder[J]. Chin Clin J Pract Pediatr, 2018, 33(24): 1845-1850. DOI:10.3760/cma.j.issn.2095-428X.2018.24.002.
[14]
LiuJK, YaoL, ZhangWJ, et al. Gray matter abnormalities in pediatric autism spectrum disorder: a meta-analysis with signed differential mapping[J]. Eur Child Adolesc Psychiatry, 2017, 26(8): 933-945. DOI:10.1007/s00787-017-0964-4.
[15]
YangX, SiTJ, GongQY, et al. Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder :a meta-analysis of voxel-based morphometry studies[J]. Aust N Z J Pasychiatry, 2016, 50(8): 741-753. DOI:10.1177/0004867415623858.
[16]
KohliJS, KinnearMK, FongCH, et al. Local cortical gyrification is increased in children with autism spectrum disorders, but decreases rapidly in adolescents[J]. Cereb Cortex, 2019, 29(6): 2412-2423. DOI:10.1093/cercor/bhy111.
[17]
Van RooijD, AnagnostouE, ArangoC, et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD working group[J]. Am J Psychiatry, 2018, 175(4): 359-369. DOI:10.1176/appi.ajp.2017.17010100.
[18]
KhundrakpamBS, LewisJD, KostopoulosP, et al. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: a large-scale MRI study[J]. Cereb Cortex, 2017, 27(3): 1721-1731. DOI:10.1093/cercor/bhx038.
[19]
张琳. 孤独症患儿语言功能障碍相关白质纤维束的DTI研究[D/OL]. 济南: 山东大学, 2018.
ZhangL. DTI study of white matter fiber bundles associated with speech dysfunction in children with autism[D/OL]. Jinan: Shandong University Doctoral Dissertation. 2018.
[20]
SteinbrinkC, VogtK, KastrupA, et al. The contribution of white and gray matter differences to developmental dyslexia:insights from DTI and VBM at 3.0 T[J]. Neuropsychologia, 2008, 46(13): 3170-3178. DOI:10.1016/j.neuropsychologia.2008.07.015.
[21]
林志超, 王莹, 陈卓铭, . 磁共振多模态影像对儿童孤独症评估[J]. 中国医疗设备, 2020, 35(10): 78-81. DOI:10.3969/j.issn.1674-1633.2020.10.016.
LinZC, WangY, ChenZM, et al. Evaluation of children with autism by magnetic resonance multimodal imaging[J]. Chin Med Equipment, 2020, 35(10): 78-81. DOI:10.3969/j.issn.1674-1633.2020.10.016.
[22]
AndrewsDS, LeeJK, HarveyDJ, et al. A longitudinal study of white matter development in relation to changes in autism severity across early childhood[J]. Biol Psychiatry, 2021, 89(5): 424-432. DOI:10.1016/j.biopsych.2020.10.013.
[23]
TemurHO, YurtseverI, YesilG, et al. Correlation between DTI findings and volume of corpus callosum in children with AUTISM[J]. Curr Med Imaging Rev, 2019, 15(9): 895-899. DOI:10.2174/1573405614666181005114315.
[24]
BarnettBR, CaseyCP, Torres-VelázquezM, et al. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: a feasibility study[J]. Magn Reson Imaging, 2020, 70: 36-42. DOI:10.1016/j.mri.2020.04.002.
[25]
HegartyJP, GuM, SpielmanDM, et al. A proton MR spectroscopy study of the thalamus in twins with autism spectrum disorder[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81: 153-160. DOI:10.1016/j.pnpbp.2017.09.016.
[26]
PutsNAJ, WodkaEL, HarrisAD, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder[J]. Autism Res, 2017, 10(4): 608-619. DOI:10.1002/aur.1691.
[27]
UmesawaY, AtsumiT, ChakrabartyM, et al. GABA concentration in the left ventral premotor cortex associates with sensory hyper-responsiveness in autism spectrum disorders without intellectual disability[J]. Front Neurosci, 2020, 14: 482. DOI:10.3389/fnins.2020.00482Edmondson.
[28]
EdmondsonDA, XiaP, McNally KeehnR, et al. A magnetic resonance spectroscopy study of superior visual search abilities in children with autism spectrum disorder[J]. Autism Res, 2020, 13(4): 550-562. DOI:10.1002/aur.2258.
[29]
ZürcherNR, WalshEC, PhillipsRD, et al. A simultaneous[11C] raclopride positron emission tomography and functional magnetic resonance imaging investigation of striatal dopamine binding in autism[J]. Transl Psychiatry, 2021, 11(1): 33. DOI:10.1038/s41398-020-01170-0.
[30]
LanZH, XuSJ, WuYF, et al. Alterations of regional homogeneity in preschool boys with autism spectrum disorders[J]. Front Neurosci, 2021, 15: 644543. DOI:10.3389/fnins.2021.644543.
[31]
ChenCM, YangP, WuMT, et al. Deriving and validating biomarkers associated with autism spectrum disorders from a large-scale resting-state database[J]. Sci Rep, 2019, 9(1): 9043. DOI:10.1038/s41598-019-45465-9.
[32]
Borras-FerrisL, Pérez-RamírezÚ, MoratalD. Link-level functional connectivity neuroalterations in autism spectrum disorder: a developmental resting-state fMRI study[J]. Diagnostics (Basel), 2019, 9(1): 32. DOI:10.3390/diagnostics9010032.
[33]
KimN, ChoiUS, HaS, et al. Aberrant neural activation underlying idiom comprehension in korean children with high functioning autism spectrum disorder[J]. Yonsei Med J, 2018, 59(7): 897-903. DOI:10.3349/ymj.2018.59.7.897.
[34]
BartolottiJ, SweeneyJA, MosconiMW. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder[J]. Dev Psychopathol, 2020, 32(4): 1273-1286. DOI:10.1017/S0954579420000772.
[35]
PintiP, TachtsidisI, HamiltonA, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29. DOI:10.1111/nyas.13948. Epub 2018 Aug 7.
[36]
刘昊天, 刘玉和. 近红外光学脑成像技术应用与人工耳蜗植入者中枢可塑性研究的进展[J/OL].听力学及言语疾病杂志, 2021. https://kns.cnki.net/kcms/detail/42.139.R20210520.1138.024.html.
LiuHT, LiuYH. Near-infrared optical brain imaging and central plasticity of cochlear implant patients[J/OL]. Audiology and speech diseases magazine, 2021. https://kns.cnki..net/KCMS/detail/42.139R20210520.1138.024.html.
[37]
MazzoniA, GroveR, EapenV, et al. The promise of functional near-infrared spectroscopy in autism research: what do we know and where do we go?[J]. Soc Neurosci, 2019, 14(5): 505-518. DOI:10.1080/17470919.2018.1497701.
[38]
SuWC, CulottaM, MuellerJ, et al. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): an fNIRS pilot study[J]. PLoS One, 2020, 15(10): e0240301. DOI:10.1371/journal.pone.0240301.
[39]
XuLY, GengXL, HeXY, et al. Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations[J]. Front Neurosci, 2019, 13: 1120. DOI:10.3389/fnins.2019.01120.
[40]
HaweelR, ShalabyA, MahmoudA, et al. A robust DWT-CNN-based CAD system for early diagnosis of autism using task-based fMRI[J]. Med Phys, 2021, 48(5): 2315-2326. DOI:10.1002/mp.14692.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词