综述
头颈部血管磁共振SNAP技术的应用与进展
磁共振成像, 2022,13(5) : 144-147. DOI: 10.12015/issn.1674-8034.2022.05.030
摘要

磁共振同步非对比剂血管成像和斑块内出血(simultaneous non-contrast angiography and intraplaque hemorrhage,SNAP)成像技术具有覆盖范围广、分辨率高、同时获得固定多对比图像集、扫描时间较短的优势,适用于病变范围较长且走行曲折的头颈部血管,为头颈动脉粥样硬化、动脉狭窄与动脉夹层等疾病的检查提供丰富的诊断信息,临床应用日益增多。本文对SNAP技术原理以及在头颈部血管病变的应用和进展予以综述。

引用本文: 张煜堃, 常佩佩, 刘娜, 等.  头颈部血管磁共振SNAP技术的应用与进展 [J] . 磁共振成像, 2022, 13(5) : 144-147. DOI: 10.12015/issn.1674-8034.2022.05.030.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

2020年发表的《中国脑血管病影像应用指南2019》指出脑血管病已成为我国首位死亡病因,也是单病种致残率最高的疾病,给社会带来沉重的负担。早期发现责任血管病变及程度,及早干预、治疗对于脑血管疾病患者的预后有重要的意义。头颈部血管影像技术是评估脑血管疾病的主要方法,包括血管超声、数字减影血管造影(digital subtraction angiography,DSA)、CT血管造影(CT angiography,CTA)、磁共振血管造影(magnetic resonance angiography,MRA)、高分辨血管壁磁共振成像(high resolution vessel wall MRI,HRVW MRI)等[1]。其中,HRVW MRI是新兴的血管成像技术,不仅可以进行管腔成像,而且能够直观显示管壁结构,是目前唯一可在体进行头颈部血管壁成像的无创检查技术[2, 3]。磁共振同步非对比剂血管成像和斑块内出血成像(simultaneous non-contrast angiography and intraplaque hemorrhage,SNAP)技术为HRVW MRI中众多序列之一,相比其他颅颈部血管MRI技术,SNAP具有覆盖范围广、空间分辨率高、同时获得固定多对比图像集及扫描时间较短的优势,在颅内和颈部血管有很大的应用潜力和研究价值。本文拟对SNAP技术原理、临床应用及其研究进展予以综述。

1 SNAP技术原理与优势

SNAP的脉冲序列如图1所示,由相位敏感反转恢复序列(slab-selective phase-sensitive inversion-recovery,SPI)演变而来[4]。首先由180°反转脉冲(inversion pulse,IR)将所有组织信号反转;紧接着两组连续的、不同激励翻转角(flip angel,FA):α角、θ角的反转脉冲涡轮场回波(inversion pulse turbo field echo,IR-TFE)和参考采集涡轮场回波(reference acquisition turbo field echo,Ref-TFE)进行血液质子信号的抑制,形成黑血成像,其中α角大于θ角。这两个回波分别获得重T1WI效果的反转恢复(inversion recovery,IR)图像和质子密度加权效果的Ref (reference acquisition)图像,Ref图作为参考图估计背景相位后进行相位校正[5, 6]。IR图和Ref图像经过相位敏感重组生成黑血校正CR (corrected real)图像。将CR图像中的所有血管周围组织的正极信号设为零,所有动脉腔的负极信号进行绝对值处理,即生成明亮血流造影图像(MRA图)。因为只显示负极信号,此MRA图像不会受到背景组织的污染。由于Ref图的腔-壁对比度较低,可将Ref图与MRA图结合进一步生成具有高腔-壁对比的SNAP血液图像(Ref2图)[7]。SNAP能够获得5种自然配准的不同对比的图像,即IR图、Ref图、CR图、MRA图和Ref2图[8]。并且这5幅图像是由具有相同线圈灵敏度的IR图和Ref图进行相敏重组来计算加权比的,所以图像强度不受线圈灵敏度偏差影响[9]。此外,为了便于疾病检查还可以对SNAP图像进行彩色编码以及三维最大强度投影(maximum intensity projection,MIP),从多个投影角度显示和评估病变。

点击查看大图
图1
常规同步非对比剂血管成像和斑块内出血成像脉冲序列的示意图[4, 8]。1A:IRTR为两个IRs之间的延迟时间,时间较长;TI为IR脉冲与IR-TFE采集中心的延迟时间,该点采集到的脉冲回波信息填充到线性K空间的中心;1B:IR板为层面选择性的,其覆盖面积大于成像采集板面积。IR板由IR-TFE采集,成像板由Ref-TFE采集。IR:反转恢复;IRTR:反转恢复时间;TI:反转时间;IR-TFE:反转脉冲涡轮场回波;Ref-TFE:参考采集涡轮场回波。
Fig. 1
Schematic diagram of SNAP sequence[4, 8]. 1A: IRTR was the delay time between two IRs, which was long; TI was the delay time between IR pulse and IR-TFE acquisition center, and the pulse echo information collected at this point filled the center of K space; 1B: IR plate was layer selective and its coverage area was larger than imaging plate. IR plate was acquired by IR-TFE, and imaging plate was acquired by Ref-TFE. IR: inversion recovery; IRTR: inversion recovery repetition; TI: inversion time; IR-TFE: inversion pulse turbo field echo; Ref-TFE: reference acquisition turbo field echo.
点击查看大图
图1
常规同步非对比剂血管成像和斑块内出血成像脉冲序列的示意图[4, 8]。1A:IRTR为两个IRs之间的延迟时间,时间较长;TI为IR脉冲与IR-TFE采集中心的延迟时间,该点采集到的脉冲回波信息填充到线性K空间的中心;1B:IR板为层面选择性的,其覆盖面积大于成像采集板面积。IR板由IR-TFE采集,成像板由Ref-TFE采集。IR:反转恢复;IRTR:反转恢复时间;TI:反转时间;IR-TFE:反转脉冲涡轮场回波;Ref-TFE:参考采集涡轮场回波。
Fig. 1
Schematic diagram of SNAP sequence[4, 8]. 1A: IRTR was the delay time between two IRs, which was long; TI was the delay time between IR pulse and IR-TFE acquisition center, and the pulse echo information collected at this point filled the center of K space; 1B: IR plate was layer selective and its coverage area was larger than imaging plate. IR plate was acquired by IR-TFE, and imaging plate was acquired by Ref-TFE. IR: inversion recovery; IRTR: inversion recovery repetition; TI: inversion time; IR-TFE: inversion pulse turbo field echo; Ref-TFE: reference acquisition turbo field echo.
2 SNAP在颈部血管病变的临床应用与进展
2.1 颈动脉狭窄

SNAP技术可以对颈动脉狭窄(carotid stenosis)进行评估,通过MIP重建可以得到大范围的血管造影图像,即SNAP MRA,提高了颈动脉检查的时间效率。相对于时间飞跃法MRA (time-of-flight MRA,TOF-MRA)、SNAP MRA不易受流动相关伪影的影响[8,10],原因是:第一,SNAP序列中两个连续的IR脉冲之间的周期较长(大约2 s),为新鲜血液填充提供了充足的时间,有利于颈动脉疾病中具有挑战性的血流模式的显示,如湍流或扰动流(通常见于颈动脉小球或狭窄下游);第二,采用冠状面成像,当平面外部的搏动性血液流入时,血液信号不会在心动周期中发生变化;第三,通过调整SNAP序列的FA和反转时间(inversion time,TI),静态组织和动脉腔的极性分别重组为正极和负极。这种额外的极性对比有利于颈动脉管腔的描绘。然而,与其他MRA技术一样,SNAP也不能避免体素内失相位,这可能会导致在湍流存在时信号丢失;也会发生动、静脉同时显示,因此需要在MIP重建期间裁剪掉静脉信号[8,11]。此外,一些研究[8,10]发现SNAP MRA测量的管腔面积大于TOF-MRA测量值,但是当管腔面积为<20 mm2时,SNAP MRA测得的管腔面积比TOF-MRA小。提示在管腔严重狭窄时,SNAP图像可能高估管腔狭窄程度。

目前SNAP技术已经达到与对比增强(contrast-enhanced,CE) MRA技术相当的分辨率,无需并行采集,并且技术在不断改进[12]。相比CE MRA,SNAP技术不需要对比剂注入,采集不受首次通过时间的限制,可以更灵活地用于高分辨率采集;SNAP MRA不包含未抑制背景信号,后处理简单实用[8]

总之,SNAP技术有潜力成为显示颈动脉狭窄新的MRA方法,但是其成像稳定性和临床实用性仍需进一步的验证。

2.2 颈动脉粥样硬化

颈动脉粥样硬化的斑块具有不同成分,包括斑块内出血(intraplaque hemorrhage,IPH)、富脂坏死核心(lipid-rich necroticcore,LRNC)、近腔钙化(juxtaluminal calcification,JCA)、溃疡(nulceration,UL)和纤维组织(fibrous tissue,FT)等。

2.2.1 IPH的检测

半数颈动脉粥样硬化患者的斑块中存在IPH[13]。IPH的出现会导致脑血管缺血事件的风险增加4~12倍[13, 14, 15],被认为是临床采取手术干预的一个重要因素[16]。因此,对IPH进行定性和定量评估有助于脑血管事件风险分级和优化患者管理。IPH成分能够缩短T1弛豫时间,在T1加权图像上呈现高信号。SNAP技术具有重T1WI属性,通过选择适当的TI和FA可以获得最大的IPH-壁和壁-腔对比度[8],对颈动脉IPH检出的敏感性高于其他血管成像技术[8,10,17, 18, 19]。Li等[18]以组织学检查作为参照,分别探究SNAP技术、T1加权三维磁化强度预备梯度回波(magnetization prepared rapid acquisition gradient echo,MP-RAGE)技术与组织学改变的关系,结果显示在识别IPH方面,SNAP成像比MP-RAGE成像更符合组织学改变,特别是对于较小的IPH;在定量IPH面积方面,SNAP成像与MP-RAGE成像相比,与组织学表现的一致性更好,偏差更小。值得注意的是,MRI和组织学测量IPH区域的偏差随IPH面积增大而增大,因为较大的IPH信号受斑块内其他成分的影响更明显。斑块内钙化成分会导致IPH在SNAP和MP-RAGE上信号强度下降,低估IPH面积[20];斑块内脂质成分可能导致IPH的高信号增加,面积被高估[21]

不同阶段的IPH存在显著异质性,特别是在无症状患者中。定量分析T1信号有助于了解IPH的异质性,并可能成为监测IPH进展的生物标志物[22]。为了更好地定量检测IPH,Qi等[23]设计了GOAL-SNAP技术,通过引入三维金角径向K空间采样,采用滑动窗重构对不同TI图像进行体素T1拟合。与现有的SNAP技术相比,GOAL-SNAP成像可以产生更多定量的、可重复的生物标志物,用于描述IPH并监测其进展。此外,由于人工定量检测IPH不仅费时,而且对于区域边界不规则、不明显的IPH容易产生测量误差,Liu等[9]提出半自动化的IPH量化分割方法,以减少人工误差和繁杂的勾画工作。

目前,SNAP不仅仅应用于颈动脉病变,Kim等[24]采用单个SNAP序列实现了一站式评估颈动脉和椎基底动脉上IPH的可能性。同时,与其他技术结合,SNAP技术进一步扩展了应用领域。Lee等[25]将SNAP与时间平均壁面剪切应力(time-averaged wall shearstress,WSS)分析联合应用,分析了血流动力学和形态学因素共同对IPH的影响,发现与无IPH的颈动脉相比,有IPH的颈动脉组具有较高的壁面剪应力和较小的颈动脉分叉角。Chen等[5]对SNAP技术进行优化,推出快速SNAP序列,采用任意的K空间填充顺序和低分辨率的Ref-TFE采集进行相敏重组,在颈动脉成像中与常规SNAP具有相似的IPH检测性能,但减少了37.5%的扫描时间,提高了成像效率。

2.2.2 斑块其他成分的检测

除了IPH,斑块内LRNC、JCA、FT、UL也会影响斑块稳定性[26, 27]。与常规多对比成像相比,SNAP成像对斑块成分的识别具有良好一致性和高度重复性[7]。由于IPH被确认是LRNC的一部分[28],LRNC在SNAP图像上表现为等或高信号,取决于IPH扩散到LRNC的数量或时间[29]。JCA在Ref和Ref2图像上表现为低信号,但在CR图像上呈中等信号[7]。UL在SNAP序列中表现为斑块表面的凹凸不平,可以在Ref图、CR图中见到管腔中相应的血流信号延伸至斑块内部[30]。此外,研究发现SNAP成像在识别JCA和UL方面与常规多对比成像也有很好的一致性,并且也有利于JCA和UL的鉴别[7,30]。基于SNAP技术检测出的斑块形态学及信号特征可以对斑块成分进行分割,Zhang等[28]开发了一种基于机器学习的算法,在单一的SNAP图像上识别并分割出斑块成分,包括LRNC (含或不含有IPH)、CA、FT。

如上所述,SNAP技术对颈动脉粥样硬化斑块中IPH的检测效能可以与组织学检查相媲美,对其余成分的检测也有一定的特异性。通过对颈部SNAP技术的改进和优化,SNAP对斑块的评价更加全面,效率更高。但是优化过的SNAP技术只是停留在理论层面,并未广泛地应用于临床。

2.3 头颈动脉夹层

头颈动脉夹层(craniocervical artery dissection,CCAD)是导致青年性卒中的最常见原因之一,约占10%~25%[31, 32]。CCAD的直接影像学征象为双腔、壁内血肿及内膜瓣,间接征象为动脉瘤样扩张、血管狭窄或闭塞[33]。其中,壁内血肿被认为是CCAD的是关键标志。一些研究认为,如果颅颈动脉闭塞但没有壁内血肿的证据,则不能诊断为夹层,除非夹层壁完全再通[34]

一些研究[33, 34, 35]发现SNAP是检出颅内动脉夹层壁内血肿的最敏感序列,其信号强度明显高于其他高分辨MRI序列;并且,SNAP序列对颅内动脉夹层的其他征象的检测也具有优势。此外,CE MRA对颅内动脉夹层中的双腔征、内膜瓣征最敏感,其总诊断效率略高于SNAP。因此,将SNAP结合CE MRA联合应用会明显提高颅内动脉夹层检出率及准确性。

颈动脉夹层常发生于颈动脉和椎动脉,颅外段比颅内段更容易发生夹层。研究发现SNAP技术对颈动脉夹层壁内血肿的检测比常规黑血序列更有优势,并与颈部血管超声具有较高的一致性[36, 37]

由此可见,SNAP技术对CCAD诊断具有较高的敏感性和特异性。

3 SNAP技术在颅内动脉病变的临床应用与进展

多项研究发现[38, 39, 40],与TOF-MRA相比,SNAP MRA对颅内动脉狭窄的检出具有相似效能;虽然SNAP和TOF对比度都是随血流速度的增加而增加,但SNAP图像对比度对血流速的敏感性高于TOF-MRA,SNAP可能是检测脑血流动力学变化更敏感的技术;SNAP MRA对颅内动脉远端的显示较好,但对近端的显示较差。但是,Gould等[41]研究却发现TOF-MRA中血管长度明显大于SNAP MRA中血管长度,即TOF图像对远端颅内动脉远端的显示效果较好,其原因还需要进一步研究。

与颈动脉不同,颅内动脉管壁更薄,走行更弯曲,分支更多,背景组织(灰质、白质和脑脊液)更复杂。颅内动脉小分支因弯曲或分叉走行,信号衰减较强,信噪比较低[42]。常规SNAP MRA较适用于颈部动脉成像,近年来一系列针对颅内动脉成像的SNAP MRA优化策略得到尝试。Xiong等[42]对常规SNAP序列中的扫描参数(TI和FA)进行优化,提出了4D SNAP MRA技术,采用不同TIs的SNAP进行扫描,获得不同血流通过时间的血流扩散区域图。进一步使用敏感性编码技术和压缩感知技术,4D SNAP MRA可以在5 min内获得各向同性的、分辨率为1 mm的8个时相的动态MRA。4D SNAP MRA可以提供更详细的大脑血流动力学信息(血液随时间扩散区域和大脑血液循环总体状态)。Chen等[43]提出改良SNAP (iSNAP)序列,由脉冲动脉自旋标记和3D黄金角径向采集技术[32]组成。在优化数据共享策略下,采用K空间加权图像对比度方法[44]重组图像可以得到脑动态MRA (dMRA)、静态MRA (sMRA)、血管壁图像和T1WI脑结构图像。与已有序列相比,iSNAP序列所采集的图像在定性和定量评价方面均具有优势。与4D-TRANCE (time-resolved angiography non-contrast-enhanced sequence)相比,iSNAP-dMRA具有相似的动态管腔信号和远端动脉的显示能力,并能够灵活地平衡空间和时间分辨率,而不易受动脉运动伪影的影响。iSNAP-血管壁成像(vessel wall imaging,VWI)比常规SNAP有更好的血管壁-脑脊液对比。联合使用iSNAP-MRA和iSNAP-VWI可以获得与T1W-容积、各向同性快速自旋回波采集(volume, isotropic turbo spin echo acquisition,VISTA)序列相似的动脉病变描述能力。

近期,有研究利用iCafe工具对TOF及SNAP显示的血管进行追踪、分割和标记,实现精准量化分析[45]。Gould等[41]对颈动脉粥样硬化和狭窄患者进行头部MRI扫描[包括TOF、SNAP、动脉自旋标记(arterial spin labeling,ASL)、相位对比法MRA (phase contrast MRA,PC MRA)],发现全脑TOF和SNAP测量的血管长度均与全脑ASL和3D PC MRA血流测量值相关,且SNAP血管长度相关性更高;同时,SNAP的血管长度半球不对称指数与ASL脑血流半球不对称指数也存在显著相关性。这提示TOF和SNAP上的血管长度均可作为脑血流的替代指标,并且SNAP序列对血流状态的显示有更高的敏感性;同时,SNAP血管长度在识别半球血流不对称性方面也具有一定潜力。Xiong等[46]也利用SNAP MRA和伪连续式ASL (pseudo-continuous arterial spin labeling,pCASL)图像进一步研究左旋多巴对帕金森患者脑动脉和血流的影响。

总之,头部SNAP技术可以同时获得血管壁图和MRA图,提供了丰富的诊断信息。但该技术仍处于探索开发的阶段,成像的可重复性低,缺乏临床标准化参数。

综上所述,SNAP技术具有覆盖范围广、空间分辨率高、可同时获得固定多对比图像、扫描时间较短的优势,在颈动脉及动脉狭窄可视化、颈动脉粥样硬化斑块成分量化评估和动脉夹层壁内血肿检出方面的应用已经较为成熟;在颅内动脉疾病的应用正在尝试,但是目前尚缺乏统一、成熟的颅内SNAP成像标准,成像技术也需不断改进。

志      谢
ACKNOWLEDGMENTS

The Fund Plan of the Dalian Science and Technology Innovation (2020JJ7SN075).

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
LiuQ, HuangJ, DegnanAJ, et al. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease[J]. Int J Cardiovasc Imaging, 2013, 29(7): 1491-1498. DOI: 10.1007/s10554-013-0237-3.
[2]
LiM, LeWJ, TaoXF, et al. Advantage in Bright-blood and Black-blood Magnetic Resonance Imaging with High-resolution for Analysis of Carotid Atherosclerotic Plaques[J]. Chin Med J (Engl), 2016, 128(18): 2478-2484. DOI: 10.4103/0366-6999.164933.
[3]
LehmanVT, BrinjikjiW, KallmesDF, et al. Clinical interpretation of high-resolution vessel wall MRI of intracranial arterial diseases[J]. Brit J Radiol, 2016, 89(1067): 20160496. DOI: 10.1259/bjr.20160496.
[4]
WangJ, FergusonMS, BaluN, et al. Improved carotid intraplaque hemorrhage imaging using a slab-selective phase-sensitive inversion-recovery (SPI) sequence[J]. Magn Reson Med, 2010, 64(5): 1332-1340. DOI: 10.1002/mrm.22539.
[5]
ChenS, NingJ, ZhaoX, et al. Fast simultaneous noncontrast angiography and intraplaque hemorrhage (fSNAP) sequence for carotid artery imaging[J]. Magn Reson Med, 2017, 77(2): 753-758. DOI: 10.1002/mrm.26111.
[6]
KellmanP, AraiAE, McveighER, et al. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement[J]. Magn Reson Med, 2002, 47(2): 372-383. DOI: 10.1002/mrm.10051.
[7]
ChenS, ZhaoH, LiJ, et al. Evaluation of carotid atherosclerotic plaque surface characteristics utilizing simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) technique[J]. J Magn Reson Imaging, 2018, 47(3): 634-639. DOI: 10.1002/jmri.25815.
[8]
WangJ, BornertP, ZhaoH, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation[J]. Magn Reson Med, 2013, 69(2): 337-345. DOI: 10.1002/mrm.24254.
[9]
LiuJ, SunJ, BaluN, et al. Semiautomatic carotid intraplaque hemorrhage volume measurement using 3D carotid MRI[J]. Magn Reson Imaging, 2019, 50(4): 1055-1062. DOI: 10.1002/jmri.26698.
[10]
LiuH, SunJ, HippeDS, et al. Improved carotid lumen delineation on non-contrast MR angiography using SNAP (Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage) imaging[J]. Magn Reson Imaging, 2019, 62: 87-93. DOI: 10.1016/j.mri.2019.06.012.
[11]
ShuH, SunJ, HatsukamiTS, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging: Comparison with contrast-enhanced MR angiography for measuring carotid stenosis[J]. J Magn Reson Imaging, 2017, 46(4): 1045-1052. DOI: 10.1002/jmri.25653.
[12]
DerekGL. Ultra-low-dose, time-resolved contrast-enhanced magnetic resonance angiography of the carotid arteries at 3.0 tesla[J]. Invest Radiol, 2009, 44(4): 207-217. DOI: 10.1097/RLI.0b013e31819ca048.
[13]
SaamT, HetterichH, HoffmannV, et al. Meta-analysis and systematic review of the predictive value of carotid plaque hemorrhage on cerebrovascular events by magnetic resonance imaging[J]. Am Coll Cardiol, 2013, 62(12): 1081-1091. DOI: 10.1016/j.jacc.2013.06.015.
[14]
UnderhillHR, YuanC, YarnykhVL, et al. Arterial remodeling in [corrected] subclinical carotid artery disease[J]. JACC Cardiovasc Imaging, 2009, 2(12): 1381-1389. DOI: 10.1016/j.jcmg.2009.08.007.
[15]
GuptaA, BaradaranH, SchweitzerAD, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis[J]. Stroke, 2013, 44(11): 3071-3077. DOI: 10.1161/STROKEAHA.113.002551.
[16]
HiroyukiH. Correlation of thin fibrous cap possessing adipophilin-positive macrophages and intraplaque hemorrhage with high clinical risk for carotid endarterectomy[J]. J Neurosurg, 2011, 114(4): 1080-1087. DOI: 10.3171/2010.8.JNS10423.
[17]
LiD, ZhaoH, ChenX, et al. Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study[J]. Eur Radiol, 2018, 28(4): 1681-1686. DOI: 10.1007/s00330-017-5096-1.
[18]
LiD, QiaoH, HanY, et al. Histological validation of simultaneous non-contrast angiography and intraplaque hemorrhage imaging (SNAP) for characterizing carotid intraplaque hemorrhage[J]. Eur Radiol, 2021, 31(5): 3106-3115. DOI: 10.1007/s00330-020-07352-0.
[19]
王康, 贾琳, 王云玲, . MR SNAP序列定量分析颈动脉粥样硬化斑块内出血的初步研究[J]. 实用放射学杂志, 2018, 34(8): 1172-1175, 1182. DOI: 10.3969/j.issn.1002-1671.2018.08.005.
WangK, JiaL, WangYL, et al. The preliminary study of quantitative analysis intraplaque hemorrhage of carotid atherosclerotic plaque by MR SNAP sequence[J]. Pract Radiol, 2018, 34(8): 1172-1175, 1182. DOI: 10.3969/j.issn.1002-1671.2018.08.005.
[20]
OtaH, Yarnykh,VL, FergusonMS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences[J]. Radiology, 2010, 254(2): 551-563. DOI: 10.1148/radiol.09090535.
[21]
FanZY, YuW, XieYB, et al. Multi-contrast atherosclerosis characterization (MATCH) of carotid plaque with a single 5-min scan: technical development and clinical feasibility[J]. Cardiovasc Magn Reson, 2014, 16. DOI: 10.1186/s12968-014-0053-5.
[22]
WangX, SunJ, ZhaoX, et al. Ipsilateral plaques display higher T1 signals than contralateral plaques in recently symptomatic patients with bilateral carotid intraplaque hemorrhage[J]. Atherosclerosis, 2017, 25: 778-785. DOI: 10.1016/j.atherosclerosis.2017.01.001.
[23]
QiH, SunJ, QiaoH, et al. Carotid Intraplaque Hemorrhage Imaging with Quantitative Vessel Wall T1 Mapping: Technical Development and Initial Experience[J]. Radiology, 2018, 287(1): 276-284. DOI: 10.1148/radiol.2017170526.
[24]
KimM J, KwakHS, HwangSB, et al. One-step evaluation of intraplaque hemorrhage in the carotid artery and vertebrobasilar artery using simultaneous non-contrast angiography and intraplaque hemorrhage[J]. Eur J Radiol, 2021, 141: 109824. DOI: 10.1016/j.ejrad.2021.109824.
[25]
LeeUY, KwakHS. Evaluation of Plaque Vulnerability via Combination of Hemodynamic Analysis and Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) Sequence for Carotid Intraplaque Hemorrhage[J]. Pers Med, 2021, 11(9): 856. DOI: 10.3390/jpm11090856.
[26]
PrabhakaranS, RundekT, RamasR, et al. Carotid plaque surface irregularity predicts ischemic stroke: the northern Manhattan study[J]. Stroke, 2006, 37(11): 2696-2701. DOI: 10.1161/01.STR.0000244780.82190.a4.
[27]
WahlgrenCM, ZhengW, ShaalanW, et al. Human carotid plaque calcification and vulnerability. Relationship between degree of plaque calcification, fibrous cap inflammatory gene expression and symptomatology[J]. Cerebrovasc Dis, 2009, 27(2): 193-200. DOI: 10.1159/000189204.
[28]
ZhangQ, QiaoH, DouJ, et al. Plaque components segmentation in carotid artery on simultaneous non-contrast angiography and intraplaque hemorrhage imaging using machine learning[J]. Magn Reson Imaging, 2019, 60: 93-100. DOI: 10.1016/j.mri.2019.04.001.
[29]
WeiH, ZhangM, LiY, et al. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study[J]. Quant Imaging Med Surg, 2020, 10(1): 269-282. DOI: 10.21037/qims.2019.09.11.
[30]
王康, 陈欢, 马景旭, . 磁共振SNAP序列对颈动脉粥样硬化斑块的评估[J]. 影像诊断与介入放射学, 2018, 27(1): 40-46. DOI: 10.3969/j.issn.1005-8001.2018.01.007.
WangK, ChenH, MaJX, et al. Evaluation of magnetic resonance SNAP protocol in the diagnosis of carotid atherosclerotic plaque[J]. Diagnostic Imaging and Interventional Radiology, 2018, 27(1): 40-46. DOI: 10.3969/j.issn.1005-8001.2018.01.007.
[31]
ZhouY, WangL, ZhangJR, et al. Angioplasty and stenting for severe symptomatic atherosclerotic stenosis of intracranial vertebrobasilar artery[J]. J Clin Neurosci, 2019, 63: 17-21. DOI: 10.1016/j.jocn.2019.02.017.
[32]
MarkusHS, LeviC, KingA, et al. Antiplatelet Therapy vs Anticoagulation Therapy in Cervical Artery Dissection: The Cervical Artery Dissection in Stroke Study (CADISS) Randomized Clinical Trial Final Results[J]. JAMA Neurol, 2019, 76(6): 657-664. DOI: 10.1001/jamaneurol.2019.0072.
[33]
TangM, GaoJL, GaoJ, et al. Evaluating intracranial artery dissection by using three-dimensional simultaneous non-contrast angiography and intra-plaque hemorrhage high-resolution magnetic resonance imaging: a retrospective study[J]. Acta Radiol, 2021, 63(3): 401-409. DOI: 10.1177/0284185121992235.
[34]
DebetteS, LeysD. Cervical-artery dissections: predisposing factors, diagnosis, and outcome. Lancet Neurol[J]. 2009, 8(7): 668-678. DOI: 10.1016/S1474-4422(09)70084-5.
[35]
汤敏, 张鑫, 张东升, . 3D-SNAP高分辨磁共振成像技术评价颅内动脉夹层的价值研究[J]. 磁共振成像, 2019, 10(2): 105-109. DOI: 10.12015/issn.1674-8034.2019.02.006.
TangM, ZhangX, ZhangDS, et al. Evaluating diagnostic value of 3D-SNAP high resolution magnetic resonance in intracranial artery dissection[J]. Chin J Magn Reson Imaging, 2019, 10(2): 105-109. DOI: 10.12015/issn.1674-8034.2019.02.006.
[36]
陆艳, 黄仁军, 李勇刚. 颅颈部高分辨率MRA:常规黑血序列与SNAP序列的比较[J]. 放射学实践, 2019, 34(8): 863-868. DOI: 10.13609/j.cnki.1000-0313.2019.08.007.
LuY, HuangRJ, LiYG. Comparison of simultaneous non-contrast angiography and intraplaque hemorrhage imaging with conventional black blood technique in the high resolution craniocervical artery imaging[J]. Radiol Practice, 2019, 34(8): 863-868. DOI: 10.13609/j.cnki.1000-0313.2019.08.007.
[37]
HuangRJ, LuY, ZhuM, et al. Simultaneous non-contrast angiography and intraplaque haemorrhage (SNAP) imaging for cervical artery dissections[J]. Clin Radiol, 2019, 74(10): 817.e1-817.e7. DOI: 10.1016/j.crad.2019.06.018.
[38]
WangJ, GuanM, YamadaK, et al. In Vivo Validation of Simultaneous Non-Contrast Angiography and intraPlaque Hemorrhage (SNAP) Magnetic Resonance Angiography: An Intracranial Artery Study[J]. PLoS One, 2016, 11(2): e0149130. DOI: 10.1371/journal.pone.0149130.
[39]
ZhangQ, ChenZ, ChenS, et al. Angiographic contrast mechanism comparison between Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) sequence and Time of Flight (TOF) sequence for intracranial artery[J]. Magn Reson Imaging, 2020, 66: 199-207. DOI: 10.1016/j.mri.2019.09.001.
[40]
陈亚伦, 何乐, 陈慧军, . 血管与斑块内出血同时成像序列对Willis环完整性的评价[J]. 中国医学影像学杂志, 2018, 26(4): 241-245, 251. DOI: 10.3969/j.issn.1005-5185.2018.04.001.
ChenYL, HeL, ChenHJ, et al. Blood Vessel and Intraplaque Hemorrhage Simultaneous Imaging Sequence in Evaluation of the Integrity of Willis Circle[J]. Chin J Med Imaging, 2018, 26(4): 241-245, 251. DOI: 10.3969/j.issn.1005-5185.2018.04.001.
[41]
GouldA, ChenZ, GeleriDB, et al. Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood flow[J]. Magn Reson Imaging, 2021, 79: 20-27. DOI: 10.1016/j.mri.2021.02.012.
[42]
XiongY, ZhangZ, HeL, et al. Intracranial simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) MRA: Analyzation, optimization, and extension for dynamic MRA[J]. Magn Reson Med, 2019, 82(5): 1646-1659. DOI: 10.1002/mrm.27855.
[43]
ChenZ, ZhouZ, QiH, et al. A novel sequence for simultaneous measurement of whole-brain static and dynamic MRA, intracranial vessel wall image, and T1-weighted structural brain MRI[J]. Magn Reson Med, 2021, 85(1): 316-325. DOI: 10.1002/mrm.28431.
[44]
HongKS, DoughertyL. k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI[J]. Magn Reson Med, 2000, 44(6): 825-832. DOI: 10.1016/j.neurobiolaging.2019.02.027.
[45]
LiC. Quantitative assessment of the intracranial vasculature in an older adult population using iCafe[J]. Neurobiol Aging, 2019, 79: 59-65. DOI: 10.1016/j.neurobiolaging.2019.02.027.
[46]
XiongY, JiL, HeL, et al. Effects of Levodopa Therapy on Cerebral Arteries and Perfusion in Parkinson's Disease Patients[J]. J Magn Reson Imaging, 2021, 55(3): 943-953. DOI: 10.1002/jmri.27903.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体