综述
磁共振T2定量成像技术在肿瘤评价中的应用进展
磁共振成像, 2022,13(7) : 167-170. DOI: 10.12015/issn.1674-8034.2022.07.034
摘要

MRI因具有多平面、多序列、高分辨率等特点,对肿瘤疾病评估具有重要价值。随着肿瘤诊疗逐渐精准化,肿瘤影像的定量评价逐渐成为研究热点。T2定量成像(T2 mapping)技术是一种可以在体素水平上对组织T2值进行定量分析的方法,并可通过后处理生成空间对应的伪彩图,以不同颜色反映T2值的高低,提高观察的客观性及直观性。良恶性肿瘤组织细胞密度的不同及肿瘤治疗过程中发生水肿、坏死等因素均可导致T2值改变。故T2 mapping具有极高的临床应用价值。本文就目前T2 mapping技术在肿瘤中的研究进展进行较全面的阐述。

引用本文: 赵博, 史燕杰, 孙应实. 磁共振T2定量成像技术在肿瘤评价中的应用进展 [J] . 磁共振成像, 2022, 13(7) : 167-170. DOI: 10.12015/issn.1674-8034.2022.07.034.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

根据国际癌症研究机构数据显示,恶性肿瘤仍是威胁人类健康和生命的重要原因之一[1]。在肿瘤诊疗中,MRI是现代医学成像技术中重要组成部分。MRI在肿瘤定性诊断、肿瘤浸润程度及疗效评估中至关重要。但常规MRI只能根据肿瘤边界、信号强度等主观印象对肿瘤进行分析评价。随着肿瘤诊疗模式的精准化,临床上迫切需要更有效的影像技术和指标对肿瘤进行定量评估。

在MRI中,弛豫时间是描述物质微观结构和动态过程的重要参数之一。常规T2加权成像(T2 weighted imaging, T2WI)会受诸多因素及各个参数的权重不同而影响信号强度,常规T2WI图像无法获得组织的T2值。T2定量成像(T2 mapping)技术是一种可测量组织T2值的定量方法,可反映组织中包含质子的绝对弛豫时间,对组织成分和水含量进行标准化评估[2]。与常规T2WI图像相比,T2 mapping可最大限度地减少主观性,且更容易检测到组织间的差异[3]。T2 mapping起初应用于关节软骨及心肌评价中[3]。现T2 mapping技术越来越多地应用在不同系统、不同疾病中,近年来也逐步开始在各系统肿瘤研究中应用。

1 T2 mapping成像介绍

T2 mapping通过采集不同回波时间的多幅图像,测量不同回波时间信号强度,计算每个体素的T2值,并可通过对图像中每个像素重建生成对应的伪彩图,以不同颜色编码进行可视化处理,提高观察的直观性及客观性[4]

T2 mapping技术中最经典的序列为自旋回波。多次单回波自旋回波(single-echo spin-echo, SESE)是最简单的序列,该技术在保证其他参数不变的同时,在不同回波时间进行多次采集获得多幅图像以生成T2衰减曲线,通过公式计算出T2值。理论上这是最精确的T2值测量方法,但耗时太长,并且信噪比低,对扩散和J-耦合敏感性较高。为降低扫描时间,促进T2 mapping在临床中的推广应用,科学家研发不同采集序列,如多回波自旋回波(multi echo spin echo, MESE)序列、稳态自由进动(steady-state free precession, SSFP)序列等。

2 T2 mapping技术在肿瘤中的研究现状
2.1 肿瘤良恶性的鉴别

肿瘤良恶性鉴别对于临床治疗方案的选择具有重要意义。有学者[5]对乳腺良恶性肿瘤的T2值进行分析,结果显示乳腺恶性肿瘤的T2值显著低于良性肿瘤。Meng等[6]研究显示阈值为88.3 ms对乳腺肿瘤良恶性鉴别诊断性能最佳,受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)为0.88。

在盆腔肿瘤中,Carter等[7]对34例卵巢肿瘤病灶进行全肿瘤T2值分析,结果显示恶性肿瘤T2值显著低于良性肿瘤[8]。田士峰等[9]回顾性分析22例Ⅰ期子宫内膜癌及子宫内膜息肉患者的T2值,结果显示子宫内膜癌组的T2值小于子宫内膜息肉组。T2 mapping在前列腺中相关研究较多。与正常前列腺组织相比,病变间质和腺组织占比不同导致T2值不同。多数研究结果均显示外周带前列腺癌组织的T2值显著低于正常前列腺外周带组织[10, 11, 12]。但在前列腺移行带中研究结果存在差异。Sabouri等[4]和Mai等[11]研究结果显示移行带非恶性肿瘤组织T2值高于恶性肿瘤组织。而Van Houdt等[13]研究却显示移行带非恶性肿瘤与恶性肿瘤两组间T2值存在一定重叠,无明显差异,原因可能是移行带前列腺增生高发,减少了T2弛豫时间,使肿瘤组织更难鉴别[14]。而大多数前列腺癌发生在腺体的外周带,这使定量T2 mapping在前列腺癌诊断中仍具有重要的应用价值。表观扩散系数(apparent diffusion coefficient, ADC)值是诊断前列腺癌的重要参数,Hepp等[15]研究发现,T2值在鉴别前列腺癌和慢性前列腺炎方面具有较高的诊断准确性,与ADC值的表现相当。Wu等[16]及Lee等[17]研究表明,与单纯T2WI相比,T2WI联合T2值可进一步提高诊断前列腺恶性肿瘤的敏感性及准确性。并且在男性髋关节假体置换中,因扩散加权成像易受人工髋关节伪影的限制及影响,T2 mapping为髋关节置换术后的患者行前列腺MRI提供一种有价值的辅助手段,提升图像质量,提高医师诊断准确性[18]

T2 mapping在肝脏、腮腺、眼眶肿瘤及直肠癌淋巴结良恶性鉴别中也有相关研究报道。Cieszanowsk等[19, 20]利用2个回波的简易T2 mapping成像对肝脏良恶性病灶进行分析,结果显示恶性肿瘤T2值明显低于良性肿瘤,且同时发现其敏感性和准确性高于ADC值。文宝红等[21]回顾性分析73例接受T2 mapping检查并经手术病理证实的腮腺肿瘤,结果显示恶性组T2值较良性组低。Zhou等[22]收集47例实性眼眶肿块,患者术前行T2 mapping扫描,经分析表明,眼眶恶性肿瘤T2值明显低于良性肿瘤,且AUC可达0.93。Ge等[23]对直肠非黏液腺癌直肠系膜或直肠上动脉周围短径在4~10 mm的67个淋巴结进行分析,结果显示转移性淋巴结平均T2值显著低于未转移性淋巴结,T2值诊断淋巴结转移的AUC值为0.99,同时发现诊断效能高于ADC值(AUC=0.72)。

因此,T2值在鉴别不同部位肿瘤的良恶性中均有一定价值,与常规图像联合有望进一步提高诊断效能。恶性肿瘤T2值较良性肿瘤低,可能的原因是与良性肿瘤相比,恶性肿瘤表现为高细胞性,细胞外间隙减小,组织游离水少,从而导致T2值低[23]

2.2 肿瘤组织病理学特征的预测

肿瘤组织病理学特征是影响患者预后的重要因素。谢佳培等[24]、王佳男等[25]以及Kern等[26]分别对脑胶质瘤进行分析,研究结果一致,均显示T2值在高、低级别胶质瘤两组间无差异。研究表明胶质瘤分型与患者治疗疗效及预后相关,IDH基因突变状态对胶质瘤分型尤为重要。Kern等[26]和Gu等[27]分别对IDH突变状态进行研究分析时发现IDH突变型肿瘤T2值高于IDH野生型。目前虽不能根据T2值来区分高、低级别胶质瘤,但T2值在检测胶质瘤IDH1基因表型中有潜在的预测价值。

李淑健等[28, 29]探索T2值在鉴别宫颈癌病理类型研究中发现,宫颈鳞癌与腺癌之间T2值无差异。但该团队对58例宫颈鳞癌分析时发现,低分化宫颈鳞癌T2值低于高分化和中分化宫颈鳞癌,同时发现有淋巴管浸润患者的T2值低于无淋巴管浸润的患者,表明T2值对于预测宫颈癌病理分级及淋巴管浸润有一定价值[30]。马长军等[31]回顾性分析27例经手术病理证实为子宫内膜样腺癌患者的T2 mapping影像资料,根据病理分级、侵袭程度等因素,将患者分为低风险组(ⅠA期高中分化)和高风险组,其中高风险组10例,低风险组17例,结果显示高风险组的T2值小于低风险组,表明T2 mapping技术有可能为子宫内膜癌患者术前进行风险评估。在前列腺癌中,多数研究[32, 33]均显示随着Gleason评分的增加T2呈下降趋势,同时Mai等[11]发现T2值与ADC值存在一定相关性。表明T2值在评估前列腺癌侵袭性方面有一定作用。Adams等[34]在肾脏中也发现类似的趋势,其研究结果显示低级别肾透明细胞癌T2值明显高于高级别肾透明细胞癌,AUC可达0.93。

在直肠癌中,黏液腺癌定义为黏液成分>50%的腺癌。直肠黏液腺癌比非黏液腺癌更容易发生转移,预后差。Zhang等[35]探索T2值在鉴别直肠黏液腺癌与非黏液腺癌的研究中发现,黏液腺癌T2值为(87.9±5.11)ms,非黏液腺癌的T2值(66.6±6.86)ms,AUC达0.99,并且读片者间有较高的一致性(观察者间一致性:0.99)。

因此,T2值在预测肿瘤病理特征及侵袭性方面具有潜在临床价值。黏液成分因含有大量水分子,使T2值在诊断黏液成分时有客观量化的潜力。肿瘤分化程度越低或分级越高时肿瘤细胞密度越高,核仁与核质比也越高,细胞外间隙越小以至于所含细胞液越少,这可能是导致低T2值的原因[34]

2.3 肿瘤浸润程度及疗效评价

肿瘤准确分期是良好预后的基础。Ghosh等[36]对2例子宫内膜癌和1例子宫腺肌瘤进行分析,发现3例T2 mapping图中均可显示子宫第四肌层,与常规影像相比,研究认为T2 mapping在判断子宫内膜癌是否侵犯子宫肌层具有很好的潜力。Wei等[37]以及Yamada等[38]分别对食管癌、直肠癌术后标本进行T2 mapping扫描,结果显示几乎所有标本T2 mapping图中所显示肿瘤浸润的深度均与病理相符。表明T2 mapping图可对肿瘤术前分期提供重要的辅助。

T2 mapping在肿瘤疗效评估中研究较少。Liu等[39]对26例接受新辅助治疗的乳腺癌患者行T2 mapping检查,分别在新辅助治疗前及治疗后进行两次扫描,结果显示新辅助治疗前后T2值差值可以用来评估新辅助治疗疗效。Tan等[40]纳入35例乳腺癌患者进行分析,在化疗前、化疗开始后第1、2周期和化疗结束后共扫描4次T2 mapping图像,结果显示治疗后乳腺癌T2值减低,化疗第2周期结束后病变T2值与基线T2值的比值可作为早期预测乳腺癌新辅助治疗反应的指标。Hattingen等[41]对18例复发性胶质母细胞瘤患者进行分析,结果表明可以通过T2值的变化更早地预测肿瘤进展情况。在直肠癌研究中,Yamada等[38]发现T2值能很好区分纤维化组织和肿瘤组织,这有可能提高肿瘤新辅助治疗后疗效评价的准确性。

T2 mapping在食管及直肠肿瘤浸润程度评价中均为离体标本,体内进行T2 mapping扫描时会受到患者配合程度、呼吸运动以及肠管蠕动等因素干扰而影响图像质量和观察。未来应扩大样本量进行前瞻性的研究,探索T2 mapping在评估浸润程度中的真正价值。

现有研究均显示新辅助治疗后肿瘤T2值降低。其可能原因是随着新辅助治疗肿瘤细胞肿胀,细胞外间隙减少导致T2值降低。另一种可能原因是肿瘤细胞坏死,细胞中化合物被释放到细胞外间隙与水分子结合,游离水减少导致T2值降低[40]。然而关于疗效评价的研究较少,T2值以及其变化值是否在一定程度上可反映肿瘤治疗疗效尚需进一步证实。

3 小结与展望

综上所述,T2 mapping作为一种非侵入性MRI定量评估手段,弥补了传统MRI主观性评价的缺点,使评估趋于精准、客观、稳定,但仍有一些问题亟待优化。T2 mapping成像速度的局限性阻碍了其在临床中广泛研究及应用。研究发现组织T2值受场强、序列类型、序列参数等因素影响,提示在研究中应探索同一组织在不同场强、序列类型等情况下T2值参考范围及差异,使T2 mapping作为生物标志物具有标准化和再现化。

T2 mapping技术在许多肿瘤疾病中尚未得到充分研究,且现有研究均为小样本、单中心。但已有研究表明,T2 mapping在鉴别肿瘤良恶性、预测肿瘤病理特征、评估肿瘤浸润以及新辅助治疗疗效方面均存在巨大潜在价值,未来应对不同疾病进行大样本、多中心研究。在精准医疗背景下,T2 mapping独特的价值将会有广阔的前景,将会是MRI多参数成像的重要补充。

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
BrayF, FerlayJ, SoerjomataramI, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492.
[2]
VermesE, PantaléonC, AuvetA, et al. Cardiovascular magnetic resonance in heart transplant patients: diagnostic value of quantitative tissue markers: T2 mapping and extracellular volume fraction, for acute rejection diagnosis[J]. J Cardiovasc Magn Reson, 2018, 20(1): 59. DOI: 10.1186/s12968-018-0480-9.
[3]
GiriS, ChungYC, MerchantA, et al. T2 quantification for improved detection of myocardial edema[J]. J Cardiovasc Magn Reson, 2009, 11: 56. DOI: 10.1186/1532-429X-11-56.
[4]
SabouriS, ChangSD, SavdieR, et al. Luminal water imaging: a new MR imaging T2 mapping technique for prostate cancer diagnosis[J]. Radiology, 2017, 284(2): 451-459. DOI: 10.1148/radiol.2017161687.
[5]
LiuL, YinB, ShekK, et al. Role of quantitative analysis of T2 relaxation time in differentiating benign from malignant breast lesions[J]. J Int Med Res, 2018, 46(5): 1928-1935. DOI: 10.1177/0300060517721071.
[6]
MengTB, HeN, HeHQ, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J]. Cancer Imaging, 2020, 20(1): 88. DOI: 10.1186/s40644-020-00365-4.
[7]
CarterJS, KoopmeinersJS, Kuehn-HajderJE, et al. Quantitative multiparametric MRI of ovarian cancer[J]. J Magn Reson Imaging, 2013, 38(6): 1501-1509. DOI: 10.1002/jmri.24119.
[8]
HricakH, ChenM, CoakleyFV, et al. Complex adnexal masses: detection and characterization with MR imaging: multivariate analysis[J]. Radiology, 2000, 214(1): 39-46. DOI: 10.1148/radiology.214.1.r00ja3939.
[9]
田士峰, 刘爱连, 孟醒, . 酰胺质子转移、T2 mapping成像鉴别Ⅰ期子宫内膜癌与子宫内膜息肉[J]. 临床放射学杂志, 2021, 40(9): 1832-1835. DOI: 10.13437/j.cnki.jcr.2021.09.036.
TianSF, LiuAL, MengX, et al. The value of amide proton transfer imaging and T2 mapping imaging technology in differentiation stage Ⅰ endometrial carcinoma and endometrial polyp[J]. J Clin Radiol, 2021, 40(9): 1832-1835. DOI: 10.13437/j.cnki.jcr.2021.09.036.
[10]
SabouriS, FazliL, ChangSD, et al. MR measurement of luminal water in prostate gland: quantitative correlation between MRI and histology[J]. J Magn Reson Imaging, 2017, 46(3): 861-869. DOI: 10.1002/jmri.25624.
[11]
MaiJL, AbubrigM, LehmannT, et al. T2 mapping in prostate cancer[J]. Invest Radiol, 2019, 54(3): 146-152. DOI: 10.1097/RLI.0000000000000520.
[12]
KlingebielM, SchimmöllerL, WeilandE, et al. Value of T2 mapping MRI for prostate cancer detection and classification[J/OL]. J Magn Reson Imaging, 2022 [2022-03-28]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.28061. DOI: 10.1002/jmri.28061.
[13]
van HoudtPJ, AgarwalHK, van BuurenLD, et al. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems[J]. Magn Reson Med, 2018, 79(3): 1586-1594. DOI: 10.1002/mrm.26816.
[14]
LeeCH. Quantitative T2-mapping using MRI for detection of prostate malignancy: a systematic review of the literature[J]. Acta Radiol, 2019, 60(9): 1181-1189. DOI: 10.1177/0284185118820058.
[15]
HeppT, KalmbachL, KolbM, et al. T2 mapping for the characterization of prostate lesions[J]. World J Urol, 2022, 40(6): 1455-1461. DOI: 10.1007/s00345-022-03991-8.
[16]
WuLM, YaoQY, ZhuJ, et al. T2* mapping combined with conventional T2-weighted image for prostate cancer detection at 3.0T MRI: a multi-observer study[J]. Acta Radiol, 2017, 58(1): 114-120. DOI: 10.1177/0284185116633916.
[17]
LeeCH, TaupitzM, AsbachP, et al. Clinical utility of combined T2-weighted imaging and T2-mapping in the detection of prostate cancer: a multi-observer study[J]. Quant Imaging Med Surg, 2020, 10(9): 1811-1822. DOI: 10.21037/qims-20-222.
[18]
SathiadossP, SchiedaN, HaroonM, et al. Utility of quantitative T2-mapping compared to conventional and advanced diffusion weighted imaging techniques for multiparametric prostate MRI in men with hip prosthesis[J]. J Magn Reson Imaging, 2022, 55(1): 265-274. DOI: 10.1002/jmri.27803.
[19]
CieszanowskiA, SzeszkowskiW, GolebiowskiM, et al. Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence[J]. Eur Radiol, 2002, 12(9): 2273-2279. DOI: 10.1007/s00330-002-1366-6.
[20]
CieszanowskiA, Anysz-GrodzickaA, SzeszkowskiW, et al. Characterization of focal liver lesions using quantitative techniques: comparison of apparent diffusion coefficient values and T2 relaxation times[J]. Eur Radiol, 2012, 22(11): 2514-2524. DOI: 10.1007/s00330-012-2519-x.
[21]
文宝红, 程敬亮, 张勇, . MR横向弛豫时间成像鉴别诊断腮腺良恶性肿瘤[J]. 中国医学影像技术, 2021, 37(8): 1140-1144. DOI: 10.13929/j.issn.1003-3289.2021.08.005.
WenBH, ChengJL, ZhangY, et al. MR transverse relaxation time imaging for differential diagnosis of benign and malignant parotid gland tumors[J]. Chin J Med Imaging Technol, 2021, 37(8): 1140-1144. DOI: 10.13929/j.issn.1003-3289.2021.08.005.
[22]
ZhouY, XuXQ, HuH, et al. T2 mapping in orbital masses: preliminary study on differential diagnostic ability of T2 relaxation time[J]. Acta Radiol, 2020, 61(5): 668-674. DOI: 10.1177/0284185119874476.
[23]
GeYX, HuSD, WangZ, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
[24]
谢佳培, 张卫东, 朱婧怡, . 磁共振T1、T2值在脑胶质瘤分级及细胞增殖活性预测中的临床价值[J]. 磁共振成像, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
XieJP, ZhangWD, ZhuJY, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[25]
王佳男, 朱婧怡, 张博, . 脑良恶性胶质瘤实质与瘤周T1、T2值差别的研究[J]. 磁共振成像, 2020, 11(6): 416-421. DOI: 10.12015/issn.1674-8034.2020.06.004.
WangJN, ZhuJY, ZhangB, et al. The study of T1 and T2 values in differentiating of benign and malignant gliomas[J]. Chin J Magn Reson Imaging, 2020, 11(6): 416-421. DOI: 10.12015/issn.1674-8034.2020.06.004.
[26]
KernM, AuerTA, PichtT, et al. T2 mapping of molecular subtypes of WHO grade Ⅱ/Ⅲ gliomas[J]. BMC Neurol, 2020, 20(1): 8. DOI: 10.1186/s12883-019-1590-1.
[27]
GuWB, FangSY, HouXY, et al. Exploring diagnostic performance of T2 mapping in diffuse glioma grading[J]. Quant Imaging Med Surg, 2021, 11(7): 2943-2954. DOI: 10.21037/qims-20-916.
[28]
李淑健, 程敬亮, 张勇, . T2 mapping成像评估宫颈癌病理学特征[J]. 中国医学影像技术, 2019, 35(9): 1365-1369. DOI: 10.13929/j.1003-3289.201903113.
LiSJ, ChengJL, ZhangY, et al. Quantitative analysis of T2 mapping in evaluating pathological features of cervical cancer[J]. Chin J Med Imaging Technol, 2019, 35(9): 1365-1369. DOI: 10.13929/j.1003-3289.201903113.
[29]
LiSJ, LiuJ, ZhangFF, et al. Novel T2 mapping for evaluating cervical cancer features by providing quantitative T2 maps and synthetic morphologic images: a preliminary study[J]. J Magn Reson Imaging, 2020, 52(6): 1859-1869. DOI: 10.1002/jmri.27297.
[30]
LiSJ, ZhangZX, LiuJ, et al. The feasibility of a radial turbo-spin-echo T2 mapping for preoperative prediction of the histological grade and lymphovascular space invasion of cervical squamous cell carcinoma[J]. Eur J Radiol, 2021, 139: 109684. DOI: 10.1016/j.ejrad.2021.109684.
[31]
马长军, 刘爱连, 田士峰, . 酰胺质子转移加权成像联合T2mapping序列对子宫内膜癌术前风险评估的价值初探[J]. 磁共振成像, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
MaCJ, LiuAL, TianSF, et al. Preliminary study of APT combined with T2 mapping sequence in preoperative risk assessment of endometrial carcinoma[J]. Chin J Magn Reson Imaging, 2021, 12(9): 69-72. DOI: 10.12015/issn.1674-8034.2021.09.016.
[32]
Hoang DinhA, SouchonR, MelodelimaC, et al. Characterization of prostate cancer using T2 mapping at 3T: a multi-scanner study[J]. Diagn Interv Imaging, 2015, 96(4): 365-372. DOI: 10.1016/j.diii.2014.11.016.
[33]
GibbsP, LineyGP, PicklesMD, et al. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla[J]. Invest Radiol, 2009, 44(9): 572-576. DOI: 10.1097/RLI.0b013e3181b4c10e.
[34]
AdamsLC, BressemKK, JurmeisterP, et al. Use of quantitative T2 mapping for the assessment of renal cell carcinomas: first results[J]. Cancer Imaging, 2019, 19(1): 35. DOI: 10.1186/s40644-019-0222-8.
[35]
ZhangJQ, GeYX, ZhangH, et al. Quantitative T2 mapping to discriminate mucinous from nonmucinous adenocarcinoma in rectal cancer: comparison with diffusion-weighted imaging[J/OL]. Magn Reson Med Sci, 2021 [2022-03-28]. https://www.jstage.jst.go.jp/article/mrms/advpub/0/advpub_mp.2021-0067/_article. DOI: 10.2463/mrms.mp.2021-0067.
[36]
GhoshA, SinghT, BaggaR, et al. T2 relaxometry mapping in demonstrating layered uterine architecture: parameter optimization and utility in endometrial carcinoma and adenomyosis: a feasibility study[J/OL]. Br J Radiol, 2018, 91(1081) [2022-03-28]. https://www.birpublications.org/doi/10.1259/bjr.20170377. DOI: 10.1259/bjr.20170377.
[37]
WeiY, WuS, GaoFF, et al. Esophageal carcinoma: Ex vivo evaluation by high-spatial-resolution T2-mapping MRI compared with histopathological findings at 3.0T[J]. J Magn Reson Imaging, 2017, 45(6): 1609-1616. DOI: 10.1002/jmri.25509.
[38]
YamadaI, YoshinoN, HikishimaK, et al. Colorectal carcinoma: Ex vivo evaluation using 3-T high-spatial-resolution quantitative T2 mapping and its correlation with histopathologic findings[J]. Magn Reson Imaging, 2017, 38: 174-181. DOI: 10.1016/j.mri.2016.12.028.
[39]
LiuL, YinB, GengDY, et al. Changes of T2 relaxation time from neoadjuvant chemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3) [2022-03-28]. https://brieflands.com/articles/iranjradiol-18060.html. DOI: 10.5812/iranjradiol.24014.
[40]
TanPC, PicklesMD, LowryM, et al. Lesion T(2) relaxation times and volumes predict the response of malignant breast lesions to neoadjuvant chemotherapy[J]. Magn Reson Imaging, 2008, 26(1): 26-34. DOI: 10.1016/j.mri.2007.04.002.
[41]
HattingenE, JurcoaneA, DaneshvarK, et al. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival[J]. Neuro Oncol, 2013, 15(10): 1395-1404. DOI: 10.1093/neuonc/not105.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词