参考文献References[1]
ArmientoAR, StoddartMJ, AliniM, et al. Biomaterials for articular cartilage tissue engineering: learning from biology[J]. Acta Biomater, 2018, 65: 1-20. .
[2]
MorgeseG, BenettiEM, Zenobi-WongM.
Molecularly engineered biolubricants for articular cartilage[J/OL].
Adv Healthcare Mater,
2018,
7(
16) [
2022-04-11].
https://doi.org/10.1002/adhm.201701463. .
[3]
BrunoF, ArrigoniF, PalumboP, et al. New advances in MRI diagnosis of degenerative osteoarthropathy of the peripheral joints[J]. Radiol Med, 2019, 124(11): 1121-1127. .
[4]
SchützUH, BillichC, SchossD, et al. MRI cartilage assessment of the subtalar and midtarsal joints during a transcontinental ultramarathon - new insights into human locomotion[J]. Int J Sports Med, 2018, 39(1): 37-49. .
[6]
ZubavlenkoRА, BelovaSV, GladkovaЕV, et al. Morphological changes in articular cartilage and free-radical lipid peroxidation in rats with posttraumatic osteoarthrosis[J]. Bull Exp Biol Med, 2021, 172(2): 214-217. .
[7]
ChenI, SuCY, FangC, et al. Preventative treatment of red light-emitting diode protected osteoarthritis-like chondrocytes from oxidative stress-induced inflammation and promoted matrix gene expression[J]. J Taiwan Inst Chem Eng, 2021, 127: 23-31. .
[8]
李伟, 于泽晨, 贾岩波, 等. 距骨骨软骨损伤MR T2-mapping与软骨基质金属蛋白酶-1表达的相关性研究[J]. 磁共振成像, 2021, 12(5): 44-49. .
LiW, YuZC, JiaYB, et al. The correlation between the expression of matrix metalloproteinase-1 and magnetic resonance T2-mapping in talus osteochondral injury[J]. Chin J Magn Reson Imaging, 2021, 12(5): 44-49. .[9]
MaD, HeJL, HeDP. Chamazulene reverses osteoarthritic inflammation through regulation of matrix metalloproteinases (MMPs) and NF-kβ pathway in in-vitro and in-vivo models[J]. Biosci Biotechnol Biochem, 2020, 84(2): 402-410. .
[11]
LiX, MaCB, LinkTM, et al. In vivo T1ρ and T2 mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI[J]. Osteoarthritis Cartilage, 2007, 15(7): 789-797. .
[12]
KajabiAW, CasulaV, SarinJK, et al. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis[J]. J Orthop Res, 2021, 39(1): 63-73. .
[13]
MelkusG, BeauléPE, WilkinG, et al. What is the correlation among dGEMRIC, T1p, and T2* quantitative MRI cartilage mapping techniques in developmental hip dysplasia?[J]. Clin Orthop Relat Res, 2021, 479(5): 1016-1024. .
[14]
KazciO, YigitH, KosarP. T2 MRI mapping of knee cartilage in professional ballet dancers[J]. Med Probl Perform Art, 2020, 35(4): 221-226. .
[15]
高丽香, 袁慧书. T1ρ技术定量评估踝关节距骨骨软骨损伤[J]. 中国医学影像技术, 2020, 36(3): 444-447. .
GaoLX, YuanHS. T1ρ technique in quantitatively evaluation on ankle osteochondral lesions of talus[J]. Chin J Med Imaging Technol, 2020, 36(3): 444-447. .[16]
HuJZ, ZhangY, DuanCY, et al. Feasibility study for evaluating early lumbar facet joint degeneration using axial T1 ρ, T2, and T2* mapping in cartilage[J]. J Magn Reson Imaging, 2017, 46(2): 468-475. .
[17]
BaboliR, SharafiA, ChangG, et al. Isotropic morphometry and multicomponent T 1 ρ mapping of human knee articular cartilage in vivo at 3T[J]. J Magn Reson Imaging, 2018, 48(6): 1707-1716. .
[18]
WikstromEA, SongK, TennantJN, et al. T1ρ MRI of the talar articular cartilage is increased in those with chronic ankle instability[J]. Osteoarthritis Cartilage, 2019, 27(4): 646-649. .
[19]
TaylorKA, CollinsAT, HeckelmanLN, et al. Activities of daily living influence tibial cartilage T1rho relaxation times[J]. J Biomech, 2019, 82: 228-233. .
[20]
van RossomS, WesselingM, van AsscheD, et al. Topographical variation of human femoral articular cartilage thickness, T1rho and T2 relaxation times is related to local loading during walking[J]. Cartilage, 2019, 10(2): 229-237. .
[21]
Shiguetomi-MedinaJM, GottliebsenM, KristiansenMS, et al. Water-content calculation in growth plate and cartilage using MR T1-mapping design and validation of a new method in a porcine model[J]. Skeletal Radiol, 2013, 42(10): 1413-1419. .
[22]
Shiguetomi-MedinaJM, Ramirez-GlJL, Stødkilde-JørgensenH, et al. Systematized water content calculation in cartilage using T1-mapping MR estimations: design and validation of a mathematical model[J]. J Orthop Traumatol, 2017, 18(3): 217-220. .
[23]
李涛, 卢竞, 韦开荣, 等. T1 mapping联合常规MRI扫描方案评估膝关节软骨损伤[J]. 医学影像学杂志, 2021, 31(4): 675-679.
LiT, LuJ, WeiKR, et al. T1 mapping combined with routine MRI imaging protocol for evaluation of articular cartilage lesion in knee[J]. J Med Imaging, 2021, 31(4): 675-679.[24]
SharafiA, ZibettiMVW, ChangG, et al.
3D magnetic resonance fingerprinting for rapid simultaneous T1, T2, and T1ρ volumetric mapping of human articular cartilage at 3 T[J/OL].
NMR Biomed,
2022 [
2022-04-11].
https://doi.org/10.1002/nbm. .
[26]
SewerinP, SchleichC, VordenbäumenS, et al. Update on imaging in rheumatic diseases: cartilage[J]. Clin Exp Rheumatol, 2018, 36(5): 139-144.
[27]
CollinsAT, HatcherCC, KimSY, et al. Selective enzymatic digestion of proteoglycans and collagens alters cartilage T1rho and T2 relaxation times[J]. Ann Biomed Eng, 2019, 47(1): 190-201. .
[28]
SashoT, KatsuragiJ, YamaguchiS, et al. Associations of three-dimensional T1 rho MR mapping and three-dimensional T2 mapping with macroscopic and histologic grading as a biomarker for early articular degeneration of knee cartilage[J]. Clin Rheumatol, 2017, 36(9): 2109-2119. .
[29]
SoellnerST, GoldmannA, MuelheimsD, et al. Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee[J]. Osteoarthritis Cartilage, 2017, 25(11): 1841-1849. .
[30]
LinZW, YangZJ, WangHS, et al. Histological grade and magnetic resonance imaging quantitative T1rho/T2 mapping in osteoarthritis of the knee: a study in 20 patients[J]. Med Sci Monit, 2019, 25: 10057-10066. .
[31]
ChaudhariAS, BlackMS, EijgenraamS, et al. Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T[J]. J Magn Reson Imaging, 2018, 47(5): 1328-1341. .
[32]
韩晓兵, 张乾营, 阿浣, 等. 长期体能训练后应用T2-mapping序列定量分析胫距关节软骨的变化[J]. 磁共振成像, 2021, 12(4): 62-64, 77. .
HanXB, ZhangQY, A H, et al. Quantitative analysis of tibiotalar articular cartilage changes by T2-mapping sequence after long-term physical training[J]. Chin J Magn Reson Imaging, 2021, 12(4): 62-64, 77. .[33]
BittersohlB, BenedikterC, FranzA, et al. Elite rowers demonstrate consistent patterns of hip cartilage damage compared with matched controls: A T2* mapping study[J]. Clin Orthop Relat Res, 2019, 477(5): 1007-1018. .
[34]
ZbýňŠ, SantiagoC, JohnsonCP, et al. Compositional evaluation of lesion and parent bone in patients with juvenile osteochondritis dissecans of the knee using T2 * mapping[J]. J Orthop Res, 2022, 40(7): 1632-1644. .
[35]
LudwigKD, JohnsonCP, ZbýňŠ, et al. MRI evaluation of articular cartilage in patients with juvenile osteochondritis dissecans (JOCD) using T2 mapping at 3T[J]. Osteoarthritis Cartilage, 2020, 28(9): 1235-1244. .
[36]
MorganP, NissiMJ, HughesJ, et al. T2* mapping provides information that is statistically comparable to an arthroscopic evaluation of acetabular cartilage[J]. Cartilage, 2018, 9(3): 237-240. .
[37]
MorganP, CrawfordA, MaretteS, et al. Using a simplified version of a common surgical grading scale for acetabular labral tears improves the utility of preoperative hip MRI for femoroacetabular impingement[J]. Skeletal Radiol, 2020, 49(12): 1987-1994. .
[38]
WeberM. CORR insights®: elite rowers demonstrate consistent patterns of hip cartilage damage compared with matched controls: a T2* mapping study[J]. Clin Orthop Relat Res, 2019, 477(5): 1019-1020. .
[39]
HuYW, ZhangYY, LiQR, et al. Magnetic resonance imaging T2* mapping of the talar dome and subtalar joint cartilage 3 years after anterior talofibular ligament repair or reconstruction in chronic lateral ankle instability[J]. Am J Sports Med, 2021, 49(3): 737-746. .
[40]
OeiEHG, WickMC, Müller-LutzA, et al. Cartilage imaging: techniques and developments[J]. Semin Musculoskelet Radiol, 2018, 22(2): 245-260. .
[41]
LinkTM, NeumannJ, LiXJ. Prestructural cartilage assessment using MRI[J]. J Magn Reson Imaging, 2017, 45(4): 949-965. .
[42]
ZilkensC, MieseF, HertenM, et al.
Validity of gradient-echo three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage: a histologically controlled study[J/OL].
Eur J Radiol,
2013,
82(
2) [
2022-04-11].
http://dx.doi.org/10.1016/j.ejrad.2012.09.024. .
[44]
HangaardS, GudbergsenH, DaugaardCL, et al. Delayed gadolinium-enhanced MRI of menisci and cartilage (dGEMRIM/dGEMRIC) in obese patients with knee osteoarthritis: cross-sectional study of 85 obese patients with intra-articular administered gadolinium contrast[J]. J Magn Reson Imaging, 2018, 48(6): 1700-1706. .
[45]
KandaT, NakaiYD, HagiwaraA, et al.
Distribution and chemical forms of gadolinium in the brain: a review[J/OL].
Br J Radiol,
2017,
90(
1079) [
2022-04-11].
https://doi.org/10.1259/bjr.20170115. .
[46]
DaviesJ, Siebenhandl-WolffP, TranquartF, et al. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration[J]. Arch Toxicol, 2022, 96(2): 403-429. .
[47]
WeinrebJC, RodbyRA, YeeJ, et al. Use of intravenous gadolinium-based contrast media in patients with kidney disease: consensus statements from the American college of radiology and the national kidney foundation[J]. Kidney Med, 2020, 3(1): 142-150. .
[48]
PerriM, D'EliaM, CastoraniG, et al. Assessment of lumbar disc herniaton using fractional anisotropy in diffusion tensor imaging along with conventional T2-weighted imaging[J]. Neuroradiol J, 2020, 33(1): 24-31. .
[49]
WangN, MirandoAJ, CoferG, et al. Diffusion tractography of the rat knee at microscopic resolution[J]. Magn Reson Med, 2019, 81(6): 3775-3786. .
[50]
WangN, MirandoAJ, CoferG, et al. Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging[J]. Magn Reson Med, 2020, 84(2): 908-919. .
[51]
DuarteA, RuizA, FeriziU, et al. Diffusion tensor imaging of articular cartilage using a navigated radial imaging spin-echo diffusion (RAISED) sequence[J]. Eur Radiol, 2019, 29(5): 2598-2607. .
[52]
ZhaoQ, RidoutRP, ShenJK, et al. Effects of angular resolution and b value on diffusion tensor imaging in knee joint[J]. Cartilage, 2021, 13(2_suppl): 295S-303S. .