综述
心肌纤维化心脏磁共振及在糖尿病心肌病的应用进展
磁共振成像, 2022,13(11) : 145-148. DOI: 10.12015/issn.1674-8034.2022.11.029
摘要

糖尿病心肌病(diabetic cardiomyopathy, DbCM)早期采取干预措施,能够阻止甚至逆转DbCM改变,预防心脏结构的重塑并改善心脏舒张功能,因此,通过对心脏功能、心肌微循环灌注状态和心肌纤维化的检测评估,实现对DbCM精确诊断、危险分级及预后评估具有重要的临床意义。心脏磁共振(cardiac magnetic resonance, CMR)具有良好的软组织分辨率和多序列、多参数成像的优势,不仅可以准确评估心脏解剖结构和功能改变,还能够无创性观察心肌的组织学特征,对心肌纤维化的精确诊断及危险分级具有重要临床价值。本文就MR心肌延迟强化、T1 mapping、T2 mapping、扩散张量成像及T1ρ mapping技术在心肌纤维化临床应用的前沿进展予以综述,并展望未来该技术的发展应用。

引用本文: 梁久平, 曾小林, 徐溪, 等.  心肌纤维化心脏磁共振及在糖尿病心肌病的应用进展 [J] . 磁共振成像, 2022, 13(11) : 145-148. DOI: 10.12015/issn.1674-8034.2022.11.029.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

糖尿病心肌病(diabetic cardiomyopathy, DbCM)是一种发生于糖尿病患者,且不能用冠心病、高血压、心脏瓣膜疾病及其他病因明确的心脏疾病来解释病因的心肌病变,其发生是由于糖尿病相关的糖和脂质代谢异常,导致氧化应激增加和多种炎症途径的激活,介导心肌细胞肥大、凋亡和心肌间质弥漫性纤维化、病理性心脏重构、舒张和收缩功能障碍;糖尿病患者早期一般无心功能障碍等临床症状,但即使在无症状、血压正常且控制良好的糖尿病患者中,约50%的患者仍有不同程度的心肌损伤,实际上心肌损伤的发生明显早于可测量的心功能障碍发作之前[1, 2, 3]。DbCM早期为可逆性病变,早期采取血糖控制、靶向抗纤维化等干预措施能够阻止甚至逆转DbCM改变,预防心脏结构的重塑并改善心脏舒张功能[2, 4, 5]。因此,通过对心脏功能、心肌微循环灌注状态和心肌纤维化的检测评估,实现对DbCM精确诊断、危险分级及预后评估具有重要的临床意义。

现有的心脏影像学技术中,心脏磁共振(cardiac magnetic resonance, CMR)具有良好的软组织分辨率和多序列多参数成像的优势,不仅可以准确评估心脏解剖结构和功能改变,还能够无创性观察心肌的组织学特征,且没有X线辐射等副作用,对心肌纤维化的精确诊断和危险分级具有重要价值[6, 7, 8, 9]。目前心肌纤维化磁共振评价手段主要包括MR心肌延迟强化(late gadolinium enhancement, LGE)和T1 mapping,此外,T2 mapping、扩散张量成像(diffusion tensor imaging, DTI)及T1ρ mapping等技术用于心肌纤维化的检测也有报道[10, 11, 12]。本文就心肌纤维化CMR及其在DbCM应用进展展开综述。

1 LGE

LGE是检测心肌间质纤维化最常用的CMR成像技术,目前被认为是检测局限性心肌纤维化的“金标准”。其原理是基于胶原纤维代替坏死的心肌而形成瘢痕,其间隙较正常细胞外间隙扩大,对比剂廓清时间延长,延迟扫描时纤维瘢痕组织弛豫时间缩短呈高信号,目前广泛用于心肌梗死、扩张型心肌病及肥厚型心肌病等心肌病变的诊断和纤维瘢痕组织范围的评估[13]。LGE在DbCM的应用已有报道,对猴的2型糖尿病(diabetes mellitus type 2, T2DM)模型研究[14]结果显示,所有研究对象的心肌均未见局灶性延迟强化;而对糖尿病前期患者、糖尿病患者及健康对照组的对比研究[15, 16]结果显示,虽然在所有纳入研究的对象中,心肌增强延迟强化显示率较低(2.4%,2.9%),但糖尿病前期患者及糖尿病患者心肌延迟强化率显著高于健康对照组(P<0.05),并且主要表现为心内膜下和肌壁间延迟强化或心肌透壁延迟强化。然而,糖尿病患者常伴有肾功能不全,钆对比剂有诱发肾源性系统性纤维化,导致肾功能损害及过敏等风险。此外,由于糖尿病患者心肌纤维化呈弥散分布,缺乏正常心肌对比,LGE对弥漫性心肌纤维化的量化评估价值有限。

2 T1 mapping

T1 mapping技术是基于不同组织具有不同的T1弛豫时间来定量评估组织,根据是否应用钆对比剂又分为非增强T1和增强T1,而心肌细胞外容积分数(extracellular volume fraction, ECV)是基于T1 mapping获得的定量指标,反映的是细胞外间质容积与心肌组织容积的比值,能够准确实现细胞外基质或间质纤维化的组织学定量[7,17]。T1 mapping检测心肌纤维化已有大量临床研究,已证实T1 mapping可量化评估肥厚型心肌病、扩张型心肌病(dilated cardiomyopathy, DCM)及DbCM等患者心肌弥漫性纤维化程度,对心脏功能障碍程度及疾病发展阶段的评估具有重要价值[18, 19, 20]。在DbCM的应用中,研究[17,21]发现糖尿病心肌弥漫性间质纤维化的严重程度及心肌ECV值均与糖尿病持续时间呈正相关,ECV值与心肌舒张功能损害具有相关性;对猴T2DM模型研究[14]结果亦显示,中度左室舒张功能障碍组的ECV值显著高于轻度左室舒张功能障碍组;并且研究[6,18,22]发现糖尿病患者ECV值与糖化血红蛋白定量呈正相关性,ECV升高的糖尿病患者预后明显较ECV正常的患者差。因此,认为ECV是检测心肌弥漫性纤维化的最有效方法。但目前尚无明确统一的心肌弥漫性纤维化ECV诊断阈值[23],而增强T1值受增强扫描的时间、对比剂注射流率及浓度等影响,并且存在肾功能损害及过敏等风险。

3 T2 mapping

T2 mapping技术是通过T2弛豫时间来定量分析心肌组织含水量;目前主要用于急性心肌梗死、心肌炎、应激性心肌病、结节病和心脏移植排斥反应等患者心肌水肿的检测[24, 25, 26]。Bun等[10]采用11.75 T磁共振成像仪对鼠的DbCM模型进行研究,结果显示实验组心肌T2弛豫时间显著短于对照组(P<0.001),并且糖尿病小鼠心肌T2弛豫时间与心肌纤维化面积密切相关;冯根义等[27]研究结果显示,T2DM组磁共振钆剂延迟增强扫描中未强化的左心室各节段心肌的平均T2值显著高于健康对照组心肌T2值,并与纽约心脏病协会(NYHA)心功能分级呈正相关;上述研究表明T2 mapping可以间接评估T2DM心肌纤维化的程度和早期预测糖尿病心肌损害;但由于目前T2 mapping用于心肌纤维化检测的相关研究较少,其在心肌纤维化量化评估的临床价值有待更多的研究,而5.0 T等更高场强MRI进入临床应用,有望进一步促进T2 mapping在定量评估心肌纤维化的临床研究。

4 DTI

DTI是基于水分子扩散运动的成像技术反映活体组织微结构的一种功能成像方法,利用扩散张量的特征向量获得平均扩散系数(mean diffusivity, MD)、分数各向异性(fractional anisotropy, FA)、螺旋角(helix angle, HA)和次级特征向量角(second eigenvector angle, E2A),可获取心脏周期多个阶段的数据,提供动态信息,提高对心肌微观结构及其与功能力学复杂相互作用的认识[28, 29]。由于受硬件和成像技术的限制,DTI在心脏成像应用开展较晚,近年才逐步应用于心脏成像研究。文献[30, 31]报道DTI可以观察心肌淀粉样变及心肌梗死后心肌纤维空间排列位置、完整性及走行方向的心肌微结构改变,MD值和FA值可以有效地鉴别心肌淀粉样变性与和肥厚型心肌病,并可早期预测心肌梗死患者左心室重构。Osama等[32]研究结果显示扩张型心肌病心衰患者的FA值较健康对照组下降了22%,而MD值、二级扩散系数(D2值)和三级扩散系数(D3值)分别增加了12%、14%和24%,并且DTI指标定量与组织间胶原含量存在显著的相关性。Rina等[33]及Das等[34]研究发现,肥厚型心肌病患者舒张期FA值低于健康对照组,在对照组心肌中壁可见环状的高FA值区,但在HCM中,由于心肌组织结构紊乱和纤维化导致心肌中壁FA值减低或中断,DTI显示的HCM心肌微结构变化与组织学一致。上述研究表明DTI技术可以通过检测心肌纤维方向来观察心肌微结构变化,可用于评估心肌纤维化程度。目前DTI在DbCM的临床应用未见报道,随着心脏DTI技术不断进步,特别是更高梯度场强MR成像仪的应用将进一步促进心脏DTI的临床应用[35, 36, 37];并且DTI技术无需使用钆对比剂,不存在过敏及肾功能损害的风险[35,38],尤其适用于具有肾功能不全等钆对比剂禁忌证患者,在量化评估糖尿病弥漫性心肌纤维化中具有潜在的重要临床价值。

5 T1ρ mapping

T1ρ mapping是近年出现的一种MRI技术,指旋转坐标系下的纵向弛豫时间,它能够反映组织内化学物质的变化[39]。T1ρ mapping在关节软骨病变[40]及肝纤维化[41]的研究较为深入,目前普遍认为T1ρ值与软骨中的蛋白多糖含量密切相关;而心肌纤维化发展过程中可导致细胞外基质(extracellular matrix, ECM)过度沉积,ECM中含有大量的胶原和蛋白多糖等[1, 2],因此,T1ρ mapping在心肌纤维化的检测中具有很大潜力。研究报道心肌梗死纤维化区的T1ρ弛豫时间显著长于远端健康心肌和健康对照组心肌[42];并且非增强T1值、T1ρ值和基于T1ρ的心肌纤维化指数(myocardial fibrosis, mFI)随着心肌纤维化等级(Grade 1~3)的上升而增大[43];Thompson等[42]及Wang等[44]研究结果显示,肥厚型心肌病患者的心肌T1ρ值显著高于健康对照组,T1ρ mapping对患者心肌纤维化评估范围与心肌LGE显示的范围高度一致;在对扩张型心肌病的研究中亦发现,DCM患者心肌纤维化区域的T1ρ值显著高于健康对照组,并与组织纤维化分数及T1 mapping ECV值存在显著的相关性[45]。上述研究结果显示T1ρ mapping作为安全、灵敏、无创的成像方法,可以检测心肌弥漫性心肌纤维化的程度,能够提供心肌组织特征的额外定量信息。目前,T1ρ mapping在DbCM的应用研究报道甚少。Zhang等[14]对猴T2DM模型研究结果显示,中度心脏舒张功能障碍的猴T2DM模型心肌间质可见明显纤维化改变,而与病理切片对应的纤维化区域的T1ρ值、mFI和ECV值显著升高;左室舒张功能正常组(组1)、轻度左室舒张功能障碍组(组2)、中度左室舒张功能障碍组(组3)的mFI值呈逐渐升高的趋势;并且组2及组3的T1ρ弛豫时间显著长于组1;上述动物实验研究表明T1ρ mapping可用于评估糖尿病弥漫性心肌纤维化。而新的快速T1ρ mapping技术在短时间内实现高分辨率心肌T1ρ mapping成像,具有成像时间短、稳定性好等特性,使T1ρ mapping在评估心肌弥漫性纤维化等心肌病变的临床应用更为可靠,并且T1ρ mapping同样无需使用钆对比剂,不存在过敏及肾功能损害的风险[46, 47, 48, 49, 50],在定量评估糖尿病弥漫性心肌纤维化具有很大的潜力。

6 总结及展望

LGE是检测局限性心肌纤维化的“金标准”,但由于缺乏正常心肌对比,对糖尿病弥漫性心肌纤维化的量化评估价值有限;T1 mapping技术对糖尿病患者心肌弥漫纤维化的精确诊断及危险分级具有重要价值,ECV可量化评估患者心肌弥漫性纤维化程度;但钆对比剂可导致肾功能损害及过敏等风险。随着技术进步及更高梯度场强扫描仪进入临床应用,T2 mapping、DTI及T1ρ mapping等新技术成像时间缩短、图像质量进一步提高,并且无需使用钆对比剂,无肾功能损害及过敏等风险,在量化评估糖尿病弥漫性心肌纤维化方面具有巨大的潜力。

志      谢
ACKNOWLEDGMENTS

National Natural Science Foundation of China (No. 81971611).

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
RitchieRH, AbelED. Basic Mechanisms of Diabetic Heart Disease[J]. Circ Res, 2020, 126(11): 1501-1525. DOI: 10.1161/CIRCRESAHA.120.315913.
[2]
TanY, ZhangZ, ZhengC, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9): 585-607. DOI: 10.1038/s41569-020-0339-2.
[3]
TadicM, CuspidiC, CalicchioF, et al. Diabetic cardiomyopathy: How can cardiac magnetic resonance help?[J]. Acta Diabetol, 2020, 57(9): 1027-1034. DOI: 10.1007/s00592-020-01528-2.
[4]
谢发江, 蒋松辰, 高尚远, . 法舒地尔调控巨噬细胞极化改善糖尿病小鼠心肌纤维化[J]. 中国病理生理杂志, 2019, 35(5): 881-888. DOI: 10.3969/j.issn.1000-4718.2019.05.017.
XieFJ, JiangSC, GaoSY, et al. Fasudil ameliorates myocardial fibrosis by regulating polarization of macrophages in diabetic mice[J]. Chinese Journal of Pathophysiology, 2019, 35(5): 881-888. DOI: 10.3969/j.issn.1000-4718.2019.05.017.
[5]
DillmannWH. Diabetic Cardiomyopathy[J]. Circ Res, 2019, 124(8): 1160-1162. DOI: 10.1161/CIRCRESAHA.118.314665.
[6]
KhanMA, YangEY, NguyenDT, et al. Examining the Relationship and Prognostic Implication of Diabetic Status and Extracellular Matrix Expansion by Cardiac Magnetic Resonance[J/OL]. Circ Cardiovasc Imaging, 2020, 13(7) [2022-04-07]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.120.011000. DOI: 10.1161/CIRCIMAGING.120.011000.
[7]
熊浩, 富青, 赵洁, . 1.5T磁共振T1mapping技术评价扩张型心肌病弥漫性纤维化的研究[J]. 临床心血管病杂志, 2020, 36(7): 652-657. DOI: 10.13201/j.issn.1001-1439.2020.07.016.
XiongH, FuQ, ZhaoJ, et al. The evaluation of diffuse myocardial fibrosis of dilated cardiomyopathy with T1mapping methods using 1.5T MRI[J]. Journal of Clinical Cardiology, 2020, 36(7): 652-657. DOI: 10.13201/j.issn.1001-1439.2020.07.016.
[8]
KaramitsosTD, ArvanitakiA, KarvounisH, et al. Myocardial Tissue Characterization and Fibrosis by Imaging[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1221-1234. DOI: 10.1016/j.jcmg.2019.06.030.
[9]
宋宇, 郭应坤, 许华燕, . 磁共振定量成像技术评估心肌组织的研究进展[J]. 磁共振成像, 2021, 12(11): 109-112, 121. DOI: 10.12015/issn.1674-8034.2021.11.027.
SongY, GuoYK, XuHY, et al. Progresses of quantitative magnetic resonance imaging for myocardial tissue evaluation[J]. Chin J Magn Reson Imaging, 2021, 12(11): 109-112, 121. DOI: 10.12015/issn.1674-8034.2021.11.027.
[10]
BunSS, KoberF, JacquierA, et al. Value of in vivo T2 measurement for myocardial fibrosis assessment in diabetic mice at 11.75 T[J]. Invest Radiol, 2012, 47(5): 319-323. DOI: 10.1097/RLI.0b013e318243e062.
[11]
Nielles-VallespinS, KhaliqueZ, FerreiraPF, et al. Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic Resonance[J]. J Am Coll Cardiol, 2017, 69(6): 661-676. DOI: 10.1016/j.jacc.2016.11.051.
[12]
ThompsonEW, Kamesh IyerS, SolomonMP, et al. Endogenous T1ρ cardiovascular magnetic resonance in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1) [2022-04-07]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00813-5. DOI: 10.1186/s12968-021-00813-5.
[13]
刘智, 郭丹丹, 李春平, . 3.0 T磁共振钆延迟强化技术评价小型猪慢性阻塞性肺病模型心肌纤维化的实验研究[J]. 磁共振成像, 2021, 12(8): 49-54. DOI: 10.12015/issn.1674-8034.2021.08.010.
LiuZ, GuoDD, LiCP, et al. Evaluation of myocardial fibrosis in miniature pig model of COPD by the 3.0 T magnetic resonance LGE techniques: An experimental study[J]. Chin J Magn Reson Imaging, 2021, 12(8): 49-54. DOI: 10.12015/issn.1674-8034.2021.08.010.
[14]
ZhangY, ZengW, ChenW, et al. MR extracellular volume mapping and non-contrast T1ρ mapping allow early detection of myocardial fibrosis in diabetic monkeys[J]. Eur Radiol, 2019, 29(6): 3006-3016. DOI: 10.1007/s00330-018-5950-9.
[15]
BambergF, HetterichH, RospleszczS, et al. Subclinical Disease Burden as Assessed by Whole-Body MRI in Subjects With Prediabetes, Subjects With Diabetes, and Normal Control Subjects From the General Population: The KORA-MRI Study[J]. Diabetes, 2017, 66(1): 158-169. DOI: 10.2337/db16-0630.
[16]
StorzC, HetterichH, LorbeerR, et al. Myocardial tissue characterization by contrast-enhanced cardiac magnetic resonance imaging in subjects with prediabetes, diabetes, and normal controls with preserved ejection fraction from the general population[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(6): 701-708. DOI: 10.1093/ehjci/jex190.
[17]
ShangY, ZhangX, LengW, et al. Assessment of Diabetic Cardiomyopathy by Cardiovascular Magnetic Resonance T1 Mapping: Correlation with Left-Ventricular Diastolic Dysfunction and Diabetic Duration[J/OL]. J Diabetes Res, 2017, 2017 [2022-04-07]. https://www.hindawi.com/journals/jdr/2017/9584278/. DOI: 10.1155/2017/9584278.
[18]
GaoY, YangZG, RenY, et al. Evaluation of myocardial fibrosis in diabetes with cardiac magnetic resonance T1-mapping: Correlation with the high-level hemoglobin A1c[J]. Diabetes Res Clin Pract, 2019, 150: 72-80. DOI: 10.1016/j.diabres.2019.03.004.
[19]
林青, 王佳佳, 葛英辉. 磁共振T1-mapping及细胞外容积在肥厚型心肌病中的应用价值[J].放射学实践, 2021, 36(9): 1095-1100. DOI: 10.13609/j.cnki.1000-0313.2021.09.004.
LinQ, WangJJ, GeYH, et al. Application of magnetic resonance T1-mapping and extracellular volume in hypertrophic cardiomyopathy[J]. Radiol Practice, 2021, 36(9): 1095-1100. DOI: 10.13609/j.cnki.1000-0313.2021.09.004.
[20]
AndoK, NagaoM, WatanabeE, et al. Association between myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: analysis by T2* BOLD and T1 mapping MRI[J]. Eur Radiol, 2020, 30(8): 4327-4336. DOI: 10.1007/s00330-020-06779-9.
[21]
张宏凯, 石春彦, 张楠, . 心脏磁共振成像T1 mapping技术检测2型糖尿病小鼠早期心肌纤维化的实验研究[J]. 心肺血管病杂志, 2020, 39(7): 860-867. DOI: 10.3969/j.issn.1007-5062.2020.07.026.
ZhangHK, ShiCY, ZhangN, et al. The research of detecting early myocardial fibrosis by cardiac magnetic resonance T1mapping in type 2 diabetic cardiomyopathy mouse model[J]. Journal of Cardiovasular & Pulmonary Diseases, 2020, 39(7): 860-867. DOI: 10.3969/j.issn.1007-5062.2020.07.026.
[22]
CaoY, ZengW, CuiY, et al. Increased myocardial extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain[J/OL]. Cardiovasc Diabetol, 2018, 17(1) [2022-04-07]. https://cardiab.biomedcentral.com/articles/10.1186/s12933-017-0651-2. DOI: 10.1186/s12933-017-0651-2.
[23]
向春红, 唐苏丹, 向波, . 初始T1值和细胞外容积分数与弥漫性心肌纤维化的相关性:Meta分析[J]. 临床心血管病杂志, 2020, 36(12): 1093-1098. DOI: 10.13201/j.issn.1001-1439.2020.12.006.
XiangCH, TangSD, XiangB, et al. A Meta-analysis of correlation among native T1,extracellular volume fraction and diffuse myocardial fibrosis[J]. Journal of Clinical Cardiology, 2020, 36(12): 1093-1098. DOI: 10.13201/j.issn.1001-1439.2020.12.006.
[24]
HuberAT, BravettiM, LamyJ, et al. Non-invasive differentiation of idiopathic inflammatory myopathy with cardiac involvement from acute viral myocarditis using cardiovascular magnetic resonance imaging T1 and T2 mapping[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1) [2022-04-07]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-018-0430-6. DOI: 10.1186/s12968-018-0430-6.
[25]
陈燕, 罗琳, 何健龙, . MRI T1 mapping,T2 mapping心肌分段在诊断急性心肌炎中的应用[J]. 中国医学影像学杂志, 2019, 27(8): 599-604, 606. DOI: 10.3969/j.issn.1005-5185.2019.08.009.
ChenY, LuoL, HeJL, et al. Myocardial Segmentation of MRI T1 Mapping and T2 Mapping in Diagnosis of Acute Myocarditis[J]. Chin J Med Imaging, 2019, 27(8): 599-604, 606. DOI: 10.3969/j.issn.1005-5185.2019.08.009.
[26]
AmanoY, OmoriY, AndoC, et al. Clinical Importance of Myocardial T2 Mapping and Texture Analysis[J]. Magn Reson Med Sci, 2021, 20(2): 139-151. DOI: 10.2463/mrms.rev.2020-0007.
[27]
冯根义, 张雷, 王建刚, . T2-mapping定量评价2型糖尿病患者心功能的初步研究[J]. 放射学实践, 2021, 36(3): 300-306. DOI: 10.13609/j.cnki.1000-0313.2021.03.004.
FengGY, ZhangL, WangJG, et al. A preliminary study on quantitative measurement of left ventricular myocardial T2 value to evaluate cardiac function in patients with type 2 diabetes mellitus[J]. Radiol Practice, 2021, 36(3): 300-306. DOI: 10.13609/j.cnki.1000-0313.2021.03.004.
[28]
ChowdharyA, GargP, DasA, et al. Cardiovascular magnetic resonance imaging: emerging techniques and applications[J]. Heart, 2021, 107(9): 697-704. DOI: 10.1136/heartjnl-2019-315669.
[29]
DasA, KellyC, TehI, et al. Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging[J]. Radiology, 2021, 299(1): 86-96. DOI: 10.1148/radiol.2021203208.
[30]
KhaliqueZ, FerreiraPF, ScottAD, et al. Diffusion Tensor Cardiovascular Magnetic Resonance in Cardiac Amyloidosis[J/OL]. Circ Cardiovasc Imaging, 2020, 13(5) [2022-04-07]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.119.009901. DOI: 10.1161/CIRCIMAGING.119.009901.
[31]
刘文洪, 罗光华, 赵衡. DTI、骨膜蛋白及溶血磷脂酸联合检测对心肌梗死后心室重构的预测价值[J]. 国际医学放射学杂志, 2021, 44(3): 277-282, 335. DOI: 10.19300/j.2021.L18121.
LiuWH, LuoGH, ZhaoH. The value of combining MR diffusion tensor imaging, periostin, and lysophosphatidyl acid in predicting structural remodeling after myocardial infarction[J]. International Journal of Medical Radiology, 2021, 44(3): 277-282, 335. DOI: 10.19300/j.2021.L18121.
[32]
AbdullahOM, DrakosSG, DiakosNA, et al. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation[J]. NMR Biomed, 2014, 27(11): 1378-1386. DOI: 10.1002/nbm.3200.
[33]
ArigaR, TunnicliffeEM, ManoharSG, et al. Identification of Myocardial Disarray in Patients With Hypertrophic Cardiomyopathy and Ventricular Arrhythmias[J]. J Am Coll Cardiol, 2019, 73(20): 2493-2502. DOI: 10.1016/j.jacc.2019.02.065.
[34]
DasA, ChowdharyA, KellyC, et al. Insight Into Myocardial Microstructure of Athletes and Hypertrophic Cardiomyopathy Patients Using Diffusion Tensor Imaging[J]. J Magn Reson Imaging, 2021, 53(1): 73-82. DOI: 10.1002/jmri.27257.
[35]
MekkaouiC, ReeseTG, JackowskiMP, et al. Diffusion MRI in the heart[J/OL]. NMR Biomed, 2017, 30(3) [2022-04-07]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.3426. DOI: 10.1002/nbm.3426.
[36]
NguyenC, FanZ, XieY, et al. In vivo diffusion-tensor MRI of the human heart on a 3 tesla clinical scanner: An optimized second order (M2) motion compensated diffusion-preparation approach[J]. Magn Reson Med, 2016, 76(5): 1354-1363. DOI: 10.1002/mrm.26380.
[37]
MagatJ, OzenneV, CedilnikN, et al. 3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging[J]. MAGMA, 2021, 34(5): 741-755. DOI: 10.1007/s10334-021-00913-4.
[38]
MekkaouiC, JackowskiMP, KostisWJ, et al. Myocardial Scar Delineation Using Diffusion Tensor Magnetic Resonance Tractography[J/OL]. J Am Heart Assoc, 2018, 7(3) [2022-04-07]. https://www.ahajournals.org/doi/10.1161/JAHA.117.007834. DOI: 10.1161/JAHA.117.007834.
[39]
SeraiSD. Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging[J]. Pediatr Radiol, 2022, 52(2): 217-227. DOI: 10.1007/s00247-021-05042-7.
[40]
高丽香, 袁慧书. T1ρ技术定量评估踝关节距骨骨软骨损伤[J]. 中国医学影像技术, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
GaoLX, YuanHS. T1ρ technique in quantitatively evaluation on ankle osteochondral lesions of talus[J]. Chin J Med Imaging Techno, 2020, 36(3): 444-447. DOI: 10.13929/j.issn.1003-3289.2020.03.034.
[41]
张豪, 邹立秋, 张凯, . MR多参数成像诊断肝纤维化分期的价值[J]. 中华放射学杂志, 2019, 53(10): 900-904. DOI: 10.3760/cma.j.issn.1005-1201.2019.10.021.
ZhangH, ZouLQ, ZhangK, et al. Experimental study on early diagnosis of liver fibrosis using multi-parametric MRI[J]. Chin J Radiol, 2019, 53(10): 900-904. DOI: 10.3760/cma.j.issn.1005-1201.2019.10.021.
[42]
van OorschotJW, El AidiH, Jansen of LorkeersSJ, et al. Endogenous assessment of chronic myocardial infarction with T(1ρ)-mapping in patients[J/OL]. J Cardiovasc Magn Reson, 2014, 16(1) [2022-04-07]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-014-0104-y. DOI: 10.1186/s12968-014-0104-y.
[43]
YinQ, AbendscheinD, MuccigrossoD, et al. A non-contrast CMR index for assessing myocardial fibrosis[J]. Magn Reson Imaging, 2017, 42: 69-73. DOI: 10.1016/j.mri.2017.04.012.
[44]
WangC, ZhengJ, SunJ, et al. Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients[J]. J Cardiol, 2015, 66(6): 520-526. DOI: 10.1016/j.jjcc.2015.03.005.
[45]
van OorschotJW, GüçlüF, de JongS, et al. Endogenous assessment of diffuse myocardial fibrosis in patients with T1ρ-mapping[J]. J Magn Reson Imaging, 2017, 45(1): 132-138. DOI: 10.1002/jmri.25340.
[46]
GramM, GenslerD, WinterP, et al. Fast myocardial T1ρmapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern[J]. MAGMA, 2022, 35: 325-340. DOI: 10.1007/s10334-021-00951-y.
[47]
Kamesh IyerS, MoonB, HwuangE, et al. Accelerated free-breathing 3D T1ρ cardiovascular magnetic resonance using multicoil compressed sensing[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1) [2022-04-07]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-018-0507-2. DOI: 10.1186/s12968-018-0507-2.
[48]
BustinA, ToupinS, SridiS, et al. Endogenous assessment of myocardial injury with single-shot model-based non-rigid motion-corrected T1 rho mapping[J]. J Cardiovasc Magn Reson, 2021, 23(1): 119. DOI: 10.1186/s12968-021-00781-w.
[49]
VelascoC, CruzG, LavinB, et al. Simultaneous T1, T2, and T1ρ cardiac magnetic resonance fingerprinting for contrast agent-free myocardial tissue characterization[J]. Magn Reson Med, 2022, 87(4): 1992-2002. DOI: 10.1002/mrm.29091.
[50]
QiH, BustinA, KuestnerT, et al. Respiratory motion-compensated high-resolution 3D whole-heart T1ρ mapping[J/OL]. J Cardiovasc Magn Reson, 2020, 22 [2022-04-07]. https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-020-0597-5. DOI: 10.1186/s12968-020-0597-5.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体