综述
磁共振高分辨力血管壁成像在缺血性脑卒中的研究进展
磁共振成像, 2023,14(1) : 156-160,165. DOI: 10.12015/issn.1674-8034.2023.01.029
摘要

颅内外动脉粥样硬化是缺血性脑卒中的主要病因,其中斑块易损性和斑块位置与缺血性脑卒中的病因判断及治疗方式的选择息息相关。目前,磁共振高分辨力血管壁成像依赖于多种可以同时抑制脑脊液及血液信号的黑血技术,实现了对颅内外动脉粥样硬化斑块的精细显示,成为脑血管病高危人群脑卒中筛查的有效手段。血管壁成像不仅可以观察管腔,也可观察血管壁内斑块的成分,并对斑块进行全面地分析,准确量化斑块内的各种成分,观察斑块与穿支血管入口的关系,为缺血性脑卒中患者的病因分型、药物疗效评价及手术方式的选择提供了充分的影像依据。本文就高分辨力血管壁成像技术及其对斑块特征的评估价值、卒中病因分型和临床治疗疗效评价方面进行综述,并着重提出了他汀类药物的最佳使用剂量及时长可作为今后的研究方向。

引用本文: 王泽华, 高阳. 磁共振高分辨力血管壁成像在缺血性脑卒中的研究进展 [J] . 磁共振成像, 2023, 14(1) : 156-160,165. DOI: 10.12015/issn.1674-8034.2023.01.029.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

0 前言

缺血性脑卒中是全球性医疗卫生问题,其二级预防是各级医疗机构不断改进和提升的方向[1]。在亚洲地区,颅内动脉粥样硬化引发缺血性卒中的发生率逐年升高,且发病患者的年龄年轻化[2]。以往使用经颅超声、CT血管造影、磁共振血管成像、数字减影血管造影等技术判断疑似脑梗死患者的颅内血管情况时,只观察了管腔狭窄程度,忽略了斑块的位置和状态,对于脑梗死机制(如动脉-动脉栓塞、低灌注或栓子清除率下降引起的分水岭区梗死、大动脉斑块阻塞穿支动脉入口)[3]和卒中病因的判定效果欠佳;对于中青年患者的症状性颅内动脉硬化病有时误判为血管炎,错误用药致病程拖延。目前,颅内外动脉的易损斑块是临床和科研的热点话题,例如评估不同剂量的他汀类药物和不同的用药时长对于斑块稳定性的效果,是高分辨力血管壁成像应用价值的体现。之前因技术受限,对大脑中动脉狭窄的患者采用介入治疗时忽略了动脉斑块与穿支动脉入口的关系,导致了内外侧豆纹动脉的供血区域脑梗死。而在颅内外动脉发生狭窄时,术前使用血管壁成像评估管腔和管壁情况,对于术式的选择和手术的必要性有指导性意义。

本综述的目的是描述血管壁成像技术及其对斑块易损性的评估优势,分析血管壁成像技术对判断卒中病因、评估药物和血管内介入术疗效的优势及价值。

1 血管壁成像技术及影像评估优势

血管壁成像的核心技术是黑血序列,与亮血技术相比,其不仅能观察管腔狭窄情况,也能观察管壁重构、斑块强化、斑块内出血,改变了脑梗死患者的危险分层[4]。当前磁共振血管壁成像多应用头颈一体化高密度线圈,黑血序列通常使用3D快速自旋回波序列进行大范围、等体素、高分辨力采集[5, 6];为了进一步获得更好的黑血效果和脑脊液抑制,可以施加额外的准备脉冲:流动敏感驱动平衡和延迟进动定制激发。对于颅内外动脉的明显病变,我们常规行垂直于目标血管长轴的二维管壁高分辨力T2WI、质子密度加权成像(proton-density weighted imaging, PDWI)、T1WI平扫和增强扫描;除此以外,怀疑伴有动脉夹层、闭塞、多发性大动脉炎以及脑静脉系统疾病时,应加扫大范围三维T2WI和T1WI平扫和增强扫描。

1.1 血管壁成像技术
1.1.1 SPACE序列研究

SPACE(Sampling Perfection with Application optimized Contrasts using different flip angle Evolutions)序列是由3D快速自旋回波(3D turbo spin echo, 3D TSE)发展变化而来,此技术在各个生产公司有不同的名称,如GE公司的CUBE序列、Siemens公司的SPACE序列、Philips公司的VISTA序列。SPACE序列一般为各向同性采集,不仅可以任意方位重建,还减轻了部分容积效应,相较二维TSE而言,整体提升了成像效率;SPACE序列利用可变翻转角的重聚脉冲实现射频能量吸收率的有效降低,同时改变射频激发后信号演变的模式以实现更长回波链的采集,缩短扫描时间。此外,SPACE序列利用非层块选择射频脉冲实现更短的回波间隙,以利于在相同的采样时间窗内采集更多的回波,提升成像的效率[7]。在以往,3D TSE T1WI应用较多,而近来T2-SPACE因其在鉴别颅内血管病变和区分斑块成分方面具有良好的对比度而得到学者的重视;该序列的缺点是抑制脑脊液信号能力弱,干扰了颅内血管壁的表征。ZHANG等[8]将反转恢复预脉冲(inversion recovery preparation, IR)与T2-SPACE结合后形成的T2IR-SPACE与T2-SPACE进行比较,发现T2IR-SPACE可更好地显示颅内血管壁。

1.1.2 流动敏感驱动平衡技术

流动敏感驱动平衡技术是一种磁共振黑血成像技术,因血流信号被抑制,血管壁结构得以清晰显示。该技术是利用三个翻转角为90°-180°-90°的非选择性射频脉冲和180°脉冲周围的对称梯度组成的制备序列。WANG等[9]于2010年提出一种改进的流动敏感驱动平衡脉冲序列,在保持黑血颈动脉MRI血流抑制能力不变的情况下,提高组织信噪比。而流动敏感驱动平衡改良技术结合散相梯度回波采集方式后被称为三维多回波重组梯度回波技术,可得到三维各向同性高分辨力血管壁图像,真正实现快速、大范围的颅颈一体化扫描[10]。BALU等[11]根据颈动脉分叉的信号特性,对三维多回波重组梯度回波技术进行了优化,以用于颈动脉分叉的血管壁成像,并可在2 min内覆盖整个颈动脉,从而确保患者的依从性和诊断图像质量。然而,三维多回波重组梯度回波技术在脑卒中临床应用中,因患者配合度差且颅颈一体化扫描时间相对较长,使得图像质量偏低;所以缩短扫描时间,提高图像质量是今后的研究目标。

1.1.3 延迟进动定制激发技术

延迟进动定制激发(Delays Alternating with Nutation for Tailored Excitation, DANTE)序列是一种经常用于科研的黑血成像序列,其不间断地给予小角度激发脉冲,联合稳定的散相梯度,让动态的血液和静止的组织产生高低不等的信号,从而抑制血流信号。COGSWELL等[12]使用3.0 T磁共振设备比较3D TSE与3D TSE联合DANTE的扫描图像质量,发现后者的脑脊液信噪比和血管壁信噪比有不同程度的降低,更好地抑制了脑脊液信号且提升了血管壁辨识度。VIESSMANN等[13]为了优化7.0 T场强的磁共振血管壁成像技术,得到清晰的血管壁图像,使用了DANTE-SPACE序列,其增加了管壁和脑脊液之间的对比度;虽然降低了管壁和管腔之间的对比度,但仍保持在较高水平。近年来,有国外研究团队将2种具有不同射频相位循环方案的独立DANTE融合为双延迟进动定制激发序列,其优势是可以提供高各向同性分辨率且无条带状伪影的血管壁图像,其不足之处是降低了管壁的信噪比[14]

1.2 影像评估优势
1.2.1 管壁重构

管壁的正性重构和负性重构对于斑块的稳定性有不同的影响。正性重构是指血管壁内的胶原会释放一些因子及酶,使管壁表面发生断裂,促使管腔扩张;同时,斑块变得不稳定,易发生斑块内出血,斑块表面附着血栓的可能性增大;但是有的学者在调整了管壁面积后,发现斑块内出血与正性重构无相关性[15]。负性重构是指斑块形成并凸向管腔,导致管腔狭窄,致使颅内发生低灌注,但是其形成的斑块较为稳定。有一项纳入40例脑卒中患者的研究证实了正性重构有更高的卒中风险[16];然而,有超声医师回顾性分析了冠脉血管内超声后,发现负性重构是导致临床事件发生的独立危险因素[17]。也有学者将卒中患者临床资料和影像资料结合,发现载脂蛋白B/AI水平与正性重构成正相关[18]。在症状性颅内外动脉粥样硬化疾病人群中,正性重构和负性重构相比,斑块强化的发生率更高[19];这一发现证实了血管壁发生正性重构时,其斑块易发生破裂,并发缺血性脑卒中。今后,对于无症状的颅颈动脉发生正性重构,应定期复查;对该类人群开展队列研究,进一步明确正性重构的危险因素及其与卒中的相关性。

1.2.2 斑块强化

斑块强化是易损斑块的特征之一,其原理为缺氧和炎症刺激下斑块内毛细血管形成,易并发斑块内出血,促使斑块发生破裂。当患者多血管床存在斑块时,发生强化的斑块数量越多、斑块强化程度越高时,发生卒中的潜在风险越大[20]。YAN等[21]分析了87位颅内动脉粥样硬化性狭窄患者的临床检验和影像学资料后,发现患者血浆脂蛋白相关磷脂酶A2浓度和斑块强化程度呈正相关,所以联合血浆脂蛋白相关磷脂酶A2浓度和斑块强化程度对颅内动脉狭窄患者进行急性缺血性脑卒中风险评估时,其较斑块强化单一指标具有更高的预测价值。SONG等[22]对症状性颅内动脉粥样硬化患者进行了为期一年的随访,发现斑块强化与颅内动脉粥样硬化患者的卒中复发独立相关,较差的侧支循环和斑块强化并存时更易卒中复发。KWEE等[23]对症状性颅内动脉粥样硬化患者进行了长期随访,发现颅内责任斑块多数为持续强化,而颅内非责任斑块多数在基线检查时强化不足或随访时强化减少。在磁共振高分辨力血管壁成像扫描中,因颈内动脉岩段和海绵窦段走行迂曲,常发生流动伪影,易与小斑块强化混淆,是临床工作上的重难点。

1.2.3 斑块内出血

斑块内出血作为卒中的高危因素[24],易诱发纤维破裂并发血栓形成,这可能与血流动力学相关;LEE等[25]发现颈动脉分叉角度和最大管壁剪切应力与斑块内出血呈正相关,证实了这一观点。LU等[26]发现斑块内有出血和无出血相比,有斑块内出血者最大壁厚、平均壁面积、狭窄程度更高,且更可能位于颈动脉分叉上方。CUI等[27]对41个颈动脉斑块进行了多对比磁共振血管壁成像后,发现纤维帽的完整性与斑块内出血体积为负相关。一项荟萃分析表明,在症状性颈动脉斑块和无症状颈动脉斑块进行成分对比后,发现斑块内出血与缺血性卒中发生呈正相关[28]。有国外学者观察了缺血性卒中患者的斑块内出血与胸锁乳突肌的信号强度比,发现其信号强度比与缺血性卒中的发生无相关性[29]。目前,斑块内出血作为易损斑块特征,与管腔狭窄程度共同预测卒中发生风险,但是斑块内的出血量与卒中发生的相关性还未可知,可作为下一步的研究目标。

2 血管壁成像临床应用价值
2.1 血管壁成像帮助判断缺血性卒中病因

血管壁成像用途广泛,不仅可以识别颅内血管源性疾病(如症状性颅内动脉粥样硬化、颅内动脉夹层、颅内血管炎、烟雾病以及可逆性血管收缩综合征)[30],也可以鉴别缺血性卒中病因,本文仅阐述血管壁成像在识别缺血性卒中病因中的应用。Org 10172急性卒中治疗试验(Trial of Org 10172 in Acute Stroke Treatment, TOAST)分型和中国缺血性卒中亚型(Chinese Ischemic Stroke Subclassification, CISS)分型是临床常用的缺血性卒中病因分型。CISS分型与TOAST分型相比,一方面提高了影像学检查在卒中病因分型中的重要性,另一方面不再以管腔狭窄程度作为危险分层的唯一因素,将斑块位置和斑块易损性纳入了分型标准[3]。TOAST分型对管腔狭窄程度大于50%和梗死病灶直径大于1.5 cm的硬性要求导致很大一部分脑梗死患者被归入隐源性卒中,所以我们将CISS分型标准作为之后卒中患者的病因分型标准。CISS分型分为大动脉粥样硬化型、心源性、穿支动脉疾病(perforating artery disease,PAD)、其他病因和不明原因五型。由于心源性卒中和其他病因(如脂肪栓塞和空气栓塞)可以根据临床资料和超声检查进行有效判断,所以其不作为血管壁成像研究目标。

2.1.1 大动脉粥样硬化型

大动脉粥样硬化型分为动脉-动脉栓塞、低灌注或栓子清除率下降引起的分水岭区梗死、母动脉斑块阻塞穿支动脉入口和混合机制。动脉-动脉栓塞在影像上表现为单个或多个散在的脑皮质梗死,伴有或不伴有皮质下梗死,位于病变动脉的分支区域;动脉-动脉栓塞主要是由易损斑块引起的,血管壁多序列多对比成像可以发现大脂质核心、斑块内出血和纤维帽破裂等易损斑块特征,当管壁无明显狭窄且易损斑块存在时,考虑动脉-动脉栓塞的可能性大;在后循环缺血性卒中患者中,动脉-动脉栓塞与母动脉斑块阻塞穿支相比,椎基底动脉的斑块数量和斑块强化程度与前者关系更加密切[31]。在前循环缺血性卒中患者中,动脉-动脉栓塞与PAD相比,前者的狭窄程度与斑块强化程度均较后者更大[32]。母动脉斑块阻塞穿支动脉入口属于大动脉粥样硬化型,常与穿支动脉病变混淆,血管壁成像可以将两者进行有效区分;而血管壁成像对母动脉斑块阻塞穿支动脉入口识别的最大意义在于介入治疗术前评估,防止斑块脱落进入穿支动脉内造成患者二次梗死。

2.1.2 PAD

PAD主要发病机制有3种:(1)载体动脉的粥样硬化斑块延伸至穿支动脉开口致血管闭塞,引起PAD的斑块位于责任大动脉和穿支动脉的交界处;(2)穿支动脉开口处的动脉粥样硬化斑块致血管闭塞;(3)穿支动脉开口处的不稳定斑块脱落致血管闭塞[33];除此之外,穿支动脉梗死与该穿支动脉数量也有一定关系[34]。PAD的发病主要与豆纹动脉和脑桥旁正中动脉有关;目前血管壁成像可以观察到分支直径较大的豆纹动脉,对更细小的脑桥旁正中动脉显示较差。当血管壁成像应用于深穿支梗死患者,其斑块负荷和豆纹动脉分支长度均较非梗死者少[35]。之前的大量研究表明,脑深穿支个体差异大,潜在影响了穿支走行区域的侧支循环,未来应作为脑血管病的研究主题[36]

2.1.3 隐源性卒中

在以往的脑梗死病因判别中,因受影像检查条件的限制,大量大动脉粥样硬化型和PAD被归为隐源性卒中。而高分辨力血管壁成像不仅可以观察非狭窄血管的易损斑块,也可以观察到颅内穿支动脉走行与斑块位置的关系,极大地提高了临床医生对卒中类型判断的准确性。在传统心血管危险因素与隐源性卒中的相关性研究中,吸烟与年轻人隐源性卒中之间存在密切联系[37]。隐源性卒中患者和穿支动脉病变患者相比,非狭窄性颈动脉斑块的易损性更大[38];隐源性卒中患者和大动脉粥样硬化型患者相比,非狭窄性颈动脉斑块的易损性更小[38]。如今,7 T MRI技术的应用进一步提高了空间分辨率,使血管壁成像更清晰地显示颅内血管,可以观察到之前认为是隐源性卒中患者的颅内责任斑块[39]

2.2 血管壁成像对临床治疗疗效的评价

缺血性脑卒中患者治疗的方式主要有3种,包括药物、介入、手术,临床医生根据疾病需求选择治疗方法。目前,国内外研究集中在血管壁成像对他汀类药物和血管内介入术的疗效评价。

2.2.1 他汀类药物

目前临床上对他汀类药物种类和剂量的选择各有不同,其疗效评价也有差异。一项荟萃分析表明,连续一年使用他汀类药物,颈动脉斑块内的脂质核心明显减少,而血管壁体积无改变,说明斑块成分变化对他汀类药物疗效监测比血管壁体积更敏感[40]。杜瑞雪等[41]将中等剂量瑞舒伐他汀应用于糖尿病患者并随访一年,与非糖尿病患者相比,其颈动脉斑块内的脂质核心改善不明显。WU等[42]给中国北方症状性大脑中动脉粥样硬化性狭窄患者使用标准剂量阿托伐他汀12个月,发现可以稳定和逆转大脑中动脉斑块,但其血管重塑无明显改变。CHUNG等[43]应用高剂量他汀类药物治疗症状性颅内动脉粥样硬化斑块6个月,斑块体积和狭窄程度明显下降,血管重塑无改变。在颈动脉支架术围手术期内加用高剂量他汀类药物,可以减少其缺血性并发症[44]。除此之外,他汀类药物对血管外膜和斑块新生血管的形成也有相应疗效;有研究表明,无症状颈动脉粥样硬化患者接受瑞舒伐他汀治疗3个月后,血管外膜和斑块的新生血管显著减少[45]。综上所述,他汀类药物对斑块体积和成分均有显著的逆转效果;调整他汀类药物剂量,病变血管重塑的情况无改变。他汀类药物应尽早用于缺血性卒中患者,但其种类和剂量的选择还没有统一的标准,这在今后仍是研究的重点。

2.2.2 血管内介入

卒中患者的血管内介入治疗主要有单纯球囊扩张血管成形术、球囊扩张式支架置入术和球囊扩张及自膨式支架置入术;血管壁成像是评估颅内动脉粥样硬化性疾病(intracranial atherosclerotic disease, ICAD)的有效工具,可以帮助筛选可能从血管内介入治疗中获益的人群。MA等[46]评估了严重基底动脉狭窄患者颅内支架植入术后其斑块特征和穿支卒中与动脉重塑模式的相关性,发现了ICAD患者围手术期穿支事件的发生与斑块特征相关,基底动脉负性重构的患者术后更易出现穿支事件。HOU等[47]前瞻性纳入对积极药物治疗无效的症状性非急性颅内动脉闭塞患者,并进行血管内再通治疗,再通干预前进行血管壁成像,发现了该类患者的血管闭塞形态、闭塞长度与闭塞成功开通有关,伴有残余管腔且闭塞长度短的患者容易成功再通。在一项将单纯球囊扩张应用于ICAD患者的研究中发现,ICAD患者的管壁越薄、管壁面积越小,单纯球囊的扩张效果越好[48]。在一项前瞻性颅内血管壁成像研究中,一部分患者在MRI扫描前进行了动脉内血栓抽吸治疗,其余患者未经动脉内治疗,与未经动脉内治疗的患者相比,经动脉内治疗的患者在治疗动脉的同侧血管壁上有出更多的向心性增强病灶,表明血管壁发生反应性变化,证明血管壁成像可以观察到因血管内介入治疗而受损的血管壁[49]。今后,在症状性颅内外动脉狭窄患者做血管内介入治疗前,应先做血管壁成像,对目标血管及其穿支血管做出评估,对于单纯性穿支病变患者不宜做血管内介入治疗;斑块位置距穿支入口较近时,应慎重选择血管内介入治疗;接受血管内介入治疗的患者应定期做血管壁成像复查。

3 小结与展望

在以往的高分辨力血管壁成像研究中,学者们致力于改进血管壁成像技术以更好地识别易损斑块特征、探索易损斑块特征与缺血性脑卒中发生的相关性[50]。现在,人们将目光更多地聚焦于血管壁成像在卒中病因分型和临床治疗的应用。一方面,血管壁成像使隐源性卒中人群减少,改变了治疗方式,改善了患者预后;另一方面,血管壁成像对颅内血管进行全方位评估,帮助医生合理地选择血管内介入治疗方式,减少了术后并发症。目前,血管壁成像时间较长,卒中患者耐受力差,对该检查的接受程度低;在往后的研究中,应着重于改进血管壁成像序列,减少扫描时间,使其临床应用更加广泛。

本文引用格式:

王泽华, 高阳. 磁共振高分辨力血管壁成像在缺血性脑卒中的研究进展[J]. 磁共振成像, 2023, 14(1): 156-160, 165.

Cite this article as:

WANG Z H, GAO Y. Research progress of high resolution magnetic resonance angiography in ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(1): 156-160, 165.

ACKNOWLEDGMENTS

Healthcare and Technology Plan Project of Inner Mongolia Autonomous Region (No. 202201250).

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
KLEINDORFERD O, TOWFIGHIA, CHATURVEDIS, et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association[J]. Stroke, 2021, 52(7): 364-467. DOI: 10.1161/STR.0000000000000375.
[2]
CHENC Y, LINP T, WANGY H, et al. Etiology and risk factors of intracranial hemorrhage and ischemic stroke in young adults[J]. J Chin Med Assoc, 2021, 84(10): 930-936. DOI: 10.1097/JCMA.0000000000000598.
[3]
CHENP H, GAOS, WANGY J, et al. Classifying Ischemic Stroke, from TOAST to CISS[J]. CNS Neurosci Ther, 2012, 18(6): 452-456. DOI: 10.1111/j.1755-5949.2011.00292.x.
[4]
TIANX, TIANB, SHIZ, et al. Assessment of Intracranial Atherosclerotic Plaques Using 3D Black-Blood MRI: Comparison With 3D Time-of-Flight MRA and DSA[J]. J Magn Reson Imaging, 2021, 53(2): 469-478. DOI: 10.1002/jmri.27341.
[5]
ZHANGN, LIUX, XIAOJ, et al. Plaque Morphologic Quantification Reliability of 3D Whole-Brain Vessel Wall Imaging in Patients With Intracranial Atherosclerotic Disease: A Comparison With Conventional 3D Targeted Vessel Wall Imaging[J]. J Magn Reson Imaging, 2021, 54(1): 166-174. DOI: 10.1002/jmri.27550.
[6]
INOUEK, NAKAYAMAR, ISOSHIMAS, et al. Semiautomated Segmentation and Volume Measurements of Cervical Carotid High-Signal Plaques Using 3D Turbo Spin-Echo T1-Weighted Black-Blood Vessel Wall Imaging: A Preliminary Study[J/OL]. Diagnostics (Basel), 2022, 12(4): 1014 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/35454062/. DOI: 10.3390/diagnostics12041014.
[7]
ZHOUZ, CHENS, BALUN, et al. Neural network enhanced 3D turbo spin echo for MR intracranial vessel wall imaging[J]. Magn Reson Imaging, 2021, 78: 7-17. DOI: 10.1016/j.mri.2021.01.004.
[8]
ZHANGL, ZHUY, QIY, et al. T2-Weighted Whole-Brain Intracranial Vessel Wall Imaging at 3 Tesla With Cerebrospinal Fluid Suppression[J/OL]. Front Neurosci, 2021, 15: 665076 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8267868/pdf/fnins-15-665076.pdf. DOI: 10.3389/fnins.2021.665076.
[9]
WANGJ, YARNYKHV L, YUANC. Enhanced image quality in black-blood MRI using the improved motion-sensitized driven-equilibrium (iMSDE) sequence[J]. J Magn Reson Imaging, 2010, 31(5): 1256-1263. DOI: 10.1002/jmri.22149.
[10]
BAYLAMG D, WATASEH, CHUB, et al. Detection of Advanced Lesions of Atherosclerosis in Carotid Arteries Using 3-Dimensional Motion-Sensitized Driven-Equilibrium Prepared Rapid Gradient Echo (3D-MERGE) Magnetic Resonance Imaging as a Screening Tool[J]. Stroke, 2022, 53(1): 194-200. DOI: 10.1161/STROKEAHA.120.032505.
[11]
BALUN, YARNYKHV L, CHUB, et al. Carotid plaque assessment using fast 3D isotropic resolution black-blood MRI[J]. Magn Reson Med, 2011, 65(3): 627-637. DOI: 10.1002/mrm.22642.
[12]
COGSWELLP M, SIEROJ, LANTSS K, et al. Variable impact of CSF flow suppression on quantitative 3.0T intracranial vessel wall measurements[J]. J Magn Reson Imaging, 2018, 48(4): 1120-1128. DOI: 10.1002/jmri.26028.
[13]
VIESSMANNO, LIL, BENJAMINP, et al. T2-Weighted intracranial vessel wall imaging at 7 Tesla using a DANTE-prepared variable flip angle turbo spin echo readout (DANTE-SPACE)[J]. Magn Reson Med, 2017, 77(2): 655-663. DOI: 10.1002/mrm.26152.
[14]
COOLENB F, SCHOORMANSJ, GILBERTG, et al. Double delay alternating with nutation for tailored excitation facilitates banding-free isotropic high-resolution intracranial vessel wall imaging[J/OL]. NMR Biomed, 2021, 34(9): 4567 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8459252/pdf/NBM-34-e4567.pdf. DOI: 10.1002/nbm.4567.
[15]
DILBAK, VAN DIJKA C, CROMBAGG, et al. Association between Intraplaque Hemorrhage and Vascular Remodeling in Carotid Arteries: The Plaque at RISK (PARISK) Study[J]. Cerebrovasc Dis, 2021, 50(1): 94-99. DOI: 10.1159/000511935.
[16]
ZHANGD, WUX, TANGJ, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis[J]. Eur Radiol, 2021, 31(7): 5234-5242. DOI: 10.1007/s00330-020-07607-w.
[17]
GENGL, DUP, YUANY, et al. Impact of Arterial Remodeling of Intermediate Coronary Lesions on Long-Term Clinical Outcomes in Patients with Stable Coronary Artery Disease: An Intravascular Ultrasound Study[J/OL]. J Interv Cardiol, 2021, 23: 991575 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213497/pdf/JITC2021-9915759.pdf. DOI: 10.1155/2021/9915759.
[18]
WANGS, LIZ, LIX, et al. Plasma ApoB/AI: An effective indicator for intracranial vascular positive remodeling[J/OL]. J Neurol Sci, 2022, 36: 120226 [2022-08-02]. https://www.jns-journal.com/action/showPdf?pii=S0022-510X%2822%2900088-0. DOI: 10.1016/j.jns.2022.120226.
[19]
ZHANGD F, WUX Y, ZHANGW D, et al. The Relationship between Patterns of Remodeling and Degree of Enhancement in Patients with Atherosclerotic Middle Cerebral Artery Stenosis: A High-Resolution MRI Study[J]. Neurol India, 2021, 69(6): 1663-1669. DOI: 10.4103/0028-3886.333443.
[20]
CUIB, YANGD, ZHENGW, et al. Plaque enhancement in multi-cerebrovascular beds associates with acute cerebral infarction[J]. Acta Radiol, 2021, 62(1): 102-112. DOI: 10.1177/0284185120915604.
[21]
YANX, GAOJ, TANGM, et al. Combined Assessment of Elevated Plasma Lipoprotein-Associated Phospholipase A2 and Plaque Enhancement Improved Accuracy in the Risk of Acute Ischemic Stroke in Patients with Intracranial Artery Stenosis[J/OL]. J Stroke Cerebrovasc Dis, 2021, 30(12): 106103 [2022-08-02]. https://www.strokejournal.org/article/S1052-3057(21)00508-5/fulltext. DOI: 10.1016/j.jstrokecerebrovasdis.2021.106103.
[22]
SONGX, ZHAOX, LIEBESKINDD S, et al. Incremental value of plaque enhancement in predicting stroke recurrence in symptomatic intracranial atherosclerosis[J]. Neuroradiology, 2020, 62(9): 1123-1131. DOI: 10.1007/s00234-020-02418-8.
[23]
KWEER M, QIAOY, LIUL, et al. Temporal course and implications of intracranial atherosclerotic plaque enhancement on high-resolution vessel wall MRI[J]. Neuroradiology, 2019, 61(6): 651-657. DOI: 10.1007/s00234-019-02190-4.
[24]
BOSD, ARSHIB, VAN DEN BOUWHUIJSENQ, et al. Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435. DOI: 10.1016/j.jacc.2021.01.038.
[25]
LEEU Y, KWAKH S. Evaluation of Plaque Vulnerability via Combination of Hemodynamic Analysis and Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage (SNAP) Sequence for Carotid Intraplaque Hemorrhage[J/OL]. J Pers Med, 2021, 11(9): 856 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/34575633/. DOI: 10.3390/jpm11090856.
[26]
LUM, CUIY, PENGP, et al. Shape and Location of Carotid Atherosclerotic Plaque and Intraplaque Hemorrhage: A High-resolution Magnetic Resonance Imaging Study[J]. J Atheroscler Thromb, 2019, 26(8): 720-727. DOI: 10.5551/jat.47449.
[27]
CUIY, QIAOH, MAL, et al. Association of Age and Size of Carotid Artery Intraplaque Hemorrhage and Minor Fibrous Cap Disruption: A High Resolution Magnetic Resonance Imaging Study[J]. J Atheroscler Thromb, 2018, 25(12): 1222-1230. DOI: 10.5551/jat.43679.
[28]
SCHINDLERA, SCHINNERR, ALTAFN, et al. Prediction of Stroke Risk by Detection of Hemorrhage in Carotid Plaques: Meta-Analysis of Individual Patient Data[J/OL]. JACC Cardiovasc Imaging, 2020, 13: 395-406 [2022-08-02]. https://www.sciencedirect.com/science/article/pii/S1936878X19304371?via%3Dihub. DOI: 10.1016/j.jcmg.2019.03.028.
[29]
LARSONA S, BRINJIKJIW, KROLLN J, et al. Normalized intraplaque hemorrhage signal on MP-RAGE as a marker for acute ischemic neurological events[J]. Neuroradiol J, 2022, 35(1): 112-118. DOI: 10.1177/19714009211029263.
[30]
KERNK C, LIEBESKINDD S. Vessel Wall Imaging of Cerebrovascular Disorders[J/OL].Curr Treat Options Cardiovasc Med, 2019, 21(11): 65 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/31728661/. DOI: 10.1007/s11936-019-0782-8.
[31]
HOUZ, LIM, LYUJ, et al. Intraplaque Enhancement Is Associated With Artery-to-Artery Embolism in Symptomatic Vertebrobasilar Atherosclerotic Diseases[J/OL]. Front Neurol, 2021, 12: 680827 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440987/pdf/fneur-12-680827.pdf. DOI: 10.3389/fneur.2021.680827.
[32]
WONS Y, CHAJ, CHOIH S, et al. High-Resolution Intracranial Vessel Wall MRI Findings Among Different Middle Cerebral Artery Territory Infarction Types[J]. Korean J Radiol, 2022, 23(3): 333-342. DOI: 10.3348/kjr.2021.0615.
[33]
NAHH W, KANGD W, KWONS U, et al. Diversity of single small subcortical infarctions according to infarct location and parent artery disease: analysis of indicators for small vessel disease and atherosclerosis[J]. Stroke, 2010, 41(12): 2822-2827. DOI: 10.1161/STROKEAHA.110.599464.
[34]
LIANGJ, LIUY, XUX, et al. Cerebral Perforating Artery Disease: Characteristics on High-Resolution Magnetic Resonance Imaging[J]. Clin Neuroradiol, 2019, 29(3): 533-541. DOI: 10.1007/s00062-018-0682-4.
[35]
WUF, ZHANGQ, DONGK, et al. Whole-brain magnetic resonance imaging of plaque burden and lenticulostriate arteries in patients with different types of stroke[J/OL]. Ther Adv Neurol Disord, 2019, 12: 175628 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6393832/pdf/10.1177_1756286419833295.pdf. DOI: 10.1177/1756286419833295.
[36]
VOGELSV, DAMMERSR, VAN BILSENM, et al. Deep Cerebral Perforators: Anatomical Distribution and Clinical Symptoms: An Overview[J/OL]. Stroke, 2021, 52(10): 660-674 [2022-08-02]. https://www.ahajournals.org/doi/epub/10.1161/STROKEAHA.120.034096. DOI: 10.1161/STROKEAHA.120.034096.
[37]
JAFFREA, RUIDAVETSJ B, NASRN, et al. Tobacco Use and Cryptogenic Stroke in Young Adults[J]. J Stroke Cerebrovasc Dis, 2015, 24(12): 2694-2700. DOI: 10.1016/j.jstrokecerebrovasdis.2015.07.022.
[38]
KOPCZAKA, SCHINDLERA, BAYER-KARPINSKAA, et al. Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke[J]. J Am Coll Cardiol, 2020, 76(19): 2212-2222. DOI: 10.1016/j.jacc.2020.09.532.
[39]
FAKIHR, ROAJ A, BATHLAG, et al. Detection and Quantification of Symptomatic Atherosclerotic Plaques With High-Resolution Imaging in Cryptogenic Stroke[J]. Stroke, 2020, 51(12): 3623-3631. DOI: 10.1161/STROKEAHA.120.031167.
[40]
ZHOUP, WANGY, SUNJ, et al. Assessment of Therapeutic Response to Statin Therapy in Patients With Intracranial or Extracranial Carotid Atherosclerosis by Vessel Wall MRI: A Systematic Review and Updated Meta-Analysis[J/OL]. Front Cardiovasc Med, 2021, 8: 742935 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578267/pdf/fcvm-08-742935.pdf. DOI: 10.3389/fcvm.2021.742935.
[41]
杜瑞雪, 蔡剑鸣, 王庆军, . 采用核磁共振观察中等剂量瑞舒伐他汀治疗对糖尿病患者颈动脉粥样硬化斑块的影响[J]. 中华心血管病杂志, 2022, 50(6): 570-576. DOI: 10.3760/cma.j.cn112148-20220225-00136.
DUR X, CAIJ M, WANGQ J, et al. Effects of moderate dose rosuvastatin on carotid plaque in patients with diabetes mellitus evaluated by magnetic resonance imaging[J]. Chin J Cardiovasc Med, 2022, 50(6): 570-576. DOI: 10.3760/cma.j.cn112148-20220225-00136.
[42]
WUY, LIF, WANGY, et al. Standard-Dose Atorvastatin Treatment in Patients With Symptomatic Middle Cerebral Artery Atherosclerotic Stenosis: A Vessel Wall Magnetic Resonance Imaging Study[J/OL]. Front Neurol, 2021, 12: 693397 [2022-08-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693378/pdf/fneur-12-693397.pdf. DOI: 10.3389/fneur.2021.693397.
[43]
CHUNGJ W, CHAJ, LEEM J, et al. Intensive Statin Treatment in Acute Ischaemic Stroke Patients with Intracranial Atherosclerosis: a High-Resolution Magnetic Resonance Imaging study (STAMINA-MRI Study)[J]. J Neurol Neurosurg Psychiatry, 2020, 91(2): 204-211. DOI: 10.1136/jnnp-2019-320893.
[44]
SHINOZAKIN, MURAKAMIT, OHNOY, et al. Effect of high-dose strong statin for preventing periprocedural ischemic complications of carotid artery stenting[J]. Heart Vessels, 2020, 35(6): 762-768. DOI: 10.1007/s00380-019-01552-5.
[45]
DUR, CAIJ, CUIB, et al. Rapid improvement in carotid adventitial angiogenesis and plaque neovascularization after rosuvastatin therapy in statin treatment-naive subjects[J]. J Clin Lipidol, 2019, 13(5): 847-853. DOI: 10.1016/j.jacl.2019.07.008.
[46]
MAN, XUZ, LYUJ, et al. Association of Perforator Stroke After Basilar Artery Stenting With Negative Remodeling[J]. Stroke, 2019, 50(3): 745-749. DOI: 10.1161/STROKEAHA.118.023838.
[47]
HOUZ, YANL, ZHANGZ, et al. High-resolution magnetic resonance vessel wall imaging-guided endovascular recanalization for nonacute intracranial artery occlusion[J/OL]. J Neurosurg, 2021, 11: 1-7 [2022-08-02]. https://thejns.org/view/journals/j-neurosurg/137/2/article-p412.xml. DOI: 10.3171/2021.9.JNS211770.
[48]
HOUZ, ZHANGZ, YANL, et al. Association of residual stenosis after balloon angioplasty with vessel wall geometries in intracranial atherosclerosis[J]. J Neurointerv Surg, 2022, 14(8): 762-766. DOI: 10.1136/neurintsurg-2021-017997.
[49]
LINDENHOLZA, VAN DER SCHAAFI C, VAN DER KOLKA G, et al. MRI Vessel Wall Imaging after Intra-Arterial Treatment for Acute Ischemic Stroke[J]. AJNR Am J Neuroradiol, 2020, 41(4): 624-631. DOI: 10.3174/ajnr.A6460.
[50]
LIUY, WANGM, ZHANGB, et al. Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 36 [2022-08-02]. https://pubmed.ncbi.nlm.nih.gov/31262337/. DOI: 10.1186/s12968-019-0548-1.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词