综述
不同磁共振成像技术在年轻女性乳腺肿瘤的研究进展
磁共振成像, 2023,14(2) : 186-190. DOI: 10.12015/issn.1674-8034.2023.02.033
摘要

乳腺癌是全世界女性最常见的恶性肿瘤,一般常见于中老年群体,但近几年随着生活环境和膳食结构的改变,乳腺癌发病愈发年轻化。而MRI检查在乳腺疾病中的应用越来越广泛,对乳腺良恶性病变诊断的准确率有了很大提高,尤其对于乳腺组织密度较大的年轻女性更有意义。本文对不同MRI技术在年轻女性乳腺肿瘤中的研究进展予以综述,旨在加强影像医师对年轻女性乳腺肿瘤尤其是年轻乳腺癌的认识,有助于提高对于年轻女性人群乳腺疾病早诊、早治的关注与重视,从而改善她们的生活质量和增加幸福指数。

引用本文: 宁宁, 梁泓冰, 吴祺, 等.  不同磁共振成像技术在年轻女性乳腺肿瘤的研究进展 [J] . 磁共振成像, 2023, 14(2) : 186-190. DOI: 10.12015/issn.1674-8034.2023.02.033.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

本刊刊出的所有论文不代表本刊编委会的观点,除非特别声明

0 前言

当今世界,乳腺肿瘤的发病率逐年增高,特别是乳腺癌已成为全世界女性恶性肿瘤发病率最高的疾病,也是导致女性死亡的重要病因[1]。近几年随着生活环境和饮食结构的改变,乳腺癌发病越来越年轻化,尤其是我国女性乳腺癌的发病年龄比欧美国家早十年[2]。据相关研究表明,年龄是乳腺癌发生的关键独立危险因素,不同年龄段的患者具有不同的风险因素、肿瘤生物学、临床结果和特定的心理社会问题[3]。女性年轻乳腺癌和老年乳腺癌相比,侵袭程度更高,术后具有较高的复发率,预后也比较差,具有高度异质性[4, 5]。因此,针对年轻人群乳腺癌的诊治已成为肿瘤学界关注的热点。

随着影像技术水平的不断提高,影像学检查对年轻女性乳腺肿瘤的早期诊断具有重要的价值。MRI具有良好的组织分辨率、无辐射损伤、多种后处理及功能成像方法的特点,在乳腺疾病中的应用越来越广泛,对乳腺良恶性病变诊断的准确率有了很大提高,尤其对于乳腺组织密度较大的年轻女性更有意义,可用于区分致密的乳腺纤维腺体组织(fibroglandular tissue, FGT)和恶性肿瘤[6]。有研究表明,术前乳腺MRI改变了相当一部分被诊断患有乳腺癌的年轻女性的手术管理,有助于减少再次手术的比率以及全乳切除率[7]。术前乳腺MRI提高了同侧或对侧乳腺隐匿性癌灶的检出率[6],同时准确评估了腋窝淋巴结是否受累[8]。因此,充分了解年轻女性乳腺疾病临床病理特点及MRI影像学表现十分重要,本文将对不同MRI技术在年轻女性乳腺肿瘤中的研究进展予以综述,旨在加强影像医师对于年轻女性乳腺肿瘤尤其是年轻乳腺癌临床、病理及影像特点的相关认识,有助于提高对于年轻女性人群乳腺疾病早诊、早治的关注与重视,从而改善她们的生活质量和增加幸福指数。

1 年轻女性乳腺肿瘤临床及病理特点

乳腺肿瘤学领域对“年轻女性”的定义并不规范,并且文献中关于定义构成“年轻”或“非常年轻”患者的年龄范围以及建立适当的老年比较组方面存在差异,国内外报道各不相同[9, 10, 11]。一项旨在确定年轻患者最佳临界值的多中心研究表明,40岁是定义“年轻”的合理临界值[12]。同时,40岁也是欧洲较为公认的界值[13]。年轻女性乳腺疾病以良性病变为主,其中纤维腺瘤是年轻女性最常见的乳腺良性肿瘤,多数纤维腺瘤生长较为缓慢,青春期由于体内雌激素水平升高,可见纤维腺瘤缓慢增大[14]。巨大纤维腺瘤是指直径大于5 cm或质量高于500 g的纤维腺瘤,是一种罕见的良性乳腺病变,约占纤维腺瘤的0.5%~2.0%,通常发生在怀孕或哺乳期的妇女或青春期女性,其生长与雌激素、孕酮和催乳素的增加有关[15]。此外,年轻女性中可见乳腺乳头状瘤、淋巴瘤、血管肉瘤的发生,其中血管肉瘤是乳腺一种少见的非上皮肿瘤,仅占乳腺恶性肿瘤的0.03%~0.04%,也称恶性血管内皮瘤,是由血管内皮细胞或向血管内皮细胞分化的间叶细胞发生的恶性肿瘤,原发于乳腺的血管肉瘤比较罕见,30~40岁的女性及妊娠、哺乳期妇女发病率较高,认为与雌激素水平有关[16]。乳腺乳头状瘤、淋巴瘤目前病因尚不明确,有学者认为亦与激素水平有关[17, 18]

年轻乳腺癌以浸润性癌为主,且多为浸润性导管癌[19]。在发达国家,年龄<40岁的乳腺癌患者占所有乳腺癌患者的比例<7%[2]。亚洲女性乳腺癌首发年龄<40岁者约占20%,<35岁者为10%左右[20]。尽管西方乳腺癌的发病率较高,但东方40岁以下年轻女性和绝经前女性的乳腺癌比例高于西方[21]。在中国,年轻乳腺癌患者在全部乳腺癌患者中所占比例>10%,发病年龄≤25岁的极年轻乳腺癌约占0.5%。由此可见,中国比西方国家女性患者有年轻化趋势,而且发病率和病死率呈逐年上升的趋势。目前,对于年轻乳腺癌的定义有待大数据样本研究和规范化的指南。从分子分型水平来看,与老年乳腺癌相比,年轻患者三阴性和人表皮生长因子受体2(the human epidermal growth factor receptor 2, HER-2)阳性比例较高,HER-2过度表达的肿瘤转移能力、侵袭性更强,预后差,与患者的临床不良结局有关[22, 23]。Ki-67是目前反映肿瘤细胞增殖活性最常用的标记物之一,其高表达与肿瘤细胞的产生、浸润生长以及转移密切相关,研究结果显示年轻乳腺癌Ki-67常为高表达[24]

2 常规MRI平扫技术在年轻乳腺肿瘤中的应用

常规乳腺MRI平扫技术包括T1WI和T2WI。多数病变在T1WI上表现为低信号,难以区分具体组织成分。研究认为,在无脂肪抑制T1WI上观察到的FGT被认为是乳房的非肿瘤特征[25]。有学者认为肿瘤内的囊性含血液区在T1WI上表现为点状或片状高信号为乳腺血管肉瘤的特征性表现[26],但仍需要大样本数据对此结论进行验证。

T2WI脂肪抑制成像可以清楚显示囊性病灶,T2WI表现为高信号的肿块多数是良性的,包括大汗腺化生、囊肿、黏液样纤维腺瘤、脂肪坏死和淋巴结,而多数癌性病灶在T2WI上相对于纤维腺体实质并没有显示出明显的高信号[27]。HUANG等[28]研究证实了年轻人群所患的三阴性乳腺癌通常表现出类似良性病变的平扫影像学特征,如椭圆形/圆形、边缘光滑、无微钙化、T2WI表现为高信号。T2WI还可以观察到乳腺周围或胸前的水肿,有助于明确病变类型(有水肿的病变多为恶性),对年轻乳腺癌患者来说是一个预后不良的信号[29, 30]。目前T2WI在常规乳腺MRI中的附加价值仍有争议,多数学者认为T2WI适用于确认动态对比增强MRI(dynamic contrast enhanced MRI, DCE-MRI)诊断的良性病灶,而不是排除恶性病灶[31]

目前的研究认为,T1WI和T2WI作为常规平扫序列在乳腺检查中是必不可少的,T2WI序列上呈现等或稍高信号可作为判断年轻患者乳腺肿瘤良恶性的一个参考指标[28]

3 DCE-MRI技术在年轻乳腺肿瘤中的应用

DCE-MRI是一种通过注射外源性对比剂来评估肿瘤灌注和血管通透性的技术,它提供了良好的图像对比,在进行形态学分析的同时能定量测量肿瘤组织生理参数,对乳腺肿瘤的定性诊断具有很大的价值,是当前临床中最成熟关键的乳腺MRI检查方法[32]。依据乳腺MR影像报告和数据系统(breast imaging reporting and data system, BI-RADS)的分类标准,将乳腺DCE-MRI上有异常强化的乳腺病变分类为点状、肿块和非肿块强化三类。非肿块强化病变更常见于50岁以下的女性,研究认为其与较大的肿瘤、低组织学分级和导管内癌的存在有关[33]。BITENCOURT等[34]评估了92名浸润性癌的年轻患者,发现非肿块强化与年轻乳腺癌的不良预后有关。乳腺DCE-MRI上对于病变的非肿块强化与背景强化(background parenchymal enhancement, BPE)的区分很重要,后者代表正常乳腺的强化模式[28]。一项来自美国的影像病例对照研究表明,HER-2阳性的肿瘤与绝经前女性较高的BPE独立相关[35]。目前对于经期是否会影响MRI检查的诊断结果还存在一定争议,需要进一步研究去证实[36, 37]

通常年轻乳腺癌在DCE-MRI上表现为形状不规则的肿块强化,边缘不规则或呈棘状,内部有异质性增强信号[38]。在LEE等[25]的研究中,超过一半的恶性肿瘤表现为椭圆形的肿块病变,边缘呈环形,与先前研究不一致,因为在此研究中一半的患者(55.6%)为三阴性乳腺癌,所以更加证实了三阴性乳腺癌多为形状规则的圆形或椭圆形,此外还发现肿瘤的三维形状越是球形,与复发的关联度就越高,进一步验证了三阴性乳腺癌的高复发率。近期张倩倩等[39]在对不同分子分型年轻女性乳腺癌的研究中发现,三阴性乳腺癌主要表现为单发的肿块强化,形状规则(圆形、椭圆形)并多表现为边缘强化,认为与三阴性乳腺癌生物学行为更具侵袭性、病灶较大易出现坏死有关。HUANG等[28]研究证实了边缘强化是年轻乳腺癌的一个重要的独立预测因素,反映了组织学等级较高,激素受体表达越易为阴性。HER-2过表达型乳腺癌的MRI主要表现为多发、形态不规则、边缘不规则和不均匀强化,Luminal A型则很少出现边缘强化,这可能与其生物侵袭性行为低、病灶通常较小有关,同时也显示Luminal A型与Luminal B型乳腺癌较HER-2过表达型及三阴性乳腺癌更易出现均匀强化[39]。由此可见,在年轻乳腺癌中,不同分子分型乳腺癌有不同的增强MRI表现。

乳腺纤维腺瘤作为年轻女性的高发病变,在DCE-MRI上表现为良性特征,病变呈类圆形或分叶状肿块,边界清晰,边缘光整或有包膜,强化方式常呈持续均匀强化,少数无或轻微强化,部分病灶内部可见无强化的线样分隔,尤其是病灶内的低信号分隔被认为是目前与边界清晰的乳腺癌的有效鉴别征象之一[40]。国内学者报道,在DCE-MRI上乳腺原发性血管肉瘤表现为明显的不均匀强化,早期强化明显,延迟期有不同程度的向心性强化,时间-信号强度曲线(time-signal intensity curve, TIC)多为流入型或平台型[41]。国外学者认为肿块的强化特征取决于肿瘤分级,低级别血管肉瘤表现出进行性强化,而高级别血管肉瘤表现出快速强化和流出[42, 43]

综上所述,DCE-MRI在诊断年轻女性乳腺肿瘤性病变中发挥了重要的作用。目前,尚没有单一序列能够完全替代DCE-MRI在诊断乳腺疾病上体现的巨大价值[31]

4 功能MRI技术在年轻乳腺肿瘤中的应用
4.1 扩散加权成像及其衍生技术

扩散加权成像(diffusion weighted imaging, DWI)是目前唯一能检测活体组织内水分子扩散运动的无创性方法。一项对于年轻女性正常乳腺组织随月经周期变化规律的研究表明,经DWI及其衍生序列测得的真实扩散系数(D)、灌注相关扩散系数(D*)、各向异性分数(fractional anisotropy, FA)及表观扩散系数(apparent diffusion coefficient, ADC)可敏感地反映乳腺组织随月经周期激素调节的变化特点[44]。乳腺癌细胞增殖旺盛、细胞密度高、组织成分丰富、细胞外间隙减少,水分子的扩散明显受限,使乳腺癌在DWI上信号强度较高[45]。ADC是组织中水扩散的度量值,可以使用扩散加权图像计算。在吕雪飞等[46]的研究中,年轻女性乳腺浸润性导管癌的ADC值范围为(0.78±0.08)×10-3 mm2/s,伴随着ADC值下降(<1×10-3 mm2/s),Ki-67也会出现高阳性表达率。有研究还发现,肿瘤间质比(tumor-stroma ratio, TSR)与ADC直方图中的参数如最小值、平均值、偏度等呈负相关性,肿瘤在ADC图上的均质性与肿瘤复发相关,被认为是年轻乳腺癌的独有特征之一[25]

综上所述,DWI及其ADC值在年轻女性疾病中有很大研究潜力,但目前仍需要进一步扩大样本及对其衍生序列如体素内不相干运动(intravoxel incoherent motion, IVIM)成像、扩散峰度成像(diffusion kurtosis imaging, DKI)、扩散张量成像(diffusion tensor imaging, DTI)进行深度挖掘来验证先前的结论。考虑到钆对比剂的安全性,DWI有望成为对比剂增强MRI的补充或者替代技术。

4.2 其他功能MRI

T1 mapping序列在不使用对比剂情况下可以获得原始定量T1值,其代表组织特异性T1弛豫时间。一项利用T1值来鉴别纤维腺瘤和良性分叶状肿瘤的研究表明,与乳腺纤维腺瘤相比,良性分叶状肿瘤有更长的T1弛豫时间。原始T1值可用于区分乳腺纤维腺瘤和良性分叶状肿瘤,因此在MRI中添加T1 mapping序列可以辅助诊断[47]。LOI等[48]在7.0 T磁共振上研究了酰胺质子转移(amide proton transfer, APT)成像对月经周期的依赖关系,结果表明,在月经周期过程中,乳腺组织的变化不会显著影响健康志愿者乳腺FGT中的APT信号。目前,对于各种功能序列如APT、磁共振波谱(magnetic resonance spectroscopy, MRS)成像、T1 mapping、T2 mapping等在年轻乳腺肿瘤特别是年轻乳腺癌方面的研究报道较少,但现阶段的研究认为功能成像的定量参数或许会对提高乳腺肿瘤诊断效能有一定帮助。因此,需要前瞻性的多中心研究来确定这些定量指标与临床、病理指标的内在联系。

5 基于MRI的影像组学在年轻乳腺肿瘤中的应用

影像组学是联合医学影像与数据图像处理、挖掘技术的新型交叉学科,其从单个或多个医学成像模式中获得多种定量特征,突出了肉眼不可见的图像特征,以提供潜在的肿瘤相关信息,进而提高肿瘤诊疗精度,实现个体化精准治疗[49]。LI等[50]的研究认为基于T2WI的MRI影像放射组学可用以区分年轻女性三阴性乳腺癌与非三阴性乳腺癌。有研究称,纹理分析可作为常规MRI图像中乳腺叶状肿瘤和乳腺纤维腺瘤鉴别诊断的辅助工具,其误判率仅为10.71%(12/112),明显低于影像医师主观判读的31.25%(35/112)[51]。MAI等[52]也得出了相似的结论,他们认为基于轴位短时翻转恢复T2加权(short time inversion recovery T2-weighted, T2W-STIR)序列的纹理特征在鉴别乳腺叶状肿瘤和乳腺纤维腺瘤方面有更好的诊断性能。当前影像组学在乳腺领域被广泛研究,但针对年轻女性人群的疾病研究仍尚显不足。

6 总结与展望

综上所述,随着MRI技术的迅猛发展,乳腺MRI在年轻女性乳腺肿瘤中的应用价值日益体现,目前的研究多集中在良恶性肿瘤鉴别,尤其是乳腺癌早期诊断中,多种不同MRI技术包括T1WI、T2WI、DCE-MRI及DWI在内的功能成像,通过反映肿瘤的形态、血流动力学以及细胞分子水平的变化,观察淋巴结状态,提高了诊断敏感性及准确性。未来,功能MRI与人工智能在年轻女性乳腺肿瘤方面的应用价值有待进一步开发和探索,从诊断拓展到疗效评估、预后生存等多方面的研究领域,其前景值得期待。

ACKNOWLEDGMENTS

General Project of Teaching Reform Research of Dalian Medical University in 2021 (No. DYLX21036).

本文引用格式:

宁宁, 梁泓冰, 吴祺, 等. 不同磁共振成像技术在年轻女性乳腺肿瘤的研究进展[J]. 磁共振成像, 2023, 14(2): 186-190.

Cite this article as:

NING N, LIANG H B, WU Q, et al. Research progress of different MRI techniques in young women breast tumors[J]. Chin J Magn Reson Imaging, 2023, 14(2): 186-190.

利益冲突
作者利益冲突声明:

全体作者均声明无利益冲突。

参考文献References
[1]
SIEGELR L, MILLERK D, JEMALA. Cancer statistics, 2016[J]. CA A Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332.
[2]
中国年轻乳腺癌诊疗与生育管理专家共识专家委员会. 年轻乳腺癌诊疗与生育管理专家共识[J]. 中华肿瘤杂志, 2019, 41(7): 486-495. DOI: 10.3760/cma.j.issn.0253?3766.2019.07.002.
China Guideline Committee of Clinical Practice and Fertility Preservation for Breast Cancer in Young Women. Chinese consensus guidelines for breast cancer in young women: clinical practice and fertility preservation[J]. Chin J Oncol, 2019, 41(7): 486-495. DOI: 10.3760/cma.j.issn.0253?3766.2019.07.002.
[3]
ROSSIL, MAZZARAC, PAGANIO. Diagnosis and Treatment of Breast Cancer in Young Women[J/OL]. Curr Treat Options Oncol, 2019, 20(12): 86 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31776799/. DOI: 10.1007/s11864-019-0685-7.
[4]
BILLENAC, WILGUCKIM, FLYNNJ, et al. 10-year breast cancer outcomes in women ≤35 years of age[J]. Int J Radiat Oncol Biol Phys, 2021, 109(4): 1007-1018. DOI: 10.1016/j.ijrobp.2020.10.022.
[5]
SHOEMAKERM L, WHITEM C, WUM X, et al. Differences in breast cancer incidence among young women aged 20-49 years by stage and tumor characteristics, age, race, and ethnicity, 2004-2013[J]. Breast Cancer Res Treat, 2018, 169(3): 595-606. DOI: 10.1007/s10549-018-4699-9.
[6]
NARAYANA K, VISVANATHANK, HARVEYS C. Comparative effectiveness of breast MRI and mammography in screening young women with elevated risk of developing breast cancer: a retrospective cohort study[J]. Breast Cancer Res Treat, 2016, 158(3): 583-589. DOI: 10.1007/s10549-016-3912-y.
[7]
PARKA R, CHAEE Y, CHAJ H, et al. Preoperative breast MRI in women 35 years of age and younger with breast cancer: benefits in surgical outcomes by using propensity score analysis[J]. Radiology, 2021, 300(1): 39-45. DOI: 10.1148/radiol.2021204124.
[8]
YUY, TANY, XIEC, et al. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer[J/OL]. JAMA Netw Open, 2020, 3(12): e2028086 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/33289845/. DOI: 10.1001/jamanetworkopen.2020.28086.
[9]
SOPIKV. International variation in breast cancer incidence and mortality in young women[J]. Breast Cancer Res Treat, 2021, 186(2): 497-507. DOI: 10.1007/s10549-020-06003-8.
[10]
ZHANGW, ZHANGB L, HEJ J, et al. Clinicopathological characteristics and treatment of young women with breast cancer in China: a nationwide multicenter 10-year retrospective study[J]. Gland Surg, 2021, 10(1): 175-185. DOI: 10.21037/gs-20-574.
[11]
EIRIZI F, BATISTA MVAZ, CRUZ TOMÁST, et al. Breast cancer in very young women-a multicenter 10-year experience[J/OL]. ESMO Open, 2021, 6(1): 100029 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/33399090/. DOI: 10.1016/j.esmoop.2020.100029.
[12]
FUJ, WUL, FUW, et al. How Young Is Too Young in Breast Cancer?- Young Breast Cancer Is Not a Unique Biological Subtype[J/OL]. Clin Breast Cancer, 2018, 18(1): e25-e39 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/28802528/. DOI: 10.1016/j.clbc.2017.05.015.
[13]
PALUCH-SHIMONS, CARDOSOF, PARTRIDGEA H, et al. ESO-ESMO 4th international consensus guidelines for breast cancer in young women (BCY4)[J]. Ann Oncol, 2020, 31(6): 674-696. DOI: 10.1016/j.annonc.2020.03.284.
[14]
STACHSA, STUBERTJ, REIMERT, et al. Benign breast disease in women[J]. Deutsches Ärzteblatt Int, 2019, 116(33-34): 565-574. DOI: 10.3238/arztebl.2019.0565.
[15]
MENGX, YAMANOUCHIK, KUBAS, et al. Giant fibroadenoma of the breast: A rare case in a mature woman[J/OL]. Int J Surg Case Rep, 2019, 63: 36-39 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31561187/. DOI: 10.1016/j.ijscr.2019.09.015.
[16]
GUTKINP M, GANJOOK N, LOHMANM, et al. Angiosarcoma of the breast: management and outcomes[J]. Am J Clin Oncol, 2020, 43(11): 820-825. DOI: 10.1097/COC.0000000000000753.
[17]
TAYT K Y, TANP H. Papillary neoplasms of the breast—reviewing the spectrum[J]. Mod Pathol, 2021, 34(6): 1044-1061. DOI: 10.1038/s41379-020-00732-3.
[18]
PENGF, LIJ, MUS, et al. Epidemiological features of primary breast lymphoma patients and development of a nomogram to predict survival[J/OL]. Breast, 2021, 57: 49-61 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/33774459/. DOI: 10.1016/j.breast.2021.03.006.
[19]
ERIĆI, PETEK ERIĆA, KRISTEKJ, et al. Breast cancer in young women: pathologic and immunohistochemical features[J]. Acta Clin Croat, 2018, 57(3): 497-502. DOI: 10.20471/acc.2018.57.03.13.
[20]
PUSZTAIL, FOLDIJ, DHAWANA, et al. Changing frameworks in treatment sequencing of triple-negative and HER2-positive, early-stage breast cancers[J/OL]. Lancet Oncol, 2019, 20(7): e390-e396d [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31267973/. DOI: 10.1016/s1470-2045(19)30158-5.
[21]
YAPY S, LUY S, TAMURAK, et al. Insights into breast cancer in the east vs the west: a review[J]. JAMA Oncol, 2019, 5(10): 1489-1496. DOI: 10.1001/jamaoncol.2019.0620.
[22]
MILLERI, MINM W, YANGC, et al. Ki67 is a Graded Rather than a Binary Marker of Proliferation versus Quiescence[J]. Cell Rep, 2018, 24(5): 1105-1112.e5. DOI: 10.1016/j.celrep.2018.06.110.
[23]
DAID, ZHONGY, WANGZ, et al. The prognostic impact of age in different molecular subtypes of breast cancer: a population-based study[J/OL]. Peer J, 2019, 7: e7252 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31309004/. DOI: 10.7717/peerj.7252.
[24]
SPRATTD E. Ki-67 remains solely a prognostic biomarker in localized prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2018, 101(3): 513-515. DOI: 10.1016/j.ijrobp.2018.03.008.
[25]
LEEJ, KIMS H, KANGB J, et al. Imaging characteristics of young age breast cancer (YABC) focusing on pathologic correlation and disease recurrence[J/OL]. Sci Rep, 2021, 11(1): 20205 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/34642389/. DOI: 10.1038/s41598-021-99600-6.
[26]
MOUHOUBM, MIRYA, HALOUIA, et al. Primary angiosarcoma of the breast: a case report[J/OL]. Pan Afr Med J, 2019, 33: 134 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31558933/. DOI: 10.11604/pamj.2019.33.134.17414.
[27]
SHARMAS, NWACHUKWUC, WIESELERC, et al. MRI Virtual Biopsy of T2 Hyperintense Breast Lesions[J/OL]. J Clin Imaging Sci, 2021, 11: 18 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/33880243/. DOI: 10.25259/jcis_42_2021.
[28]
HUANGJ L, LINQ, CUIC X, et al. Correlation between imaging features and molecular subtypes of breast cancer in young women (≤30 years old)[J]. Jpn J Radiol, 2020, 38(11): 1062-1074. DOI: 10.1007/s11604-020-01001-8.
[29]
HARADAT L, UEMATSUT, NAKASHIMAK, et al. Evaluation of breast edema findings at T2-weighted breast MRI is useful for diagnosing occult inflammatory breast cancer and can predict prognosis after neoadjuvant chemotherapy[J]. Radiology, 2021, 299(1): 53-62. DOI: 10.1148/radiol.2021202604.
[30]
CHEONH, KIMH J, KIMT H, et al. Invasive breast cancer: prognostic value of peritumoral edema identified at preoperative MR imaging[J]. Radiology, 2018, 287(1): 68-75. DOI: 10.1148/radiol.2017171157.
[31]
ZHANGM, HORVATJ V, BERNARD-DAVILAB, et al. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy[J]. J Magn Reson Imaging, 2019, 49(3): 864-874. DOI: 10.1002/jmri.26285.
[32]
CHENGQ, HUANGJ, LIANGJ, et al. The Diagnostic Performance of DCE-MRI in Evaluating the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer: A Meta-Analysis[J/OL]. Front Oncol, 2020, 10: 93 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/32117747/. DOI: 10.3389/fonc.2020.00093.
[33]
JIANGL, ZHOUY M, WANGZ, et al. Is there different correlation with prognostic factors between "non-mass" and "mass" type invasive ductal breast cancers?[J]. Eur J Radiol, 2013, 82(9): 1404-1409. DOI: 10.1016/j.ejrad.2013.03.006.
[34]
BITENCOURTA G V, EUGÊNIOD S G, SOUZAJ A, et al. Prognostic significance of preoperative MRI findings in young patients with breast cancer[J/OL]. Sci Rep, 2019, 9(1): 3106 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/30816243/. DOI: 10.1038/s41598-019-39629-w.
[35]
WATTG P, SUNGJ, MORRISE A, et al. Association of breast cancer with MRI background parenchymal enhancement: the IMAGINE case-control study[J/OL]. Breast Cancer Res, 2020, 22(1): 138 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/33287857/. DOI: 10.1186/s13058-020-01375-7.
[36]
KAMITANIT, YABUUCHIH, KANEMAKIY, et al. Effects of menstrual cycle on background parenchymal enhancement and detectability of breast cancer on dynamic contrast-enhanced breast MRI: A multicenter study of an Asian population[J/OL]. Eur J Radiol, 2019, 110: 130-135 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/30599849/. DOI: 10.1016/j.ejrad.2018.11.025.
[37]
DONTCHOSB N, RAHBARH, PARTRIDGES C, et al. Influence of menstrual cycle timing on screening breast MRI background parenchymal enhancement and diagnostic performance in premenopausal women[J]. J Breast Imaging, 2019, 1(3): 205-211. DOI: 10.1093/jbi/wbz022.
[38]
DURHANG, AZIZOVAA, ÖNDERÖ, et al. Imaging findings and clinicopathological correlation of breast cancer in women under 40 years old[J]. Eur J Breast Health, 2019, 15(3): 147-152. DOI: 10.5152/ejbh.2019.4606.
[39]
张倩倩, 钱伟军, 叶枫, . 青年女性不同分子亚型乳腺癌MRI特征表现[J]. 实用放射学杂志, 2021, 37(7): 1094-1098. DOI: 10.3969/j.issn.1002-1671.2021.07.012.
ZHANGQ Q, QIANW J, YEF, et al. MRI features of different molecular subtypes of breast cancer in young women[J]. J Pract Radiol, 2021, 37(7): 1094-1098. DOI: 10.3969/j.issn.1002-1671.2021.07.012.
[40]
李艳翠, 张伶, 梁雯, . 乳腺髓样癌与纤维腺瘤的MRI鉴别诊断分析[J]. 磁共振成像, 2020, 11(2): 124-128. DOI: 10.12015/issn.1674-8034.2020.02.010.
LIY C, ZHANGL, LIANGW, et al. Differential diagnosis of breast medullary carcinoma and fibroadenoma by MRI[J]. Chin J Magn Reson Imaging, 2020, 11(2): 124-128. DOI: 10.12015/issn.1674-8034.2020.02.010.
[41]
WUW H, JIQ L, LIZ Z, et al. Mammography and MRI manifestations of breast angiosarcoma[J/OL]. BMC Womens Health, 2019, 19(1): 73 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31182098/. DOI: 10.1186/s12905-019-0769-3.
[42]
BROWNA L, WAHABR A. MRI of Primary Angiosarcoma of the Breast[J/OL]. Radiology, 2020, 297(1): 31 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/32720871/. DOI: 10.1148/radiol.2020201377.
[43]
MUMINN A, RAHMATK, HAMIDM T R, et al. Primary breast angiosarcoma: utilisation of pre-surgical magnetic resonance imaging (MRI) for accurate tumour characterization and planning-A case report and literature review[J]. Curr Med Imaging, 2021, 17(4): 552-558. DOI: 10.2174/1573405616666201007161119.
[44]
樊秋菊, 谭辉, 杨褀, . 多参数MRI评价年轻女性正常乳腺组织随月经周期变化规律的研究[J]. 临床放射学杂志, 2018, 37(8): 1283-1287. DOI: 10.13437/j.cnki.jcr.2018.08.011.
FANQ J, TANH, YANGQ, et al. The research of multi-parameter MRI evaluation of young women with normal breast tissues changes during the menstrual cycle[J]. J Clin Radiol, 2018, 37(8): 1283-1287. DOI: 10.13437/j.cnki.jcr.2018.08.011.
[45]
SPRINGERC S J R. Using 1H2O MR to measure and map sodium pump activity in vivo[J/OL]. J Magn Reson, 2018, 291: 110-126 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/29705043/. DOI: 10.1016/j.jmr.2018.02.018.
[46]
吕雪飞, 胡少平. 青年女性乳腺浸润性导管癌T2WI特征联合ADC值与Ki-67表达相关性[J]. CT理论与应用研究, 2020, 29(1): 49-54. DOI: 10.15953/j.1004-4140.2020.29.01.06.
LVX F, HUS P. Correlation of T2WI characteristics with ADC value and ki-67 expression in young women with invasive ductal carcinoma[J]. Comput Tomogr Theory Appl, 2020, 29(1): 49-54. DOI: 10.15953/j.1004-4140.2020.29.01.06.
[47]
YALCINA, GOKTEPELIM, TAYDASO, et al. Native T1 mapping of the breast in MRI to differentiate fibroadenomas from benign phyllodes tumors: a preliminary study[J]. MAGMA, 2022, 35(3): 441-447. DOI: 10.1007/s10334-021-00969-2.
[48]
LOIL, GOERKES, ZIMMERMANNF, et al. Assessing the influence of the menstrual cycle on APT CEST-MRI in the human breast[J/OL]. Magn Reson Imaging, 2022, 91: 24-31 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/35550841/. DOI: 10.1016/j.mri.2022.05.006.
[49]
CONTIA, DUGGENTOA, INDOVINAI, et al. Radiomics in breast cancer classification and prediction[J/OL]. Semin Cancer Biol, 2021, 72: 238-250 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/32371013/. DOI: 10.1016/j.semcancer.2020.04.002.
[50]
LIQ, DORMERJ, DARYANIP, et al. Radiomics Analysis of MRI for Predicting Molecular Subtypes of Breast Cancer in Young Women[J/OL]. Proc SPIE Int Soc Opt Eng, 2019, 10950: 1095044 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/32528211/. DOI: 10.1117/12.2512056.
[51]
JIANGN P, ZHONGL, ZHANGC L, et al. Value of conventional MRI texture analysis in the differential diagnosis of Phyllodes tumors and fibroadenomas of the breast[J]. Breast Care (Basel), 2021, 16(3): 283-290. DOI: 10.1159/000508456.
[52]
MAIH, MAOY, DONGT, et al. The Utility of Texture Analysis Based on Breast Magnetic Resonance Imaging in Differentiating Phyllodes Tumors From Fibroadenomas[J/OL]. Front Oncol, 2019, 9: 1021 [2022-10-10]. https://pubmed.ncbi.nlm.nih.gov/31681572/. DOI: 10.3389/fonc.2019.01021.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词