参考文献References[1]
SUNGH, FERLAYJ, SIEGELR L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. .
[2]
WANGX X, TANY C, LIUD H, et al. Chemotherapy-associated steatohepatitis was concomitant with epicardial adipose tissue volume increasing in breast cancer patients who received neoadjuvant chemotherapy[J]. Eur Radiol, 2022, 32(7): 4898-4908. .
[3]
ARNOLDM, MORGANE, RUMGAYH, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J]. Breast, 2022, 66: 15-23. .
[4]
LIUZ Y, LIZ L, QUJ R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. .
[5]
DERKSM G M, VAN DE VELDEC J H. Neoadjuvant chemotherapy in breast cancer: more than just downsizing[J]. Lancet Oncol, 2018, 19(1): 2-3. .
[6]
GRADISHARW J, ANDERSONB O, ABRAHAMJ, et al. Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(4): 452-478. .
[7]
DENDULURIN, SOMERFIELDM R, CHAVEZ-MACGREGORM, et al. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO guideline update[J]. J Clin Oncol, 2021, 39(6): 685-693. .
[8]
VON MINCKWITZG, BLOHMERJ U, COSTAS D, et al. Response-guided neoadjuvant chemotherapy for breast cancer[J]. J Clin Oncol, 2013, 31(29): 3623-3630. .
[9]
YANGY, CHENX, FANZ, et al.
Pathological response-guided postoperative treatment strategy for positive HR/negative HER2 and positive lymphnodes breast cancer patients with non-responsive pathological results to neoadjuvant chemotherapy[J/OL].
Cancer Res,
2022,
82(
4) [
2022-11-13].
https://doi.org/10.1158/1538-7445.SABCS21-P2-12-06. .
[10]
GOUTSOULIAKK, VEERARAGHAVANJ, SETHUNATHV, et al. Towards personalized treatment for early stage HER2-positive breast cancer[J]. Nat Rev Clin Oncol, 2020, 17(4): 233-250. .
[11]
LIUY G, WUM X, TANW Y, et al.
Efficacy evaluation of neoadjuvant chemotherapy in breast cancer by MRI[J/OL].
Contrast Media Mol Imaging,
2022,
2022:
4542288 [
2022-11-13].
https://doi.org/10.1155/2022/4542288. .
[12]
YANGM, LIUH, DAIQ L, et al.
Treatment response prediction using ultrasound-based pre-, post-early, and delta radiomics in neoadjuvant chemotherapy in breast cancer[J/OL].
Front Oncol,
2022,
12:
748008 [
2022-11-13].
https://doi.org/10.3389/fonc.2022.748008. .
[13]
GAOY M, REIGB, HEACOCKL, et al. Magnetic resonance imaging in screening of breast cancer[J]. Radiol Clin North Am, 2021, 59(1): 85-98. .
[14]
单慧明, 周靖宇, 谢婷婷, 等. MRI影像学特征预测乳腺癌新辅助化疗疗效的可行性[J]. 中国医学影像学杂志, 2019, 27(12): 905-909, 913. .
SHANH M, ZHOUJ Y, XIET T, et al. Feasibility of MRI features in predicting efficacy of neoadjuvant chemotherapy for breast cancer[J]. Chin J Med Imaging, 2019, 27(12): 905-909, 913. .[15]
YOSHIDAK, KAWASHIMAH, KANNONT, et al.
Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI[J/OL].
Magn Reson Imaging,
2022,
92:
19-
25 [
2022-11-13].
https://doi.org/10.1016/j.mri.2022.05.018. .
[16]
邵志敏, 吴炅, 江泽飞, 等. 中国乳腺癌新辅助治疗专家共识(2022年版)[J]. 中国癌症杂志, 2022, 32(1): 80-89. .
SHAOZ M, WUJ, JIANGZ f, et al. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-89. .[17]
赵智锦, 常才, 李佳伟. 影像学技术对三阴性乳腺癌临床诊断及预后分析价值的研究进展[J]. 中华超声影像学杂志, 2022, 31(2): 181-185. .
ZHAOZ J, CHANGC, LIJ W. Value of imaging technology in clinical diagnosis and prognosis prediction for triple negative breast cancer: a state-of-art review[J]. Chin J Ultrason, 2022, 31(2): 181-185. .[18]
STEINHOF-RADWAŃSKAK, GRAŻYŃSKAA, LOREKA, et al. Contrast-enhanced spectral mammography assessment of patients treated with neoadjuvant chemotherapy for breast cancer[J]. Curr Oncol, 2021, 28(5): 3448-3462. .
[19]
HANX, JINS Y, YANGH J, et al.
Application of conventional ultrasonography combined with contrast-enhanced ultrasonography in the axillary lymph nodes and evaluation of the efficacy of neoadjuvant chemotherapy in breast cancer patients[J/OL].
Br J Radiol,
2021,
94(
1125):
20210520 [
2022-11-13].
https://www.birpublications.org/doi/10.1259/bjr.20210520. .
[20]
YINX X, JINY B, GAOM Y, et al. Artificial intelligence in breast MRI radiogenomics: towards accurate prediction of neoadjuvant chemotherapy responses[J]. Curr Med Imaging, 2021, 17(4): 452-458. .
[21]
陈志庚, 李响, 沙琳. 机器学习基于MRI预测乳腺癌对新辅助化疗反应的研究进展[J]. 磁共振成像, 2021, 12(12): 102-104. .
CHENZ G, LIX, SHAL. Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(12): 102-104. .[22]
WANGH, MAOX Y. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Drug Des Devel Ther, 2020, 14: 2423-2433. .
[23]
LEES H, JANGM J, KIMS M, et al. Factors affecting breast cancer detectability on digital breast tomosynthesis and two-dimensional digital mammography in patients with dense breasts[J]. Korean J Radiol, 2019, 20(1): 58-68. .
[24]
ZHANGX Y, LIH, WANGC Y, et al.
Evaluating the accuracy of breast cancer and molecular subtype diagnosis by ultrasound image deep learning model[J/OL].
Front Oncol,
2021,
11:
623506 [
2022-11-13].
https://doi.org/10.3389/fonc.2021.623506. .
[25]
REZAEIJOS M, GHORVEIM, MOFIDB. Predicting breast cancer response to neoadjuvant chemotherapy using ensemble deep transfer learning based on CT images[J]. J Xray Sci Technol, 2021, 29(5): 835-850. .
[27]
CHOUDHERYS, GOMEZ-CARDONAD, FAVAZZAC P, et al.
MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL].
Acad Radiol,
2022,
29:
S145-
S154 [
2022-11-13].
https://doi.org/10.1016/j.acra.2020.10.020. .
[29]
AGHAEIF, TANM, HOLLINGSWORTHA B, et al. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy[J]. Med Phys, 2015, 42(11): 6520-6528. .
[30]
DOGANB E, YUANQ, BASSETTR, et al. Comparing the performances of magnetic resonance imaging size vs pharmacokinetic parameters to predict response to neoadjuvant chemotherapy and survival in patients with breast cancer[J]. Curr Probl Diagn Radiol, 2019, 48(3): 235-240. .
[31]
TUDORICAA, OHK Y, CHUIS Y, et al. Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE-MRI[J]. Transl Oncol, 2016, 9(1): 8-17. .
[32]
HENDERSONS, PURDIEC, MICHIEC, et al. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer[J]. Eur Radiol, 2017, 27(11): 4602-4611. .
[33]
EUNN L, KANGD, SONE J, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2020, 294(1): 31-41. .
[34]
JANGH J, KIMH J, CHAEY S, et al. Effect of neoadjuvant chemotherapy on breast tissue composition: a longitudinal mammographic study with automated volumetric measurement[J]. Eur Radiol, 2020, 30(9): 4785-4794. .
[35]
DIALANIV, CHADASHVILIT, SLANETZP J. Role of imaging in neoadjuvant therapy for breast cancer[J]. Ann Surg Oncol, 2015, 22(5): 1416-1424. .
[36]
MARINOVICHM L, MACASKILLP, IRWIGL, et al. Agreement between MRI and pathologic breast tumor size after neoadjuvant chemotherapy, and comparison with alternative tests: individual patient data meta-analysis[J]. BMC Cancer, 2015, 15: 662. .
[37]
FOWLERA M, MANKOFFD A, JOEB N. Imaging neoadjuvant therapy response in breast cancer[J]. Radiology, 2017, 285(2): 358-375. .
[38]
BYRAM, DOBRUCH-SOBCZAKK, KLIMONDAZ, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks[J]. IEEE J Biomed Health Inform, 2021, 25(3): 797-805. .
[39]
LIUY, WANGY, WANGY X,.
Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: a multicentre, retrospective cohort study[J/OL].
eClinicalMedicine,
2022,
52:
101562 [
2022-11-13].
https://doi.org/10.1016/j.eclinm.2022.101562. .
[40]
JIANGM, LIC L, LUOX M, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Eur J Cancer, 2021, 147: 95-105. .
[41]
MANIS, CHENY K, LIX, et al. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy[J]. J Am Med Inform Assoc, 2013, 20(4): 688-695. .
[43]
GUJ H, TONGT, HEC, et al. Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study[J]. Eur Radiol, 2022, 32(3): 2099-2109. .
[44]
车树楠, 薛梅, 李静, 等. 基于MRI多期增强影像组学联合临床影像特征模型术前预测乳腺癌Ki-67表达状态[J]. 中华放射学杂志, 2022, 56(9): 967-975. .
CHES N, XUEM, LIJ, et al. Preoperative prediction of Ki-67 expression status in breast cancer based on dynamic contrast enhanced MRI radiomics combined with clinical imaging features model[J]. Chin J Radiol, 2022, 56(9): 967-975. .[45]
GRANZIERR Y, VANNIJNATTEN T J A, WOODRUFFH C, et al.
Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review[J/OL].
Eur J Radiol,
2019,
121:
108736 [
2022-11-13].
https://doi.org/10.1016/j.ejrad.2019.108736. .
[46]
RAVICHANDRANK, BRAMANN, JANOWCZYKA, et al.
A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI[C/OL]//
SPIE Medical Imaging 2018: Computer-Aided Diagnosis, Houston, 2018 [
2022-11-13].
https://doi.org/10.1117/12.2294056. .
[47]
DRUKKERK, EDWARDSA, PAPAIOANNOUJ, et al.
Deep learning predicts breast cancer recurrence in analysis of consecutive MRIs acquired during the course of neoadjuvant chemotherapy[C/OL]//
SPIE Medical Imaging 2020: Computer-Aided Diagnosis, Houston, 2020 [
2022-11-13].
https://doi.org/10.1117/12.2549044. .
[48]
QUY H, ZHUH T, CAOK, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method[J]. Thorac Cancer, 2020, 11(3): 651-658. .
[49]
FANM, CHENH, YOUC, et al.
Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer[J/OL].
Front Mol Biosci,
2021,
8:
622219 [
2022-11-13].
https://doi.org/10.3389/fmolb.2021.622219. .
[50]
CHITALIAR D, KONTOSD. Role of texture analysis in breast MRI as a cancer biomarker: a review[J]. J Magn Reson Imaging, 2019, 49(4): 927-938. .
[51]
LAFORGIA D, VESTITOA, LASCIARREAM, et al.
Response predictivity to neoadjuvant therapies in breast cancer: a qualitative analysis of background parenchymal enhancement in DCE-MRI[J/OL].
J Pers Med,
2021,
11(
4):
256 [
2022-11-13].
https://doi.org/10.3390/jpm11040256. .
[52]
KEUNEJ D, JEFFED B, SCHOOTMANM, et al. Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer[J]. Am J Surg, 2010, 199(4): 477-484. .
[53]
CHENP X, WANGC, LUR L, et al. Multivariable models based on baseline imaging features and clinicopathological characteristics to predict breast pathologic response after neoadjuvant chemotherapy in patients with breast cancer[J]. Breast Care, 2022, 17(3): 306-315. .
[54]
LEEJ G, JUNS, CHOY W, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4): 570-584. .
[55]
ESTEVAA, KUPRELB, NOVOAR A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. .