参考文献References[1]
MALHIG S, MANNJ J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. .
[2]
HUANGY, WANGY, WANGH, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6(3): 211-224. .
[3]
WANGY T, WANGX L, FENGS T, et al.
Novel rapid-acting glutamatergic modulators: Targeting the synaptic plasticity in depression[J/OL].
Pharmacol Res,
2021,
171:
105761 [
2023-03-27].
https://doi.org/10.1016/j.phrs.2021.105761. .
[4]
MCGRATHT, BASKERVILLER, ROGEROM, et al.
Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases[J/OL].
Nutrients,
2022,
14(
5):
917 [
2023-03-27].
https://doi.org/10.3390/nu14050917. .
[5]
DUMANR S, SANACORAG, KRYSTALJ H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments[J]. Neuron, 2019, 102(1): 75-90. .
[6]
BORBELYE, SIMONM, FUCHSE, et al. Novel drug developmental strategies for treatment-resistant depression[J]. Br J Pharmacol, 2022, 179(6): 1146-1186. .
[7]
SAMOJEDNYS, CZECHOWSKAE, PANCZYSZYN-TRZEWIKP, et al.
Postsynaptic Proteins at Excitatory Synapses in the Brain-Relationship with Depressive Disorders[J/OL].
Int J Mol Sci,
2022,
23(
19):
11423 [
2023-03-27].
https://doi.org/10.3390/ijms231911423. .
[8]
KHOODORUTHM A S, ESTUDILLO-GUERRAM A, PACHECO-BARRIOSK, et al.
Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization[J/OL].
Front Psychiatry,
2022,
13:
886918 [
2023-03-27].
https://doi.org/10.3389/fpsyt.2022.886918. .
[9]
罗珺钰, 刘芳, 罗耀辉, 等. 抑郁症的中西医药物治疗进展[J]. 云南中医中药杂志, 2019, 40(5): 84-87. .
LUOJ Y, LIUF, LUOY H, et al. Advances in traditional Chinese medicine and western medicine treatment of depression[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2019, 40(5): 84-87. .[10]
RIGGSL M, GOULDT D. Ketamine and the Future of Rapid-Acting Antidepressants[J]. Annu Rev Clin Psychol, 2021, 17: 207-231. .
[11]
BERMANR M, CAPPIELLOA, ANANDA, et al. Antidepressant effects of ketamine in depressed patients[J]. Biol Psychiatry, 2000, 47(4): 351-354. .
[12]
POCHWATB, KRUPAA J, SIWEKM, et al. New investigational agents for the treatment of major depressive disorder[J]. Expert Opin Investig Drugs, 2022, 31(10): 1053-1066. .
[13]
YANGC, KOBAYASHIS, NAKAOK, et al. AMPA Receptor Activation-Independent Antidepressant Actions of Ketamine Metabolite (S)-Norketamine[J]. Biol Psychiatry, 2018, 84(8): 591-600. .
[14]
ALEKSANDROVAL R, PHILLIPSA G. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics[J]. Trends Pharmacol Sci, 2021, 42(11): 929-942. .
[16]
HENTERI D, PARKL T, ZARATEC A JR. Novel Glutamatergic Modulators for the Treatment of Mood Disorders: Current Status[J]. CNS Drugs, 2021, 35(5): 527-543. .
[17]
AGOY, TANABEW, HIGUCHIM, et al. (R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism[J]. Int J Neuropsychopharmacol, 2019, 22(10): 665-674. .
[18]
SHELINEY I, LISTONC, MCEWENB S. Parsing the Hippocampus in Depression: Chronic Stress, Hippocampal Volume, and Major Depressive Disorder[J]. Biol Psychiatry, 2019, 85(6): 436-438. .
[19]
RODDYD W, FARRELLC, DOOLINK, et al. The Hippocampus in Depression: More Than the Sum of Its Parts? Advanced Hippocampal Substructure Segmentation in Depression[J]. Biol Psychiatry, 2019, 85(6): 487-497. .
[20]
ARNONED, MCINTOSHA M, EBMEIERK P, et al. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses[J]. Eur Neuropsychopharmacol, 2012, 22(1): 1-16. .
[21]
BROSCHK, STEINF, SCHMITTS, et al. Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders[J]. Mol Psychiatry, 2022, 27(10): 4234-4243. .
[22]
牟静平, 成财, 梅兰, 等. 抑郁症灰白质表面积性别差异研究[J]. 磁共振成像, 2021, 12(1): 21-26, 37. .
MOUJ P, CHENGC, MEIL, et al. Gender difference of gray and white matter surface area in major depressive disorder[J]. Chin J Magn Reson Imaging, 2021, 12(1): 21-26, 37. .[23]
ZHOUY L, WUF C, WANGC Y, et al. Relationship between hippocampal volume and inflammatory markers following six infusions of ketamine in major depressive disorder[J]. J Affect Disord, 2020, 276: 608-615. .
[24]
ABDALLAHC G, JACKOWSKIA, SALASR, et al. The Nucleus Accumbens and Ketamine Treatment in Major Depressive Disorder[J]. Neuropsychopharmacology, 2017, 42(8): 1739-1746. .
[25]
ABDALLAHC G, SALASR, JACKOWSKIA, et al. Hippocampal volume and the rapid antidepressant effect of ketamine[J]. J Psychopharmacol, 2015, 29(5): 591-595. .
[26]
ZHOUY L, WUF C, LIUW J, et al.
Volumetric changes in subcortical structures following repeated ketamine treatment in patients with major depressive disorder: a longitudinal analysis[J/OL].
Transl Psychiatry,
2020,
10(
1):
264 [
2023-03-27].
https://doi.org/10.1038/s41398-020-00945-9. .
[27]
PODWALSKIP, SZCZYGIELK, TYBURSKIE, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. .
[28]
LIAOY, HUANGX, WUQ, et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD[J]. J Psychiatry Neurosci, 2013, 38(1): 49-56. .
[29]
CHENG, GUOY, ZHUH, et al. Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: A voxel-based meta-analysis of diffusion tensor imaging[J]. Prog Neuropsychopharmacol Biol Psychiatryry, 2017, 76: 179-187. .
[30]
JACOBY, MORRISL S, VERMAG, et al.
Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder[J/OL].
Transl Psychiatry,
2022,
12(
1):
209 [
2023-03-27].
https://doi.org/10.1038/s41398-022-01976-0. .
[31]
SYDNORV J, LYALLA E, CETIN-KARAYUMAKS, et al.
Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine's antidepressant effects[J/OL].
Transl Psychiatry,
2020,
10(
1):
432 [
2023-03-27].
https://doi.org/10.1038/s41398-020-01122-8. .
[32]
VASAVADAM M, LEAVERA M, ESPINOZAR T, et al. Structural connectivity and response to ketamine therapy in major depression: A preliminary study[J]. J Affect Disord, 2016, 190: 836-841. .
[33]
SCALABRINIA, VAIB, POLETTIS, et al. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder[J]. Neuropsychopharmacology, 2020, 45(12): 2058-2069. .
[34]
苏日娜, 谢生辉, 高阳. 静息态功能MRI观察首发轻-中度抑郁症患者默认网络功能连接[J]. 中国医学影像技术, 2022, 38(1): 38-43. .
SUR N, XIES H, GAOY. Observation on default mode network functional connectivity in first-episode mild to moderate depression patients with resting-state functional MRI[J]. Chin J Med Imaging Technol, 2022, 38(1): 38-43. .[35]
CHENM H, CHANGW C, LINW C, et al. Functional Dysconnectivity of Frontal Cortex to Striatum Predicts Ketamine Infusion Response in Treatment-Resistant Depression[J]. Int J Neuropsychopharmacol, 2020, 23(12): 791-798. .
[36]
GARTNERM, AUSTS, BAJBOUJM, et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine[J]. Eur Neuropsychopharmacol, 2019, 29(4): 501-508. .
[37]
MKRTCHIANA, EVANSJ W, KRAUSC, et al. Ketamine modulates fronto-striatal circuitry in depressed and healthy individuals[J]. Mol Psychiatry, 2021, 26(7): 3292-3301. .
[38]
RIVAS-GRAJALESA M, SALASR, ROBINSONM E, et al. Habenula Connectivity and Intravenous Ketamine in Treatment-Resistant Depression[J]. Int J Neuropsychopharmacol, 2021, 24(5): 383-391. .
[39]
WANGM, CHENX, HUY, et al. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine[J]. Depress Anxiety, 2022, 39(5): 352-362. .
[40]
VASAVADAM M, LOUREIROJ, KUBICKIA, et al. Effects of Serial Ketamine Infusions on Corticolimbic Functional Connectivity in Major Depression[J]. Biol Psychiatryry Cogn Neurosci Neuroimaging, 2021, 6(7): 735-744. .
[41]
DE DIEGO-ADELINOJ, PORTELLAM J, GOMEZ-ANSONB, et al. Hippocampal abnormalities of glutamate/glutamine, N-acetylaspartate and choline in patients with depression are related to past illness burden[J]. J Psychiatry Neurosci, 2013, 38(2): 107-116. .
[42]
DRAGANOVM, VIVES-GILABERTY, DE DIEGO-ADELINOJ, et al. Glutamatergic and GABA-ergic abnormalities in First-episode depression. A 1-year follow-up 1H-MR spectroscopic study[J]. J Affect Disord, 2020, 266: 572-577. .
[43]
BENSONK L, BOTTARYR, SCHOERNINGL, et al. (1)H MRS Measurement of Cortical GABA and Glutamate in Primary Insomnia and Major Depressive Disorder: Relationship to Sleep Quality and Depression Severity[J]. J Affect Disord, 2020, 274: 624-631. .
[44]
KANTROWITZJ T, DONGZ, MILAKM S, et al.
Ventromedial prefrontal cortex/anterior cingulate cortex Glx, glutamate, and GABA levels in medication-free major depressive disorder[J/OL].
Transl Psychiatry,
2021,
11(
1):
419 [
2023-03-27].
https://doi.org/10.1038/s41398-021-01541-1. .
[45]
HEJ, WANGD, BANM, et al. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel (1)H magnetic resonance spectroscopy study[J]. J Affect Disord, 2022, 318: 263-271. .
[46]
RITTERC, BUCHMANNA, MULLERS T, et al. Evaluation of Prefrontal gamma-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy[J]. JAMA Psychiatry, 2022, 79(12): 1209-1216. .
[47]
WANGK L, LIANGK, WANGL J, et al.
The association of glutamate level in pregenual anterior cingulate, anhedonia, and emotion-behavior decoupling in patients with major depressive disorder[J/OL].
Asian J Psychiatr,
2022,
78:
103306 [
2023-03-27].
https://doi.org/10.1016/j.ajp.2022.103306. .
[48]
孙继锋. 磁共振波谱对抑郁症辅助诊断的效果观察[J]. 国际精神病学杂志, 2021, 48(3): 443-445. .
SUNJ F. The effect of magnetic resonance spectrum in the auxiliary diagnosis of depression[J]. J Int Psychl, 2021, 48(3): 443-445. .[49]
MILAKM S, PROPERC J, MULHERNS T, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder[J]. Mol Psychiatry, 2016, 21(3): 320-327. .
[50]
CHOWDHURYG M, ZHANGJ, THOMASM, et al. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects[J]. Mol Psychiatry, 2017, 22(1): 120-126. .
[51]
MILAKM S, RASHIDR, DONGZ, et al.
Assessment of Relationship of Ketamine Dose With Magnetic Resonance Spectroscopy of Glx and GABA Responses in Adults With Major Depression: A Randomized Clinical Trial[J/OL].
JAMA Netw Open,
2020,
3(
8):
e2013211 [
2023-03-27].
https://doi.org/10.1001/jamanetworkopen.2020.13211. .
[52]
EVANSJ W, LALLYN, ANL, et al. 7T (1)H-MRS in major depressive disorder: a Ketamine Treatment Study[J]. Neuropsychopharmacology, 2018, 43(9): 1908-1914. .
[53]
CHENF, GONGJ, CHENG, et al. Shared and specific characteristics of regional cerebral blood flow and functional connectivity in unmedicated bipolar and major depressive disorders[J]. J Affect Disord, 2022, 309: 77-84. .
[54]
FAND, HEC, LIUX, et al. Altered resting-state cerebral blood flow and functional connectivity mediate suicidal ideation in major depressive disorder[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1603-1615. .
[55]
XIONGY, CHENR S, WANGX Y, et al.
Cerebral blood flow in adolescents with drug-naive, first-episode major depressive disorder: An arterial spin labeling study based on voxel-level whole-brain analysis[J/OL].
Front Neurosci,
2022,
16:
966087 [
2023-03-27].
https://doi.org/10.3389/fnins.2022.966087. .
[56]
WANGY M, YANGZ Y.
Aberrant pattern of cerebral blood flow in patients with major depressive disorder: A meta-analysis of arterial spin labelling studies[J/OL].
Psychiatry Res Neuroimaging,
2022,
321:
111458 [
2023-03-27].
https://doi.org/10.1016/j.pscychresns.2022.111458. .
[57]
OTAM, NODAT, SATON, et al. Characteristic distributions of regional cerebral blood flow changes in major depressive disorder patients: a pseudo-continuous arterial spin labeling (pCASL) study[J]. J Affect Disord, 2014, 165: 59-63. .
[58]
COOPERC M, CHIN FATTC R, LIUP, et al. Discovery and replication of cerebral blood flow differences in major depressive disorder[J]. Mol Psychiatry, 2020, 25(7): 1500-1510. .
[59]
RAMASUBBUR, BROWNE C, MARCILL D, et al. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements[J]. Psychiatry Clin Neurosci, 2019, 73(8): 486-493. .
[60]
SAHIBA K, LOUREIROJ R A, VASAVADAM M, et al. Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder[J]. Eur Neuropsychopharmacol, 2020, 33: 89-100. .
[61]
GÄRTNERM, DE ROVERM, VÁCLAVŮL, et al. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder[J]. World J Biol Psychiatry, 2022, 23(8): 643-652. .
[62]
LUOX, RENQ, LUOM, et al. Glutamate Chemical Exchange Saturation Transfer Imaging and Functional Alterations of Hippocampus in Rat Depression Model: A Pilot Study[J]. J Magn Reson Imaging, 2021, 54(6): 1967-1976. .