综述
冠状动脉慢血流的研究进展
中华心血管病杂志(网络版), 2021,04(1) : 1-5. DOI: 10.3760/cma.j.cn116031.2021.1000095
引用本文: 赵健, 梁春. 冠状动脉慢血流的研究进展 [J] . 中华心血管病杂志(网络版), 2021, 04(1) : 1-5. DOI: 10.3760/cma.j.cn116031.2021.1000095.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

● 引言

冠状动脉慢血流(coronary slow flow,CSF)的概念由Tambe等[1]于1972年首次提出,描述了在冠状动脉造影过程中血管管腔无明显阻塞但造影剂充填延迟和血流减慢的一种现象,可累及单支或多支血管。CSF在冠状动脉造影中的检出率为1%~7%,患者多表现为胸痛、胸闷等疑似冠状动脉粥样硬化性心脏病症状[2]。由于患者冠状动脉无明显狭窄,过去认为CSF是一种良性病变,但近些年的观察性研究显示,CSF与患者的不良预后显著相关,甚至会导致心肌梗死、猝死和其他心血管不良事件[3,4]。因此,临床上CSF得到了越来越多的重视,在其病理机制、诊断和治疗等多个方面也不断有新的进展,为此,本文对该领域的最新研究进行综述,以期为临床诊疗提供参考。

● 冠状动脉慢血流的临床特征

已有多个观察性研究通过比较CSF患者和冠状动脉血流正常者间的临床资料差异,确定了CSF人群的部分共性特征。多数研究报道CSF多见于男性、吸烟以及体重指数高的患者。Yilmaz等[5]的研究结果显示,在疑诊冠状动脉粥样硬化性心脏病行冠状动脉造影检查的患者中,CSF人群相比冠状动脉血流速度正常人群的代谢综合征发生率更高,表现为高血糖、高血脂和超重。一项最新纳入124例样本的横断面研究报道CSF患者多是男性、有吸烟和高血压病史,此外患者实验室检查指标有血脂、平均血小板体积等指标升高,心脏超声则表现为舒张功能的轻度减退和整体纵向应变的减小[6],这也与Huang等[7]的研究结果相一致。队列研究显示,约2/3的CSF患者表现为急性冠状动脉综合征,不稳定型心绞痛与心肌梗死的比例为9:1 [8,9]。其典型表现为反复发作的胸痛,主要发生在休息时,并伴有心电图改变。大多数CSF患者在主要心血管事件方面预后良好,但持续性胸痛发作引起的不适可显著损害其生活质量。此外,多个病例报道指出CSF的临床表现也包括恶性心律失常和猝死[10,11]

● 冠状动脉慢血流的诊断和评价

CSF最初是在冠状动脉造影过程中通过视觉观察来判断,应用心肌梗死溶栓治疗(thrombolysis in myocardial infarction,TIMI)血流分级来半定量评价冠状动脉血流速度,它反映了造影剂充填冠状动脉血管分支的速度和完整性,TIMI血流分级小于3级可诊断为CSF。尽管TIMI血流分级可粗略比较血流速度,但视觉评估的主观性限制了其临床应用。后来引入了校正TIMI帧数法(corrected TIMI frame count,cTFC)作为冠状动脉血流的客观定量指标,它表示造影剂首次到达远端冠状动脉所需的帧数。由于左前降支(left anterior descending branch,LAD)较左回旋支(left circumflex branch,LCx)和右冠状动脉(right coronary artery,RCA)长,因此将其TIMI帧数除以1.70得到cTFC值[12]。一般将cTFC>27帧定义为CSF, cTFC有利于标准化评价具体血流速度,已作为诊断CSF的主要指标。

然而,冠状动脉造影是一种有创检查,难以用于临床随访和动态评价。经胸多普勒超声心动图(transthoracic Doppler echocardiography,TTDE)的最新进展使无创显示冠状动脉LAD的血流速度成为可能,TTDE可作为CSF治疗效果监测和长期随访的有效工具[13]。但是TTDE对操作者的要求较高,稳定性容易受影响,且仅能评价LAD,因此其在CSF诊断中的应用还有待进一步的评价。

近些年,生物标志物研究已筛选到部分对CSF有诊断价值的指标,比如嗜酸性阳离子蛋白诊断CSF的敏感度和特异度分别为73.3%和66.7%[14]。其他的血清标志物包括细胞游离DNA[15]、脂蛋白相关磷脂酶A2[16]、微小RNA(microRNA,miR)-22[17]、miR-126[18]、miR- 155[19]、同型半胱氨酸[20,21]、Salusin-β[22]、adropin[23]、endocan[24]、碱性磷酸酶[25]及血栓调节蛋白[26]等,但这些生物标志物独立诊断的价值有限,未来联合多个指标可能提高其诊断的准确性。此外,应用极速脉搏波技术检测颈动脉弹性则是可以用来评价CSF患者的微循环障碍状态[27],也为无创评估CSF患者微循环情况提供了一种方法。

● 冠状动脉慢血流形成的病理机制
一、内皮功能障碍

越来越多的证据表明,内皮细胞在调节血管张力、血小板活性、白细胞黏附、血管平滑肌增生中起着不可或缺的作用,并与动脉粥样硬化的发展密切相关。据报道,CSF患者肱动脉内皮依赖性血流介导扩张(flow mediated dilation,FMD)减小[28],提示内皮功能障碍与CSF的病因有关[29]。值得注意的是,最近的研究结果表明,CSF患者的血浆基线和峰值内皮素-1浓度升高,而血浆一氧化氮浓度降低。Li等[30]进一步发现CSF患者存在内皮祖细胞数量减少。此外,CSF患者血浆同型半胱氨酸和不对称二甲基精氨酸(一种一氧化氮合酶抑制剂)水平升高[31],而这两种物质对内皮功能都有不利影响。Amirzadegan等[32]发现CSF组患者相比对照组微量白蛋白尿的发生率显著升高,而微量白蛋白尿与血管内皮功能障碍紧密相关,提示内皮功能障碍是CSF的致病因素之一。Kanar等[33]应用光学相干断层成像发现CSF患者的凹下脉络膜和视盘周围视网膜神经纤维层厚度变薄,提示CSF患者存在广泛的内皮功能障碍和微血管阻力增加。

二、冠状动脉微血管功能障碍

冠状动脉系统不仅有心外膜大血管,还包括大量的<400 μm的微血管,它们起到调节心肌血流的作用。自从CSF首次被提出以来,微血管功能障碍一直是CSF发病机制中的一个重要因素。Mangieri等[34]在CSF患者心内膜肌活检中发现微血管壁增厚、管腔减小、线粒体异常、糖原含量减少等微血管病变的直接证据。Beltrame等[35]指出,CSF与静息状态下冠状动脉微血管张力慢性升高有关,其特征是冠状动脉窦血氧饱和度低以及对内皮刺激(如冷加压或乙酰胆碱试验)反应减弱。殷培明等[36]发现CSF患者冠状动脉微血管阻力指数(index of microvascular resistance,IMR)与TIMI血流帧数成显著正相关(r=0.766, P=0.019 ),证实了CSF与冠状动脉微循环障碍间的紧密关系。Zhang等[37]应用不同方法研究了CSF患者的甲襞微血管,均发现微血管内径显著扩张,这可能是对血流减慢的代偿性反应。本课题组对CSF患者的皮肤微循环功能进行检测,并与冠状动脉血流速度正常的对照组进行比较分析,显示CSF患者的皮肤微血管功能减退,且微血管功能与平均TIMI帧数成显著负相关[38]。综合这些研究结果,可看出CSF患者的微血管结构和功能都存在异常,微血管结构的变化和对调节血流起到关键作用的舒张反应减弱可能是CSF发病的重要病因。

三、亚临床的动脉粥样硬化

Pekdemir等[39,40]利用血管内超声(intravascular ultrasound,IVUS)技术和流速测量证实CSF患者有弥漫性内膜增厚、冠状动脉壁广泛钙化和非阻塞性粥样硬化改变。Akkaya和Güntürk[41]以及Dong等[42]的研究则指出,CSF患者的颈动脉等大血管硬度增加,提示早期动脉粥样硬化在CSF的病因中扮演一定角色。

四、炎症

炎症是多种心血管疾病的危险因素,在CSF中也观察到了炎症反应。CSF患者血浆可溶性黏附分子和炎症指标水平显著升高,包括C反应蛋白和白细胞介素-6[43]、血小板/淋巴细胞比值[44]、中性粒细胞/淋巴细胞比值[45]、基质金属蛋白酶9(matrix metallopro-teinase-9,MMP-9)和可溶性CD40配体(soluble CD40 ligand,sCD40L)[46]等。但这些研究仅是对患者的血清进行检测,未能提供炎症激活的直接证据,且炎症标志物的升高是CSF的原发还是继发性改变尚不清楚。炎症机制在CSF中的具体作用还未见相关报道,未来还需进一步的研究。

● 冠状动脉慢血流治疗

迄今为止,还没有经大规模随机对照试验证实可有效治疗CSF的药物,目前的相关证据主要来自一些具有异质性的小型研究。CSF患者以反复心绞痛发作为特征,导致生活质量的严重降低。传统的用来改善心肌缺血症状的硝酸酯类药物只能扩张直径>200 μm的动脉,对于< 200 μm的动脉功能性阻塞则效果甚微,另一种扩张冠状动脉药物潘生丁则被证实可有效缓解患者症状[47]。钙离子拮抗剂可能对CSF有一定治疗作用,口服地尔硫卓可改善血流速度和缓解心绞痛[48],冠状动脉内注射尼卡地平可部分逆转慢血流现象[49]。多种其他药物也在CSF人群中显示出治疗价值。他汀类药物似乎对CSF患者有益,部分原因可能是其抗炎特性和对内皮祖细胞的激活[50,51]。奈比洛尔作为一氧化氮供体和具有内皮依赖性血管舒张作用的β受体阻滞剂已被证明能改善患者症状,缩短QT间期,提高生活质量[52,53]。替米沙坦能改善CSF患者的内皮功能障碍,减少冠状动脉微血管张力和增加血流灌注[54]。尼可地尔是近几年研究较多的可改善微血管性心绞痛的药物,兼具开放钾离子通道和类硝酸酯的血管扩张作用,临床研究显示尼可地尔对CSF同样具有治疗效果。Sani等[55]通过随机对照试验比较了口服尼可地尔或硝酸甘油对CSF患者心绞痛症状的影响,发现尼可地尔可显著减少CSF患者心绞痛的发作频率和降低疼痛程度。Sadamatsu等[56]比较了CSF患者冠状动脉内注射尼可地尔或硝酸异山梨酯后冠状动脉血流速度的变化,冠状动脉造影显示尼可地尔相比硝酸异山梨酯可显著加快血流速度,表现为TIMI帧数的降低。中药对CSF也有一定治疗作用,本课题组前期动物研究发现,麝香通心滴丸可通过上调组织硫化氢水平显著改善微血管功能障碍[57]。宁波第一医院开展的临床小样本随机对照研究发现舌下含服麝香通心滴丸可即时加快CSF患者的冠状动脉血流速度[58,59]。由海军军医大学第二附属医院牵头的麝香通心滴丸改善CSF的随机、双盲、安慰剂对照、多中心临床研究(注册号ChiCTR-IPR-16008950)也已完成患者的入组,中期分析已显示良好的治疗效果,本研究还会对患者进行较长时间的随访,以明确麝香通心滴丸对CSF的远期疗效和预后的影响。运动康复对CSF的症状改善有积极意义,已有研究指出科学专业的心脏康复运动能明显改善CSF现象,加快冠状动脉血流速度[60]

● 小结

综上所述,CSF并不罕见,且可严重影响患者预后,主要依靠校正TIMI帧数法诊断,其发病机制可能与冠状动脉微循环障碍和内皮功能紊乱等相关,目前尚无经广泛临床证据证实的有效药物,未来需要更多的大型随机对照研究来确定CSF的有效治疗模式。

参考文献
[1]
TambeAA, DemanyMA, ZimmermanHA, et al. Angina pectoris and slow flow velocity of dye in coronary arteries-a new angiographic finding[J]. Am Heart J, 1972,84(1):66-71. DOI: 10.1016/0002-8703(72)90307-9.
[2]
GoelPK, GuptaSK, AgarwalA, et al. Slow coronary flow: a distinct angiographic subgroup in syndrome X[J]. Angiology, 2001,52(8):507-514. DOI: 10.1177/000331970105200801.
[3]
TatliE, YildirimT, AktozM. Does coronary slow flow phenomenon lead to myocardial ischemia?[J]. Int J Cardiol, 2009,131(3):e101-102. DOI: 10.1016/j.ijcard.2007.07.069.
[4]
HawkinsBM, StavrakisS, RousanTA, et al. Coronary slow flow-prevalence and clinical correlations[J]. Circ J, 2012,76(4):936-942. DOI: 10.1253/circj.cj-11-0959.
[5]
YilmazH, DemirI, UyarZ. Clinical and coronary angiographic characteristics of patients with coronary slow flow[J]. Acta Cardiol, 2008,63(5):579-584. DOI: 10.2143/AC.63.5.2033224.
[6]
Seyyed MohammadzadMH, KhademvataniK, GardeshkhahS, et al. Echocardiographic and laboratory findings in coronary slow flow phenomenon: cross-sectional study and review[J]. BMC Cardiovasc Disord, 2021,21(1):230. DOI: 10.1186/s12872-021-02044-z.
[7]
HuangQ, ZhangF, ChenS, et al. Clinical characteristics in patients with coronary slow flow phenomenon: A retrospective study[J]. Medicine (Baltimore), 2021,100(6):e24643. DOI: 10.1097/MD.0000000000024643.
[8]
SanatiH, KianiR, ShakerianF, et al. Coronary slow flow phenomenon clinical findings and predictors[J]. Res Cardiovasc Med, 2016,5(1):e30296. DOI: 10.5812/cardiovascmed.30296.
[9]
BeltrameJF, LimayeSB, HorowitzJD. The coronary slow flow phenomenon-a new coronary microvascular disorder[J]. Cardiology, 2002,97(4):197-202. DOI: 10.1159/000063121.
[10]
Wozakowska-KapłonB, NiedzielaJ, KrzyzakP, et al. Clinical manifestations of slow coronary flow from acute coronary syndrome to serious arrhythmias[J]. Cardiol J200916(5):462-428.
[11]
SayaS, HennebryTA, LozanoP, et al. Coronary slow flow phenomenon and risk for sudden cardiac death due to ventricular arrhythmias: a case report and review of literature[J]. Clin Cardiol, 2008,31(8):352-355. DOI: 10.1002/clc.20266.
[12]
GibsonCM, CannonCP, DaleyWL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow[J]. Circulation, 1996,93(5):879-888. DOI: 10.1161/01.cir.93.5.879.
[13]
WangX, NieSP. The coronary slow flow phenomenon: characteristics, mechanisms and implications[J]. Cardiovasc Diagn Ther, 2011,1(1):37-43. DOI: 10.3978/j.issn.2223-3652.2011.10.01.
[14]
SoyluK, AkcayM, AksanG, et al. Eosinophil cationic protein: a new diagnostic biomarker in coronary slow flow phenomenon[J]. Bratisl Lek Listy, 2021,122(3):212-216. DOI: 10.4149/BLL_2021_036.
[15]
YolcuM, DoganA, KurtogluN, et al. New indicator of cellular ischemia in coronary slow-flow phenomenon: cell-free DNA[J]. Turk Kardiyol Dern Ars, 2020,48(6):558-565. DOI: 10.5543/tkda.2020.45605.
[16]
DingYD, PeiYQ, WangR, et al. Increased plasma lipoprotein-associated phospholipase A2 levels are associated with coronary slow flow[J]. BMC Cardiovasc Disord, 2020,20(1):248. DOI: 10.1186/s12872-020-01463-8.
[17]
ChenT, WangZY, LiCC. miRNA-22 as a candidate diagnostic biomarker for coronary slow flow[J]. Cardiol Res Pract, 2020,2020:7490942. DOI: 10.1155/2020/7490942.
[18]
王磊王红娜祖晓麟血浆miR-126水平与冠状动脉慢血流现象的关系[J].中华医学杂志2019,99(17):1323-1327. DOI: 10.3760/cma.j.issn.0376-2491.2019.17.010.
[19]
SuQ, YangH, LiL. Circulating miRNA-155 as a potential biomarker for coronary slow flow[J]. Dis Markers, 2018,2018:6345284. DOI: 10.1155/2018/6345284.
[20]
LiN, TianL, RenJ, et al. Evaluation of homocysteine in the diagnosis and prognosis of coronary slow flow syndrome[J]. Biomark Med, 2019,13(17):1439-1446. DOI: 10.2217/bmm-2018-0446.
[21]
DemirciE, ÇelikO, KalçıkM, et al. Evaluation of homocystein and asymmetric dimethyl arginine levels in patients with coronary slow flow phenomenon[J]. Interv Med Appl Sci, 2019,11(2):89-94. DOI: 10.1556/1646.11.2019.07.
[22]
AkyüzA, AydınF, AlpsoyŞ, et al. Relationship of serum salusin beta levels with coronary slow flow[J]. Anatol J Cardiol, 2019,22(4):177-184. DOI: 10.14744/AnatolJCardiol.2019.43247.
[23]
ZhaoZW, RenYG, LiuJ. Low serum adropin levels are associated with coronary slow flow phenomenon[J]. Acta Cardiol Sin, 2018,34(4):307-312. DOI: 10.6515/ACS.201807_34(4).20180306B.
[24]
ZhaoT, KechengY, ZhaoX, et al. The higher serum endocan levels may be a risk factor for the onset of cardiovascular disease: a meta-analysis[J]. Medicine (Baltimore), 2018,97(49):e13407. DOI: 10.1097/MD.0000000000013407.
[25]
WangY, LiuMJ, YangHM, et al. Association between increased serum alkaline phosphatase and the coronary slow flow phenomenon[J]. BMC Cardiovasc Disord, 2018,18(1):138. DOI: 10.1186/s12872-018-0873-6.
[26]
WangY, JiaPY, ChenBJ, et al. Evaluation of plasma thrombomodulin in patients with coronary slow flow[J]. Cardiology, 2017,138(3):141-146. DOI: 10.1159/000460239.
[27]
YangW, WangY, YuY, et al. Establishing normal reference value of carotid ultrafast pulse wave velocity and evaluating changes on coronary slow flow[J]. Int J Cardiovasc Imaging, 2020,36(10):1931-1939. DOI: 10.1007/s10554-020-01908-3.
[28]
ÇelikO, DemirciE, AydınM, et al. Evaluation of ghrelin levels and endothelial functions in patients with coronary slow flow phenomenon[J]. Interv Med Appl Sci, 2017,9(3):154-159. DOI: 10.1556/1646.9.2017.27.
[29]
ZhaoC, ZongZ, ZhuQ, et al. The lncRNA MALAT1 participates in regulating coronary slow flow endothelial dysfunction through the miR-181b-5p-MEF2A-ET-1 axis[J]. Vascul Pharmacol, 2021,138:106841. DOI: 10.1016/j.vph.2021.106841.
[30]
LiQ, HanJ, ChenH, et al. Reduced circulating endothelial progenitor cells in the coronary slow flow phenomenon[J]. Coron Artery Dis, 2013,24(1):6-10. DOI: 10.1097/MCA.0b013e32835b677d.
[31]
NaserifarM, AtaeiM, BehzadianN,et al. Evaluation of the correlation between serum concentrations of asymmetric dimethylarginine and corrected TIMI frame count in patients with slow coronary flow[J]. Int J Vasc Med2020:4592190. DOI: 10.1155/2020/4592190.
[32]
AmirzadeganA, GhaderpanahR, RayzanE, et al. Coronary slow flow phenomenon and microalbuminuria: Is there any relationship?[J]. Turk Kardiyol Dern Ars, 2019,47(8):657-661. DOI: 10.5543/tkda.2019.82258.
[33]
KanarHS, ArsanA, KupA, et al. Comparison of subfoveal choroidal thickness and retinal nerve fiber layer thickness in patients with coronary slow flow phenomenon and microvascular angina: optical coherence tomography based study[J]. Photodiagnosis Photodyn Ther, 2021,33:102189. DOI: 10.1016/j.pdpdt.2021.102189.
[34]
MangieriE, MacchiarelliG, CiavolellaM, et al. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries[J]. Cathet Cardiovasc Diagn, 1996,37(4):375-381. DOI: 3.0.CO;2-8" xlink:type="simple">10.1002/(SICI)1097-0304(199604)37:4<375::AID-CCD7>3.0.CO;2-8.
[35]
BeltrameJF, LimayeSB, WuttkeRD, et al. Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon[J]. Am Heart J, 2003,146(1):84-90. DOI: 10.1016/S0002-8703(03)00124-8.
[36]
殷培明王曙光张爱元冠状动脉慢血流与冠状动脉微循环障碍的相关性研究[J].中国循环杂志2016,31(6):555-558. DOI: 10.3969/j.issn.1000-3614.2016.06.008.
[37]
ZhangHX, YeN, PengF, et al. Abnormality in coronary slow flow phenomenon detected by nailfold microcirculation microanalysis[J]. Chin Med J (Engl), 2021,134(11):1370-1372. DOI: 10.1097/CM9.0000000000001437.
[38]
ZhaoJ, ZhangY, HuangZ, et al. Association between impaired cutaneous microvascular endothelial function and lectin-like oxidized low-density lipoprotein receptor-1 in patients with coronary slow flow[J]. Microvasc Res, 2020,129:103984. DOI: 10.1016/j.mvr.2020.103984.
[39]
PekdemirH, CinVG, CiçekD, et al. Slow coronary flow may be a sign of diffuse atherosclerosis. Contribution of FFR and IVUS[J]. Acta Cardiol, 2004,59(2):127-133. DOI: 10.2143/AC.59.2.2005166.
[40]
PekdemirH, CicekD, CamsariA, et al. The relationship between plasma endothelin-1, nitric oxide levels, and heart rate variability in patients with coronary slow flow[J]. Ann Noninvasive Electrocardiol, 2004,9(1):24-33. DOI: 10.1111/j.1542-474x.2004.91522.x.
[41]
AkkayaH, GüntürkEE. The relationship between coronary slow flow phenomenon and carotid femoral pulse wave velocity and aortic elastic properties[J]. JRSM Cardiovasc Dis, 2020,9:2048004020973094. DOI: 10.1177/2048004020973094.
[42]
DongR, LvQ, GaoY, et al. Carotid artery blood velocity decreases in patients with coronary slow flow: a manifestation of systemic arteriosclerosis[J]. Echocardiography, 2019,36(12):2234-2240. DOI: 10.1111/echo.14540.
[43]
LiJJ, QinXW, LiZC, et al. Increased plasma C-reactive protein and interleukin-6 concentrations in patients with slow coronary flow[J]. Clin Chim Acta, 2007,385(1-2):43-47. DOI: 10.1016/j.cca.2007.05.024.
[44]
QiuZ, JiangY, JiangX, et al. Relationship between platelet to lymphocyte ratio and stable coronary artery disease: meta-analysis of observational studies[J]. Angiology, 2020,71(10):909-915. DOI: 10.1177/0003319720943810.
[45]
YılmazM, KorkmazH, BilenMN, et al. Could neutrophil/lymphocyte ratio be an indicator of coronary artery disease, coronary artery ectasia and coronary slow flow?[J]. J Int Med Res, 2016,44(6):1443-1453. DOI: 10.1177/0300060516664637.
[46]
ZhangX, DingJ, XiaS. A preliminary study of MMP-9 and sCD40L in patients with coronary slow flow[J]. Ann Palliat Med, 2021,10(1):657-663. DOI: 10.21037/apm-20-2271.
[47]
KurtogluN, AkcayA, DindarI. Usefulness of oral dipyridamole therapy for angiographic slow coronary artery flow[J]. Am J Cardiol, 2001,87(6):777-779, A8. DOI: 10.1016/s0002-9149(00)01503-4.
[48]
LiL, GuY, LiuT, et al. A randomized, single-center double-blinded trial on the effects of diltiazem sustained-release capsules in patients with coronary slow flow phenomenon at 6-month follow-up[J]. PLoS One, 2012,7(6):e38851. DOI: 10.1371/journal.pone.0038851.
[49]
MehtaHH, MorrisM, FischmanDL, et al. The spontaneous coronary slow-flow phenomenon: reversal by intracoronary nicardipine[J]. J Invasive Cardiol, 2019,31(3):42-45.
[50]
SunL, ZhangY, ZhangJ, et al. Atorvastatin improves the proliferation and migration of endothelial progenitor cells via the miR-221/VEGFA axis[J]. Biosci Rep, 2020,40(11): BSR20193053.DOI: 10.1042/BSR20193053.
[51]
NiuH, WeiZ, ZhangY, et al. Atorvastatin improves coronary flow and endothelial function in patients with coronary slow flow[J]. Exp Ther Med, 2018,15(1):904-908. DOI: 10.3892/etm.2017.5484.
[52]
AlbayrakS, OrduS, YukselH, et al. Efficacy of nebivolol on flow-mediated dilation in patients with slow coronary flow[J]. Int Heart J, 2009,50(5):545-553. DOI: 10.1536/ihj.50.545.
[53]
SimsekH, YamanM, BabatN, et al. Decreased risk of ventricular arrhythmias with treatment of nebivolol in patients with coronary slow flow[J]. Kardiol Pol, 2016,74(10):1174- 1179. DOI: 10.5603/KP.a2016.0060.
[54]
JinZ, TanQ, SunB. Telmisartan ameliorates vascular endothelial dysfunction in coronary slow flow phenomenon(CSFP)[J]. Cell Biochem Funct, 2018,36(1):18-26. DOI: 10.1002/cbf.3313.
[55]
SaniHD, EshraghiA, NezafatiMH, et al. Nicorandil versus nitroglycerin for symptomatic relief of angina in patients with slow coronary flow phenomenon: a randomized clinical trial[J]. J Cardiovasc Pharmacol Ther, 2015,20(4):401-406. DOI: 10.1177/1074248415571457.
[56]
SadamatsuK, TashiroH, YoshidaK, et al. Acute effects of isosorbide dinitrate and nicorandil on the coronary slow flow phenomenon[J]. Am J Cardiovasc Drugs, 2010,10(3):203-208. DOI: 10.2165/11537280-000000000-00000.
[57]
ZhangY, ZhaoJ, HeZ, et al. Shexiang Tongxin Dropping Pill improves peripheral microvascular blood flow via cystathionine-γ-lyase[J]. Med Sci Monit, 2019,25:6313-6321. DOI: 10.12659/MSM.916266.
[58]
WangSH, ChuL, XuZ, et al. Effect of Shexiang Tongxin Dropping Pills (麝香通心滴丸) on the immediate blood flow of patients with coronary slow flow[J]. Chin J Integr Med, 2019,25(5):360-365. DOI: 10.1007/s11655-018-2559-4.
[59]
徐朝血管活性药物——麝香通心滴丸治疗冠状动脉慢血流的临床研究[D].宁波宁波大学, 2015.
[60]
HeW, HuangY, ZhangY, et al. Cardiac rehabilitation therapy for coronary slow flow phenomenon[J]. Herz, 2020,45(5):468- 474. DOI: 10.1007/s00059-018-4742-y.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词