参考文献[1]
HaimeiMA. Pathogenesis and Treatment Strategies of COVID-19-Related Hypercoagulant and Thrombotic Complications[J]. Clin Appl Thromb Hemost, 2020, 26:1076029620944497. .
[2]
ZanzaC, RaccaF, LonghitanoY, et al. Risk Management and Treatment of Coagulation Disorders Related to COVID-19 Infection[J]. Int J Environ Res Public Health, 2021, 18(3):1268. .
[3]
梅恒,胡豫. 新型冠状病毒肺炎(COVID-19)患者出凝血功能障碍病因分析及诊治策略[J]. 中华血液学杂志, 2020, 41(3):185-191. .
[4]
中华医学会呼吸病学分会,中国医师协会呼吸医师分会. 中国成人2019冠状病毒病的诊治与防控指南[J]. 中华医学杂志, 2021, 101(18):1293-1356.
[5]
NugrohoJ, WardhanaA, MaghfirahI, et al. Relationship of D-dimer with severity and mortality in SARS-CoV-2 patients : A meta-analysis[J]. Int J Lab Hematol, 2021, 43(1):110-115. .
[6]
HariyantoTI, JaparKV, KwenandarF, et al. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: A systematic review and meta-analysis[J]. Am J Emerg Med, 2021, 41:110-119. .
[7]
CuiS, ChenS, LiX, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(6):1421-1424. .
[8]
ZhangL, YanX, FanQ, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19[J]. J Thromb Haemost, 2020, 18(6):1324-1329. .
[9]
KariyannaPT, AuroraL, JayarangaiahA, et al. Utility of D-dimer as a Prognostic Factor in SARS CoV2 Infection: A Review[J]. Am J Med Case Rep, 2020, 8(10):337-340.
[10]
TangN, LiD, WangX, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(4):844-847. .
[11]
KolliasA, KyriakoulisKG, DimakakosE, et al. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action[J]. Br J Haematol, 2020, 189(5):846-847. .
[12]
HanH, YangL, LiuR, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection[J]. Clin Chem Lab Med, 2020, 58(7):1116-1120. .
[13]
ConnorsJM, LevyJH. COVID-19 and its implications for thrombosis and anticoagulation[J]. Blood, 2020, 135(23):2033-2040. .
[14]
HadidT, KafriZ, Al-KatibA. Coagulation and anticoagulation in COVID-19[J]. Blood Rev, 2021, 47:100761. .
[15]
Vieira-de-AbreuA, CampbellRA, WeyrichAS, et al. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum[J]. Semin Immunopathol, 2012, 34(1):5-30. .
[16]
ThachilJ, TangN, GandoS, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19[J]. J Thromb Haemost, 2020, 18(5):1023-1026. .
[17]
LippiG, PlebaniM, HenryBM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis[J]. Clin Chim Acta, 2020, 506:145-148. .
[18]
BiX, SuZ, YanH, et al. Prediction of severe illness due to COVID-19 based on an analysis of initial Fibrinogen to Albumin Ratio and Platelet count[J]. Platelets, 2020, 31(5):674-679. .
[19]
LiuY, SunW, GuoY, et al. Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study[J]. Platelets, 2020, 31(4):490-496. .
[20]
ManneBK, DenormeF, MiddletonEA, et al. Platelet gene expression and function in patients with COVID-19[J]. Blood, 2020, 136(11):1317-1329. .
[21]
AmgalanA, OthmanM. Hemostatic laboratory derangements in COVID-19 with a focus on platelet count[J]. Platelets, 2020, 31(6):740-745. .
[22]
ChenN, ZhouM, DongX, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223):507-513. .
[23]
ZhouF, YuT, DuR, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study[J]. Lancet, 2020, 395(10229):1054-1062. .
[24]
HuangC, WangY, LiX, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506. .
[25]
TurecekPL, PeckRC, RangarajanS, et al. Recombinant ADAMTS13 reduces abnormally up-regulated von Willebrand factor in plasma from patients with severe COVID-19[J]. Thromb Res, 2021, 201: 100-112. .
[26]
HartmannJ, ErgangA, MasonD, et al. The Role of TEG Analysis in Patients with COVID-19-Associated Coagulopathy: A Systematic Review[J]. Diagnostics (Basel), 2021, 11(2):172. .
[27]
TanakaT, KishimotoT. The biology and medical implications of interleukin-6[J]. Cancer Immunol Res, 2014, 2(4):288-294. .
[28]
ZhangJ, HaoY, OuW, et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study[J]. J Transl Med, 2020, 18(1):406. .
[29]
LiuF, LiL, XuM, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19[J]. J Clin Virol, 2020, 127: 104370. .
[30]
DarifD, HammiI, KihelA, et al. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong?[J]. Microb Pathog, 2021, 153: 104799. .
[31]
ParkJH, LeeHK. Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19[J]. Front Immunol, 2020, 11:2145. .
[32]
ZuoY, YalavarthiS, ShiH, et al. Neutrophil extracellular traps in COVID-19[J]. JCI Insight, 2020, 5(11):e138999. .
[33]
PatelP, WalbornA, RondinaM, et al. Markers of Inflammation and Infection in Sepsis and Disseminated Intravascular Coagulation[J]. Clin Appl Thromb Hemost, 2019, 25:1076029619843338. .
[34]
BlackburnSD, WherryEJ. IL-10, T cell exhaustion and viral persistence[J]. Trends Microbiol, 2007, 15(4):143-146. .
[35]
XuB, FanCY, WangAL, et al. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China[J]. J Infect, 2020, 81(1):e51-51e60. .
[36]
HanH, MaQ, LiC, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors[J]. Emerg Microbes Infect, 2020, 9(1):1123-1130. .
[37]
ChenG, WuD, GuoW, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019[J]. J Clin Invest, 2020, 130(5):2620-2629. .
[38]
DiaoB, WangC, TanY, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19)[J]. Front Immunol, 2020, 11:827. .
[39]
KarkiR, SharmaBR, TuladharS, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes[J]. Cell, 2021, 184(1):149-168.e17. .
[40]
DinarelloCA. Interleukin-1beta[J]. Crit Care Med, 2005, 33(12Suppl):S460-462. .
[41]
HadjadjJ, YatimN, BarnabeiL, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients[J]. Science, 2020, 369(6504):718-724. .
[42]
AkbariH, TabriziR, LankaraniKB, et al. The role of cytokine profile and lymphocyte subsets in the severity of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis[J]. Life Sci, 2020, 258:118167. .
[43]
PachaO, SallmanMA, EvansSE. COVID-19: a case for inhibiting IL-17?[J]. Nat Rev Immunol, 2020, 20(6):345-346. .
[44]
EnglandJT, AbdullaA, BiggsCM, et al. Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes[J]. Blood Rev, 2021, 45: 100707. .
[45]
EngelmannB, MassbergS. Thrombosis as an intravascular effector of innate immunity[J]. Nat Rev Immunol, 2013, 13(1):34-45. .
[46]
LooJ, SpittleDA, NewnhamM. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms[J]. Thorax, 2021, 76(4):412-420. .
[47]
JacksonSP, DarboussetR, SchoenwaelderSM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms[J]. Blood, 2019, 133(9):906-918. .
[48]
GuSX, TyagiT, JainK, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation[J]. Nat Rev Cardiol, 2021, 18(3):194-209. .
[49]
CollingME, KanthiY. COVID-19-associated coagulopathy: An exploration of mechanisms[J]. Vasc Med, 2020, 25(5):471-478. .
[50]
EslamifarZ, BehzadifardM, SoleimaniM, et al. Coagulation abnormalities in SARS-CoV-2 infection: overexpression tissue factor[J]. Thromb J, 2020, 18(1):38. .
[51]
RobbaC, BattagliniD, BallL, et al. Coagulative Disorders in Critically Ill COVID-19 Patients with Acute Distress Respiratory Syndrome: A Critical Review[J]. J Clin Med, 2021, 10(1):140. .
[52]
GubernatorovaEO, GorshkovaEA, PolinovaAI, et al. IL-6: Relevance for immunopathology of SARS-CoV-2[J]. Cytokine Growth Factor Rev, 2020, 53:13-24. .
[53]
GiannisD, ZiogasIA, GianniP. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past[J]. J Clin Virol, 2020, 127:104362. .
[54]
PasrijaR, NaimeM. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease[J]. Int Immunopharmacol, 2021, 90:107225. .
[55]
张婕,高晓玲,李登举, 等. 武汉地区重型及危重型2019新型冠状病毒肺炎(COVID-19)患者D-二聚体、炎症指标、细胞因子与疾病严重程度的关系[J]. 中华血液学杂志, 2020, 41(11):927-931. .
[56]
许莹,钱雅君,顾勤, 等. 新型冠状病毒肺炎患者D-二聚体与炎性因子和器官功能的关系探讨[J]. 中华危重病急救医学, 2020, 32(5):559-563. .
[57]
RanucciM, BallottaA, Di DeddaU, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome[J]. J Thromb Haemost, 2020, 18(7):1747-1751. .
[58]
KerrR, StirlingD, LudlamCA. Interleukin 6 and haemostasis[J]. Br J Haematol, 2001, 115(1):3-12. .
[59]
LubranoV, BalzanS. Cardiovascular risk in COVID-19 infection[J]. Am J Cardiovasc Dis, 2020, 10(4):284-293.
[60]
BesterJ, PretoriusE. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity[J]. Sci Rep, 2016, 6:32188. .
[61]
RegnaultV, de MaistreE, CarteauxJP, et al. Platelet activation induced by human antibodies to interleukin-8[J]. Blood, 2003, 101(4):1419-1421. .
[62]
JoseRJ, ManuelA. COVID-19 cytokine storm: the interplay between inflammation and coagulation[J]. Lancet Respir Med, 2020, 8(6):e46-46e47. .
[63]
JoséRJ, WilliamsAE, ChambersRC. Proteinase-activated receptors in fibroproliferative lung disease[J]. Thorax, 2014, 69(2):190-192. .