
聚醚酮酮(polyetherketoneketone,PEKK)是一种在主链结构中含有两个酮键和一个醚键的重复单元的半晶体线性热塑性聚合物,具有接近人体天然骨的弹性模量、生物相容性和良好的化学稳定性、射线可透性、与MRI兼容等优点,是制备骨科植入物的新型生物材料,但其表面疏水性及生物惰性限制了其应用。通过特定的材料制备工艺制造出既能保留甚至提升PEKK原有性能又能提高其骨生物活性的复合材料是当前骨科植入物的研究热点。PEKK复合生物陶瓷(如羟基磷灰石、氮化硅)以及生物相容较好的金属(如钽、铝和钛)制备的复合材料,不仅保持了与人体骨骼相似的弹性模量、提升了硬度,还改善了生物相容性、增加了抑菌性能及促进骨整合等能力,在骨科植入物领域非常有发展潜力。通过检索PubMed、Embase、ScienceDirect、中国知网及万方数据库中有关PEKK及其复合材料在生物医学领域中的应用研究,分析近年来PEKK及经过不同改性策略(如掺杂混合物改性、表面磺化改性、3D打印以及表面沉积技术处理等方法)的复合材料的特性、优势及不足,为制备满足临床需求的具有多种功能的骨科植入物提供参考。
版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
随着人口老龄化加剧、交通伤以及运动损伤的增加,临床上骨科植入物的需求也在不断增长[1]。常用的骨科植入物材料包括陶瓷、金属、聚合物和复合材料。陶瓷材料主要有羟基磷灰石(hydroxyapatite,HA)、β-磷酸三钙以及氮化硅(Si3N4,SN)等,具有刚度高、脆性大、韧性差,不能在承重部位使用的特点,因此限制了其在骨科植入物中的应用[2,3,4]。常见的金属材料,如钛合金、钴铬钼合金和316L不锈钢,具有优异的机械强度和延展性,通常用于承重骨替换、脊柱融合及骨固定装置[5,6,7]。但这些金属植入物也存在一定的缺陷,如应力遮挡效应、腐蚀问题以及术后的植入物检测受限等。金属植入物的弹性模量显著高于人皮质骨,因此植入物周围骨组织所受的应力刺激明显低于骨组织维持自身更新所需的应力刺激,导致植入物周围部分骨组织吸收、强度降低、植入物松动,最终造成植入失败,即产生所谓的应力遮挡效应[8]。腐蚀是由于植入物与体液的相互作用,使金属离子释放,引起机体过敏、炎症和细胞毒性反应。另外,金属植入物与MRI、CT等影像技术不兼容,不利于对植入后骨生长及愈合进行监控[9]。聚合物和复合材料因易加工性、良好的化学稳定性以及较轻的重量而成为具有应用前景的骨科植入物材料。聚合物分为可生物降解聚合物(如聚乳酸、聚乙醇酸及其共聚物)和不可降解聚合物[如聚芳基醚酮(polyaryletherketone,PAEK)]。虽然可生物降解聚合物能应用于组织工程支架和合成骨移植替代品,但不适用于永久性植入物固定,因此不可降解聚合物在临床上仍然具有巨大的需求[10]。





















