参考文献[1]
BrayF, FerlayJ, SoerjomataramI, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. .
[2]
AliH, BitarMS, Al MadhounA, et al. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer[J]. PLoS One, 2017, 12(2): e0171690. .
[3]
CopijaA, WaniczekD, WitkośA, et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients[J]. Int J Mol Sci, 2017, 18(1): E107. .
[4]
TulinA, SlavuI, TulinR, et al. Does sex of the patient play a role in survival for MSI colorectal cancer?[J]. J Mind Med Sci, 2018, 5(1): 101-108. .
[5]
HorvatM, StabucB. Microsatellite instability in colorectal cancer[J]. Radiol Oncol, 2011, 45(2): 75-81. .
[6]
TestaU, PelosiE, CastelliG. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells[J]. Med Sci (Basel), 2018, 6(2): E31. .
[7]
ZeinalianM, Hashemzadeh-ChaleshtoriM, SalehiR, et al. Clinical aspects of microsatellite instability testing in colorectal cancer[J]. Adv Biomed Res, 2018, 7: 28. .
[8]
QiF, YanQ, ZhengZ, et al. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest[J]. J Buon, 2018, 23(2): 346-352.
[9]
ChenL, PanX, HuX, et al. Gene expression differences among different MSI statuses in colorectal cancer: Gene expression differences among MSI statuses[J]. Int J Cancer, 2018, 143(7): 1731-1740. .
[10]
MengWJ, YangL, MaQ, et al. MicroRNA expression profile reveals miR-17-92 and miR-143-145 cluster in synchronous colorectal cancer[J]. Medicine, 2015, 94(32): e1297. .
[11]
GrassoCS, GiannakisM, WellsDK, et al. Genetic mechanisms of immune evasion in colorectal cancer[J]. Cancer Discov, 2018, 8(6): 730-749. .
[12]
MalietzisG, MughalA, CurrieAC, et al. Factors implicated for delay of adjuvant chemotherapy in colorectal cancer: a meta-analysis of observational studies[J]. Ann Surg Oncol, 2015, 22(12): 3793-3802. .
[13]
Hadi, Babaei, Mehrdad, et al. Simplified microsatellite instability detection protocol provides equivalent sensitivity to robust detection strategies in Lynch syndrome patients[J]. Cancer Biol Med, 2017, 14(2): 142-150.
[14]
ProticM, StojadinovicA, NissanA, et al. Prognostic effect of Ultra-Staging Node-Negative colon cancer without adjuvant chemotherapy: a prospective National cancer Institute-Sponsored clinical trial[J]. J Am Coll Surg, 2015, 221(3): 643-651; . .
[15]
臧丽娟.微卫星不稳定性在结直肠癌中的研究进展[J].上海医药, 2018, 39(1): 8-13.
ZangLJ. Research progress of microsatellite instability in colorectal cancer[J]. Shanghai Med Pharm J, 2018, 39(1): 8-13.[16]
DudleyJC, LinMT, LeDT, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clin Cancer Res, 2016, 22(4): 813-820. .
[17]
TögelL, NightingaleR, WuR, et al. DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis[J]. Sci Rep, 2018, 8(1): 1767. .
[18]
De SouzaCF, SabedotTS, MaltaTM, et al. A distinct DNA methylation shift in a subset of glioma CpG island methylator phenotypes during tumor recurrence[J]. Cell Rep, 2018, 23(2): 637-651. .
[19]
JiaM, JansenL, WalterV, et al. No association of CpG island methylator phenotype and colorectal cancer survival: population-based study[J]. Br J Cancer, 2016, 115(11): 1359-1366. .
[20]
IkomaN, CloydJ, BadgwellBD, et al. Clinical features and survival of gastric cancer patients with DNA mismatch repair deficiency[J]. J Surg Oncol, 2018, 117(4): 707-709. .
[21]
TanWJ, HamzahJL, AcharyyaS, et al. Evaluation of Long-Term outcomes of microsatellite instability status in an Asian cohort of sporadic colorectal cancers[J]. J Gastrointest Cancer, 2018, 49(3): 311-318. .
[22]
KeumN, LiuL, HamadaT, et al. Calcium intake and colon cancer risk subtypes by tumor molecular characteristics[J]. Cancer Causes Control, 2019, 30(6): 637-649. .
[23]
ZhangTM, HuangT, WangRF. Cross talk of chromosome instability, CpG island methylator phenotype and mismatch repair in colorectal cancer[J]. Oncol Lett, 2018, 16(2): 1736-1746. .
[24]
KokelaarRF, JonesH, BeynonJ, et al. Meta-analysis of the prognostic value of CpG island methylator phenotype in rectal cancer[J]. Int J Colorectal Dis, 2018, 33(8): 995-1000. .
[25]
PilozziE, FerriM, OnelliMR, et al. Prognostic significance of 18q LOH in sporadic colorectal carcinoma[J]. Am Surg, 2011, 77(1): 38-43.
[26]
JiaX, ShanmugamC, PaluriRK, et al. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer[J]. Oncotarget, 2017, 8(12): 20198-20212. .
[27]
SefriouiD, VermeulinT, BlanchardF, et al. Copy number variations in DCC/18q and ERBB2/17q are associated with disease-free survival in microsatellite stable colon cancer[J]. Int J Cancer, 2017, 140(7): 1653-1661. .
[28]
CarethersJM, HawnMT, GreensonJK, et al. Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer[J]. Gastroenterology, 1998, 114(6): 1188-1195. .
[29]
XuHL, LiM, ZhangRJ, et al. Prediction of tumor biological characteristics in different colorectal cancer liver metastasis animal models using-18F-FDG and-18F-FLT[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(2): 140-148.
[30]
IshikawaT, UetakeH, IshiguroM, et al. Abstract 5274: MSI, 18q LOH, and clinicopathological features in stage II sporadic colon cancers: Biomarker study in a phase III study of postoperative adjuvant chemotherapy for stage II colon cancer (SACURA trial)[J]. Cancer Res, 2015, 75(15Supplement): 5274-5274. .
[31]
Matevska-GeshkovskaN, Staninova-StojovskaM, Kapedanovska-NestorovskaA, et al. Influence of MSI and 18q LOH markers on capecitabine adjuvant monotherapy in colon cancer patients[J]. Pharmgenomics Pers Med, 2018, 11: 193-203. .
[32]
王倩,王超群,沈湘萍,等.结直肠癌中EGFR蛋白的表达及其临床病理意义[J].中国实用医刊, 2018, 45(5): 10-12. .
WangQ, WangCQ, ShenXP, et al. Expression of EGFR in colorectal cancer and its significance in clinicopathology[J]. Chin J Pract Med, 2018, 45(5): 10-12. .[33]
NemanqaniDM, AftabK, Al-MalkiSH, et al. Expression of epidermal growth factor receptor in colorectal adenocarcinoma and its correlation with clinicopathological factors[J]. J Coll Physicians Surg Pak, 2018, 28(7): 527-531. .
[34]
KatoY, OhishiT, YamadaS, et al. Anti-Human epidermal growth factor receptor 2 monoclonal antibody H2Mab-41 exerts antitumor activity in a mouse xenograft model of colon cancer[J]. Monoclon Antib Immunodiagn Immunother, 2019, 38(4): 157-161. .
[35]
SekiY, FujiwaraY, KohnoT, et al. Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression[J]. ESMO open, 2018, 3(2): e000292. .
[36]
LeeSK, HwangJH, ChoiKY. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis[J]. Adv Biol Regul, 2018, 68: 46-54. .
[37]
LuoHY, XuRH. Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer[J]. World J Gastroenterol, 2014, 20(14): 3858-3874. .
[38]
BoussiosS, OzturkMA, MoschettaM, et al. The developing story of predictive biomarkers in colorectal cancer[J]. J Pers Med, 2019, 9(1): 10. .
[39]
JonesRP, SuttonPA, EvansJP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer[J]. Br J Cancer, 2017, 116(7): 923-929. .
[40]
BennounaJ, HiretS, BertautA, et al. Continuation of bevacizumab vs cetuximab plus chemotherapy after first progression in KRAS Wild-Type metastatic colorectal cancer: the UNICANCER PRODIGE18 randomized clinical trial[J]. JAMA Oncol, 2019, 5(1): 83-90. .
[41]
AllegraCJ, JessupJM, SomerfieldMR, et al. American society of clinical oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy[J]. J Clin Oncol, 2009, 27(12): 2091-2096. .
[42]
RouyerM, FrançoisE, CunhaAS, et al. Effectiveness of cetuximab as First-Line therapy for patients with Wild-Type KRAS and unresectable metastatic colorectal cancer in Real-Life practice: results of the EREBUS cohort[J]. Clin Colorectal Cancer, 2018, 17(2): 129-139. .
[43]
UrsemC, AtreyaCE, Van LoonK. Emerging treatment options for BRAF-mutant colorectal cancer[J]. Gastrointest Cancer, 2018, 8: 13-23. .
[44]
GradyWM, PritchardCC. Molecular alterations and biomarkers in colorectal cancer[J]. Toxicol Pathol, 2014, 42(1): 124-139. .
[45]
KondelinJ, SalokasK, SaarinenL, et al. Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer[J]. EMBO Mol Med, 2018, 10(9):e8552. .
[46]
LiuJH, ZengWQ, HuangC, et al. Predictive and prognostic implications of mutation profiling and microsatellite instability status in patients with metastatic colorectal carcinoma[J]. Gastroenterol Res Pract, 2018: 4585802. .
[47]
Van CutsemE, KöhneCH, HitreE, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer[J]. N Engl J Med, 2009, 360(14): 1408-1417. .
[48]
SnyderM, BottiglieriS, AlmhannaK. Impact of primary tumor location on first-line bevacizumab or cetuximab in metastatic colorectal cancer[J]. Rev Recent Clin Trials, 2018, 13(2): 139-149. .
[49]
WaniczekD, ŚnieturaM, Młynarczyk-LiszkaJ, et al. PTEN expression profiles in colorectal adenocarcinoma and its precancerous lesions[J]. Pol J Pathol, 2013, 64(1): 15-20.
[50]
GoelA, ArnoldCN, NiedzwieckiD, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers[J]. Cancer Res, 2004, 64(9): 3014-3021.
[51]
ShenWD, ChenHL, LiuPF. EGFR gene copy number as a predictive biomarker for resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer treatment: a meta-analysis[J]. Chin J Cancer Res, 2014, 26(1): 59-71. .
[52]
WangP, LiangJ, WangZ, et al. The prognostic value of p53 positive in colorectal cancer: A retrospective cohort study[J]. Tumour Biol, 2017, 39(5): 1010428317703651. .
[53]
Di BartolomeoM, PietrantonioF, PerroneF, et al. Lack of KRAS, NRAS, BRAF and TP53 mutations improves outcome of elderly metastatic colorectal cancer patients treated with cetuximab, oxaliplatin and UFT[J]. Target Oncol, 2014, 9(2): 155-162. .