综述
结直肠癌诊疗相关性分子标志物的研究进展
国际生物医学工程杂志, 2019,42(6) : 522-526. DOI: 10.3760/cma.j.issn.1673-4181.2019.06.013
摘要

结直肠癌是最常见的恶性肿瘤之一,是遗传突变和表观遗传变异逐渐累积的结果,其死亡率仅次于肺癌。大部分结直肠癌患者出现症状时已发展至中晚期,接受手术治疗和化疗后的效果往往不理想。近年来随着靶向药物的出现,结直肠癌的个体化治疗逐渐成为趋势。随着人们对结直肠癌的深入研究,越来越多关于结直肠癌的分子标志物不断被发现,其在肿瘤发生、发展及治疗中的影响也逐渐受到重视。将分子标志物应用于结直肠癌的筛查有助于疾病的早期发现和诊断。个体化治疗前进行分子标志物检测可优化治疗方案,并提示患者预后情况。将目前研究较多且具有临床应用前景的分子标志物做简要概述,以期为结直肠癌的早期诊断和治疗提供参考依据。

引用本文: 唐亮, 孔大陆. 结直肠癌诊疗相关性分子标志物的研究进展 [J] . 国际生物医学工程杂志, 2019, 42(6) : 522-526. DOI: 10.3760/cma.j.issn.1673-4181.2019.06.013.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

0 引言

结直肠癌是人类最常见的恶性肿瘤之一,其发病率仅次于肺癌和乳腺癌,死亡率仅次于肺癌[1],总体5年生存率接近65%。结直肠癌患者由于早期无症状或症状不明显常难以发现,当症状明显出现时已进展为中晚期,且往往已经转移,因此早期诊断和晚期治疗对结直肠癌患者具有重要意义。

近几十年来,分子生物学研究结果逐渐阐明了结直肠癌的遗传学发病机制,即由遗传变异或表观遗传变异导致。结直肠癌疾病的进展过程呈现出基因组不稳定的特点[2],因此随着分子生物学技术的不断提高,寻找分子标志物已成为结直肠癌的研究热点。有效而独立的分子标志物也将为结直肠癌的个体化诊疗提供有力的理论依据。本文将与结直肠癌诊疗相关的潜在分子标志物研究进展作一综述。

1 微卫星不稳定性

在DNA复制过程中,由于错配修复功能钝化,简单的DNA重复序列发生错配,表现为高频突变的状态,此现象即为微卫星不稳定性(microsatellite instability, MSI)[3]。失去错配修复功能常常导致含有微卫星核酸序列的基因发生重复序列的插入和/或缺失。大量数据表明,MSI状态可成为结肠癌患者诊断和预后的潜在标志物。MSI在结直肠癌中的发生频率为15%~20%[4]。与伴有高频微卫星不稳定性(high levels of MSI, MSI-H)的偶发病例相比,伴有MSI-H的遗传性非息肉性结肠癌患者的预后较好[5]。病例样本中256例伴有MSI-H的结肠癌患者与微卫星序列稳定(microsatellite stable, MSS)的患者相比,更多的表现为非晚期、偏右半侧、低分化、伴黏液性表型和扩张性生长的特点。通过分析607例结肠癌样本和应用其他研究方法发现,MSI有望成为预测结直肠癌患者低恶性度和良好预后的标志物[6,7,8]。尽管对此结论有争议的报道很多[9,10,11],但MSI作为结直肠癌的预后标志物应用于临床仍值得期待。

5-氟尿嘧啶以抗代谢作用抑制肿瘤细胞生长,目前用于结直肠癌患者术后辅助化疗。有研究者通过分析病例结果发现,MSI结直肠癌患者进行5-氟尿嘧啶辅助化疗的效果较好[12,13,14];但是,有些病例调查和体外实验结果亦发现,相比于MSS患者,MSI结直肠癌患者并不能在5-氟尿嘧啶辅助化疗中获得更多的益处[5, 15]。因此,无法确定MSI结直肠癌患者对5-氟尿嘧啶化疗是否更具敏感性。对此,Dudley等[16]认为,可能由于5-氟尿嘧啶的细胞毒性机制复杂,MSI无法以单一标志物的形式进行化疗效果预测。

2 CpG岛甲基化表型

在癌症疾病中,异常的DNA甲基化现象广泛存在,这种表观遗传学的变化为癌症的诊疗提供了更广阔的思路和方向。在人类中,DNA甲基化常发生在CpG(C-phosphodiester-G bond)双核苷酸的胞嘧啶残基上,富含CpG的序列被称为CpG岛。CpG岛长约200~2 000 bps,CG含量超过50%。约40%~60%抑癌基因的启动子区域含有CpG岛,如p16、hMLH1及THBS1等基因。正常情况下,大部分的CpG双核苷酸处于甲基化状态,同时,CpG岛处于非甲基化状态。CpG岛甲基化是某些抑癌基因和肿瘤相关基因失活的重要机制。

结直肠癌的表观遗传变异中以CpG岛甲基化表型(CpG island methylator phenotype, CIMP)现象最为典型。尽管已经有研究者在分类方面进行了尝试[17,18],但目前无统一标准对CIMP进行分类,不足以达成共识。Jia等[19]通过对结肠癌患者进行对比分析发现,CIMP-high可作为独立因素预测结肠癌死亡率;相反,另有研究结果发现,CIMP与结直肠癌的不良预后和低生存率密切相关[20,21]。此外,研究结果发现,MSI能够影响CIMP与结直肠癌的预后关系[22],甚至使DNA甲基化的预后不良影响消失[21]

有研究结果表明,CIMP的Ⅲ期结直肠癌患者进行5-氟尿嘧啶化疗后效果较好[23];相反,相关研究通过比较晚期结直肠癌患者5-氟尿嘧啶的辅助化疗效果发现,CIMP患者化疗效果较差[24]。尽管目前尚无法得出一致的结论,但前期研究为继续探索CIMP与结直肠癌的治疗关系指出了方向。制定统一的影响因素划分标准和多因素综合分析将有助于CIMP对结直肠癌治疗效果的预测。

3 18q LOH

染色体18q区域杂合性缺失(loss of heterozygo- sity, LOH)在结直肠癌中普遍存在[25],且18号染色体长臂上的多个基因与结直肠癌的发病机理和疾病进程有紧密关系。通过对106例肿瘤组织样本进行整理分析后发现,LOH与瘤体位置和组织病理分级有关,且LOH常见于结肠癌的左半侧、低分化腺瘤和非黏液性结肠癌[25]。18qLOH与结直肠癌的预后关系目前结论尚不一致。有研究结果发现,18qLOH能够预测Ⅱ期结直肠癌的不良预后[25,26,27],而其他研究对此并不认同[28],这可能与18q缺失的基因片段不同有关[29]。在考虑18qLOH因素的同时,结合MSI等其他标志物的潜在影响将有助于对结直肠癌预后做出准确判断[30,31]

4 原癌基因
4.1 表皮生长因子受体(EGFR)

表皮生长因子受体(epidermal growth factor rece- ptor, EGFR)是一种跨膜糖蛋白受体,属酪氨酸激酶家族,如熟知的ErbB和HER受体家族。EGFR被激活后可磷酸化其他胞内信号蛋白,激活下游信号,从而调控细胞的增殖、凋亡等活动。多年来,EGFR一直是肿瘤机制研究的热点,其中研究较多的2条EGFR信号通路分别为EGFR/RAS/RAF/MAPK和EGFR/PI3K/AKT。高达65%~70%的结直肠癌患者中EGFR为过表达[32],且EGFR的表达水平往往与癌症的恶性度和病理分级有关[33,34];但是,仍有研究者对样本分析后认为EGFR过表达不会影响结直肠癌患者的预后[35]。此争议可能与实验操作差异、组织样本固定、抗体试剂不同以及缺乏一致的判断标准有关。在EGFR过表达的结直肠癌疾病中,针对EGFR的靶向药物已应用于临床治疗,如单克隆抗体药物西妥昔单抗、帕尼单抗及酪氨酸激酶抑制剂吉非替尼。

4.2 鼠类肉瘤病毒癌基因(KRAS)

鼠类肉瘤病毒癌基因(kirsten rat sarcoma viral oncogene, KRAS)的编码产物是大鼠肉瘤(rat sarcoma, RAS)蛋白,RAS的作用犹如分子开关,可控制胞内信号网络,并且通过转导胞外有丝分裂信号控制细胞的增殖和分化。即使无配体激活其上游生长因子受体,原癌基因KRAS突变仍可导致RAS蛋白信号持续活化[36],其结果将导致细胞增殖失控,分化受阻。接近90%的KRAS突变发生在1号外显子的12(82%~87%)和13(13%~18%)位密码子[37]。关于KRAS突变与结直肠癌患者预后关系可能与KRAS突变密码子或突变碱基不同有关[38]。通过对来自不同国家的3 439例样本进行分析发现,8.6%的患者12位密码子由甘氨酸突变为缬氨酸,这一突变对杜克氏C期患者的预后较B期患者影响更大,其可能预示晚期结直肠癌患者具有更恶性的生物学特征[39]。在转移性结直肠癌患者中,KRAS突变降低了EGFR靶向药的治疗效果[40]。虽然KRAS野生型患者接受EGFR靶向治疗后并非一定全部有效,可能有其他因素影响了机体对靶向药物的反应,但是野生型与突变型KRAS患者的EGFR靶向药物疗效差异显著[41]。目前临床上对结直肠癌的治疗中,EGFR靶向药物主要应用于KRAS野生型的转移性结直肠癌患者[42],因此,KRAS基因检测成为医生制定患者个体化诊疗方案的重要参考依据,且已逐渐成为结直肠癌患者内科治疗前的必检项目。

4.3 鼠类肉瘤滤过性毒菌致癌同源体B(BRAF)

鼠类肉瘤滤过性毒菌致癌同源体B(v-raf murine sarcoma viral oncogene homolog B, BRAF)编码丝裂原活化的蛋白激酶(rapidly accelerated fibrosarcoma, RAF)激酶家族,受RAS调控从而介导细胞的生长因子信号。BRAF在结直肠癌中的突变频率约为10%~15%,且超过80%的BRAF突变发生在600位氨基酸残基,即缬氨酸突变为谷氨酸,导致RAS/RAF/MAPK通路在不依赖于RAS的情况下持续活化[43,44]。对结直肠癌患者样本的研究结果发现,MSI结直肠癌患者的BRAF突变频率(27%)明显高于非MSI结直肠癌患者(5%)[45]。另有研究结果也证实BRAF突变与MSI遗传通路紧密相关(P<0.000 1)[46]。BRAF突变与结直肠癌患者对化疗药物敏感性之间的关系不断被报道[47]。在EGFR靶向药物治疗过程中,BRAF突变的结直肠癌患者表现出药物抵抗和不良预后[48],因此在使用帕尼单抗或西妥昔单抗治疗转移性结直肠癌时,有必要检测BRAF基因的状态以参考治疗效果。

5 抑癌基因
5.1 蛋白酪氨酸磷酸酶基因(PTEN)

蛋白酪氨酸磷酸酶基因(gene of phosphate and tension homology deleted on chromsome ten, PTEN)作为PI3K/AKT信号通路的负性调节因子可维持该信号通路的稳定性,从而使细胞的生长增殖处于正常状态。PTEN基因突变导致PI3K/AKT信号通路失去抑制性调节,最终诱发组织细胞癌变。约20%~40%的结直肠肿瘤患者伴有PTEN缺失[37],且伴随结直肠组织的癌变进展,PTEN表达量逐渐减少[49],表明PTEN基因与结直肠癌疾病的发生发展密切相关。Goel等[50]通过对结直肠癌病例的研究首次发现在MSI-H散发型结直肠癌患者中,启动子超甲基化是PTEN失活的一个主要原因。尽管PTEN与结直肠癌的预后关系仍存有争议,但PTEN仍有望成为KRAS野生型结直肠癌患者对EGFR靶向药具有抵抗性的预测标志物[51]

5.2 TP53

TP53作为抑癌基因,其编码的蛋白主要调控细胞分化、生长停滞和凋亡。近半数的结直肠癌患者伴有TP53突变,因此寻找TP53与结直肠癌的诊疗关系具有重要意义。通过对结直肠癌患者连续跟踪随访发现,野生型TP53的表达水平与患者5年无病生存期呈正向关系,且TP53可预测Ⅲ期结直肠癌患者的生存期[52]。通过与KRAS因素联合分析发现,TP53突变的野生型KRAS患者对西妥昔单抗表现出更好的敏感性[53]

6 结语

通过基因检测对结直肠癌患者病情进展和化疗敏感性做出预判,并指导个体化治疗将是未来结直肠癌诊疗的发展趋势。由于结直肠癌发病机制复杂,单一标记物往往不能明确指示疾病进程,因此,多基因多标志物联合检测分析具有广阔的临床应用前景。参与结直肠癌发病的基因变异情况仍有很多,如APC、CTNNB1、TGF-β、PIK3CA等,因此进行大量样本调查,对结直肠癌患者的基因变异情况进行总结分析,并制定统一的分类标准具有重要而长远的意义。

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
BrayF, FerlayJ, SoerjomataramI, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI:10.3322/caac.21492.
[2]
AliH, BitarMS, Al MadhounA, et al. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer[J]. PLoS One, 2017, 12(2): e0171690. DOI:10.1371/journal.pone.0171690.
[3]
CopijaA, WaniczekD, WitkośA, et al. Clinical significance and prognostic relevance of microsatellite instability in sporadic colorectal cancer patients[J]. Int J Mol Sci, 2017, 18(1): E107. DOI:10.3390/ijms18010107.
[4]
TulinA, SlavuI, TulinR, et al. Does sex of the patient play a role in survival for MSI colorectal cancer?[J]. J Mind Med Sci, 2018, 5(1): 101-108. DOI:10.22543/7674.51.P101108.
[5]
HorvatM, StabucB. Microsatellite instability in colorectal cancer[J]. Radiol Oncol, 2011, 45(2): 75-81. DOI: 10.1002/bjs.5328.
[6]
TestaU, PelosiE, CastelliG. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells[J]. Med Sci (Basel), 2018, 6(2): E31. DOI:10.3390/medsci6020031.
[7]
ZeinalianM, Hashemzadeh-ChaleshtoriM, SalehiR, et al. Clinical aspects of microsatellite instability testing in colorectal cancer[J]. Adv Biomed Res, 2018, 7: 28. DOI:10.4103/abr.abr_185_16.
[8]
QiF, YanQ, ZhengZ, et al. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest[J]. J Buon, 2018, 23(2): 346-352.
[9]
ChenL, PanX, HuX, et al. Gene expression differences among different MSI statuses in colorectal cancer: Gene expression differences among MSI statuses[J]. Int J Cancer, 2018, 143(7): 1731-1740. DOI:10.1002/ijc.31554.
[10]
MengWJ, YangL, MaQ, et al. MicroRNA expression profile reveals miR-17-92 and miR-143-145 cluster in synchronous colorectal cancer[J]. Medicine, 2015, 94(32): e1297. DOI:10.1097/MD.0000000000001297.
[11]
GrassoCS, GiannakisM, WellsDK, et al. Genetic mechanisms of immune evasion in colorectal cancer[J]. Cancer Discov, 2018, 8(6): 730-749. DOI:10.1158/2159-8290.CD-17-1327.
[12]
MalietzisG, MughalA, CurrieAC, et al. Factors implicated for delay of adjuvant chemotherapy in colorectal cancer: a meta-analysis of observational studies[J]. Ann Surg Oncol, 2015, 22(12): 3793-3802. DOI:10.1245/s10434-015-4479-2.
[13]
Hadi, Babaei, Mehrdad, et al. Simplified microsatellite instability detection protocol provides equivalent sensitivity to robust detection strategies in Lynch syndrome patients[J]. Cancer Biol Med, 2017, 14(2): 142-150.
[14]
ProticM, StojadinovicA, NissanA, et al. Prognostic effect of Ultra-Staging Node-Negative colon cancer without adjuvant chemotherapy: a prospective National cancer Institute-Sponsored clinical trial[J]. J Am Coll Surg, 2015, 221(3): 643-651; quiz 783-5. DOI:10.1016/j.jamcollsurg.2015.05.007.
[15]
臧丽娟.微卫星不稳定性在结直肠癌中的研究进展[J].上海医药, 2018, 39(1): 8-13.
ZangLJ. Research progress of microsatellite instability in colorectal cancer[J]. Shanghai Med Pharm J, 2018, 39(1): 8-13.
[16]
DudleyJC, LinMT, LeDT, et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clin Cancer Res, 2016, 22(4): 813-820. DOI:10.1158/1078-0432.CCR-15-1678.
[17]
TögelL, NightingaleR, WuR, et al. DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis[J]. Sci Rep, 2018, 8(1): 1767. DOI:10.1038/s41598-018-20176-9.
[18]
De SouzaCF, SabedotTS, MaltaTM, et al. A distinct DNA methylation shift in a subset of glioma CpG island methylator phenotypes during tumor recurrence[J]. Cell Rep, 2018, 23(2): 637-651. DOI:10.1016/j.celrep.2018.03.107.
[19]
JiaM, JansenL, WalterV, et al. No association of CpG island methylator phenotype and colorectal cancer survival: population-based study[J]. Br J Cancer, 2016, 115(11): 1359-1366. DOI:10.1038/bjc.2016.361.
[20]
IkomaN, CloydJ, BadgwellBD, et al. Clinical features and survival of gastric cancer patients with DNA mismatch repair deficiency[J]. J Surg Oncol, 2018, 117(4): 707-709. DOI:10.1002/jso.24926.
[21]
TanWJ, HamzahJL, AcharyyaS, et al. Evaluation of Long-Term outcomes of microsatellite instability status in an Asian cohort of sporadic colorectal cancers[J]. J Gastrointest Cancer, 2018, 49(3): 311-318. DOI:10.1007/s12029-017-9953-6.
[22]
KeumN, LiuL, HamadaT, et al. Calcium intake and colon cancer risk subtypes by tumor molecular characteristics[J]. Cancer Causes Control, 2019, 30(6): 637-649. DOI:10.1007/s10552-019-01165-3.
[23]
ZhangTM, HuangT, WangRF. Cross talk of chromosome instability, CpG island methylator phenotype and mismatch repair in colorectal cancer[J]. Oncol Lett, 2018, 16(2): 1736-1746. DOI:10.3892/ol.2018.8860.
[24]
KokelaarRF, JonesH, BeynonJ, et al. Meta-analysis of the prognostic value of CpG island methylator phenotype in rectal cancer[J]. Int J Colorectal Dis, 2018, 33(8): 995-1000. DOI:10.1007/s00384-018-3108-5.
[25]
PilozziE, FerriM, OnelliMR, et al. Prognostic significance of 18q LOH in sporadic colorectal carcinoma[J]. Am Surg, 2011, 77(1): 38-43.
[26]
JiaX, ShanmugamC, PaluriRK, et al. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer[J]. Oncotarget, 2017, 8(12): 20198-20212. DOI:10.18632/oncotarget.15560.
[27]
SefriouiD, VermeulinT, BlanchardF, et al. Copy number variations in DCC/18q and ERBB2/17q are associated with disease-free survival in microsatellite stable colon cancer[J]. Int J Cancer, 2017, 140(7): 1653-1661. DOI:10.1002/ijc.30584.
[28]
CarethersJM, HawnMT, GreensonJK, et al. Prognostic significance of allelic lost at chromosome 18q21 for stage II colorectal cancer[J]. Gastroenterology, 1998, 114(6): 1188-1195. DOI:10.1016/s0016-5085(98)70424-x.
[29]
XuHL, LiM, ZhangRJ, et al. Prediction of tumor biological characteristics in different colorectal cancer liver metastasis animal models using-18F-FDG and-18F-FLT[J]. Hepatobiliary Pancreat Dis Int, 2018, 17(2): 140-148.
[30]
IshikawaT, UetakeH, IshiguroM, et al. Abstract 5274: MSI, 18q LOH, and clinicopathological features in stage II sporadic colon cancers: Biomarker study in a phase III study of postoperative adjuvant chemotherapy for stage II colon cancer (SACURA trial)[J]. Cancer Res, 2015, 75(15Supplement): 5274-5274. DOI: 10.1158/1538-7445.AM2015-5274.
[31]
Matevska-GeshkovskaN, Staninova-StojovskaM, Kapedanovska-NestorovskaA, et al. Influence of MSI and 18q LOH markers on capecitabine adjuvant monotherapy in colon cancer patients[J]. Pharmgenomics Pers Med, 2018, 11: 193-203. DOI:10.2147/PGPM.S172467.
[32]
王倩,王超群,沈湘萍,.结直肠癌中EGFR蛋白的表达及其临床病理意义[J].中国实用医刊, 2018, 45(5): 10-12. DOI:10.3760/cma.j.issn.1674-4756.2018.05.004.
WangQ, WangCQ, ShenXP, et al. Expression of EGFR in colorectal cancer and its significance in clinicopathology[J]. Chin J Pract Med, 2018, 45(5): 10-12. DOI:10.3760/cma.j.issn.1674-4756.2018.05.004.
[33]
NemanqaniDM, AftabK, Al-MalkiSH, et al. Expression of epidermal growth factor receptor in colorectal adenocarcinoma and its correlation with clinicopathological factors[J]. J Coll Physicians Surg Pak, 2018, 28(7): 527-531. DOI:10.29271/jcpsp.2018.07.527.
[34]
KatoY, OhishiT, YamadaS, et al. Anti-Human epidermal growth factor receptor 2 monoclonal antibody H2Mab-41 exerts antitumor activity in a mouse xenograft model of colon cancer[J]. Monoclon Antib Immunodiagn Immunother, 2019, 38(4): 157-161. DOI:10.1089/mab.2019.0017.
[35]
SekiY, FujiwaraY, KohnoT, et al. Circulating cell-free plasma tumour DNA shows a higher incidence of EGFR mutations in patients with extrathoracic disease progression[J]. ESMO open, 2018, 3(2): e000292. DOI:10.1136/esmoopen-2017-000292.
[36]
LeeSK, HwangJH, ChoiKY. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis[J]. Adv Biol Regul, 2018, 68: 46-54. DOI:10.1016/j.jbior.2018.01.001.
[37]
LuoHY, XuRH. Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer[J]. World J Gastroenterol, 2014, 20(14): 3858-3874. DOI: 10.3748/wjg.v20.i14.3858.
[38]
BoussiosS, OzturkMA, MoschettaM, et al. The developing story of predictive biomarkers in colorectal cancer[J]. J Pers Med, 2019, 9(1): 10. DOI:10.3390/jpm9010012.
[39]
JonesRP, SuttonPA, EvansJP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer[J]. Br J Cancer, 2017, 116(7): 923-929. DOI:10.1038/bjc.2017.37.
[40]
BennounaJ, HiretS, BertautA, et al. Continuation of bevacizumab vs cetuximab plus chemotherapy after first progression in KRAS Wild-Type metastatic colorectal cancer: the UNICANCER PRODIGE18 randomized clinical trial[J]. JAMA Oncol, 2019, 5(1): 83-90. DOI:10.1001/jamaoncol.2018.4465.
[41]
AllegraCJ, JessupJM, SomerfieldMR, et al. American society of clinical oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy[J]. J Clin Oncol, 2009, 27(12): 2091-2096. DOI:10.1200/JCO.2009.21.9170.
[42]
RouyerM, FrançoisE, CunhaAS, et al. Effectiveness of cetuximab as First-Line therapy for patients with Wild-Type KRAS and unresectable metastatic colorectal cancer in Real-Life practice: results of the EREBUS cohort[J]. Clin Colorectal Cancer, 2018, 17(2): 129-139. DOI:10.1016/j.clcc.2018.01.007.
[43]
UrsemC, AtreyaCE, Van LoonK. Emerging treatment options for BRAF-mutant colorectal cancer[J]. Gastrointest Cancer, 2018, 8: 13-23. DOI:10.2147/GICTT.S125940.
[44]
GradyWM, PritchardCC. Molecular alterations and biomarkers in colorectal cancer[J]. Toxicol Pathol, 2014, 42(1): 124-139. DOI:10.1177/0192623313505155.
[45]
KondelinJ, SalokasK, SaarinenL, et al. Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer[J]. EMBO Mol Med, 2018, 10(9):e8552. DOI:10.15252/emmm.201708552.
[46]
LiuJH, ZengWQ, HuangC, et al. Predictive and prognostic implications of mutation profiling and microsatellite instability status in patients with metastatic colorectal carcinoma[J]. Gastroenterol Res Pract, 2018: 4585802. DOI:10.1155/2018/4585802.
[47]
Van CutsemE, KöhneCH, HitreE, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer[J]. N Engl J Med, 2009, 360(14): 1408-1417. DOI:10.1056/NEJMoa0805019.
[48]
SnyderM, BottiglieriS, AlmhannaK. Impact of primary tumor location on first-line bevacizumab or cetuximab in metastatic colorectal cancer[J]. Rev Recent Clin Trials, 2018, 13(2): 139-149. DOI: 10.2174/1574887113666180328104109.
[49]
WaniczekD, ŚnieturaM, Młynarczyk-LiszkaJ, et al. PTEN expression profiles in colorectal adenocarcinoma and its precancerous lesions[J]. Pol J Pathol, 2013, 64(1): 15-20.
[50]
GoelA, ArnoldCN, NiedzwieckiD, et al. Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers[J]. Cancer Res, 2004, 64(9): 3014-3021.
[51]
ShenWD, ChenHL, LiuPF. EGFR gene copy number as a predictive biomarker for resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer treatment: a meta-analysis[J]. Chin J Cancer Res, 2014, 26(1): 59-71. DOI:10.3978/j.issn.1000-9604.2014.01.10.
[52]
WangP, LiangJ, WangZ, et al. The prognostic value of p53 positive in colorectal cancer: A retrospective cohort study[J]. Tumour Biol, 2017, 39(5): 1010428317703651. DOI:10.1177/1010428317703651.
[53]
Di BartolomeoM, PietrantonioF, PerroneF, et al. Lack of KRAS, NRAS, BRAF and TP53 mutations improves outcome of elderly metastatic colorectal cancer patients treated with cetuximab, oxaliplatin and UFT[J]. Target Oncol, 2014, 9(2): 155-162. DOI:10.1007/s11523-013-0283-8.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词