参考文献[1]
ChenYP, ChanATC, LeQT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. .
[2]
CramerJD, BurtnessB, LeQT, et al. The changing therapeutic landscape of head and neck cancer[J]. Nat Rev Clin Oncol, 2019, 16(11): 669-683. .
[3]
ColevasAD, YomSS, PfisterDG, et al. NCCN guidelines insights: head and neck cancers, version 1.2018[J]. J Natl Compr Canc Netw, 2018, 16(5): 479-490. .
[4]
SchwartzDL. Current progress in adaptive radiation therapy for head and neck cancer[J]. Curr Oncol Rep, 2012, 14(2): 139-147. .
[5]
BriensA, CastelliJ, BarateauA, et al. [Adaptive radiotherapy: strategies and benefits depending on tumor localization][J]. Cancer Radiother, 2019, 23(6/7): 592-608. .
[6]
SonkeJJ, AznarM, RaschC. Adaptive radiotherapy for anatomical changes[J]. Semin Radiat Oncol, 2019, 29(3): 245-257. .
[7]
ZhangY, ChenL, HuGQ, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma[J]. N Engl J Med, 2019, 381(12): 1124-1135. .
[8]
WangC, WangF, MinX, et al. Toxicities of chemoradiotherapy and radiotherapy in nasopharyngeal carcinoma: an updated meta-analysis[J]. J Int Med Res, 2019, 47(7): 2832-2847. .
[9]
HuangJF, SunRJ, JiangWJ, et al. Systematic nutrition management for locally advanced nasopharyngeal carcinoma patients undergoing radiotherapy[J]. Onco Targets Ther, 2019, 12: 8379-8386. .
[10]
宫友陵,许峰,李志平,等. 同步放化疗对局部晚期鼻咽癌患者营养状况的影响[J]. 中国肿瘤临床与康复, 2007, 14(1): 88-91. .
GongYL, XuF, LiZP, et al. Effect of concurrent radiochemotherapy on nutritional status of patients with locally advanced nasopharyngeal carcinoma[J]. Chin J Clin Oncol Rehabil, 2007, 14(1): 88-91. .[11]
王丹,胡前程. 口服营养支持对鼻咽癌放疗患者营养状态、免疫功能及放射性损伤的影响[J]. 海南医学院学报, 2018, 24(9): 953-956. .
WangD, HuQC. Effects of oral nutrition support on nutritional status, immune function and radiation damage in patients with nasopharyngeal carcinoma radiotherapy[J]. J Hainan Med Univ, 2018, 24(9): 953-956. .[12]
DengJ, HeY, SunXS, et al. Construction of a comprehensive nutritional index and its correlation with quality of life and survival in patients with nasopharyngeal carcinoma undergoing IMRT: a prospective study[J]. Oral Oncol, 2019, 98: 62-68. .
[13]
MnejjaW, DaoudH, FouratiN, et al. Dosimetric impact on changes in target volumes during intensity-modulated radiotherapy for nasopharyngeal carcinoma[J]. Rep Pract Oncol Radiother, 2020, 25(1): 41-45. .
[14]
FigenM, Çolpan ÖksüzD, DumanE, et al. Radiotherapy for head and neck cancer: evaluation of triggered adaptive replanning in routine practice[J]. Front Oncol, 2020, 10: 579917. .
[15]
GensheimerMF, LeQT. Adaptive radiotherapy for head and neck cancer: are we ready to put it into routine clinical practice?[J]. Oral Oncol, 2018, 86: 19-24. .
[16]
MnejjaW, DaoudH, FouratiN, et al. [What is the impact of IMRT of nasopharyngeal carcinomas on glandular structures?][J]. Cancer Radiother, 2020, 24(1): 38-43. .
[17]
周琼,李永武,王奇,等. 基于形变配准和伪CT的鼻咽癌自适应放疗剂量评估[J]. 中国医学物理学杂志, 2019, 36(8): 892-897. .
ZhouQ, LiYW, WangQ, et al. Dosimetric evaluation of adaptive radiotherapy for nasopharyngeal carcinoma based on deformable registration and synthetic CT[J]. Chin J Med Phys, 2019, 36(8): 892-897. .[18]
BahlA, ElangovanA, DrachamCB, et al. Analysis of volumetric and dosimetric changes in mid treatment CT scan in carcinoma nasopharynx: implications for adaptive radiotherapy[J]. J Exp Ther Oncol, 2019, 13(1): 33-39.
[19]
BrivioD, HuYD, MargalitDN, et al. Selection of head and neck cancer patients for adaptive replanning of radiation treatment using kV-CBCT[J]. Biomed Phys Eng Express, 2018, 4(5): 055009. .
[20]
StauchZ, ZollerW, TedrickK, et al. An evaluation of adaptive planning by assessing the dosimetric impact of weight loss throughout the course of radiotherapy in bilateral treatment of head and neck cancer patients[J]. Med Dosim, 2020, 45(1): 52-59. .
[21]
ChitapanaruxI, ChomprasertK, NobnaopW, et al. A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer[J]. J Radiat Res, 2015, 56(3): 529-538. .
[22]
ChibaneBI, BenrachiF, BaliMS. Adaptive approach for nasopharyngeal carcinoma patients during volumetric modulated arc therapy treatment (VMAT)[J]. Int J Radiat Res, 2020, 18(2): 369-374. .
[23]
甘晓根,徐子海,廖福锡,等. 鼻咽癌自适应放疗中靶区和危及器官体积及剂量学变化[J]. 海南医学, 2016, 27(24): 4007-4010. .
GanXG, XuZH, LiaoFX, et al. Changes in volume of target and organs at risk and dosimetric medicine in adaptive radiation therapy for nasopharyngeal carcinoma[J]. Hainan Med J, 2016, 27(24): 4007-4010. .[24]
ChenX, WuH, SchultzCJ, et al. Effective volume of parotid glands for assessing radiation injury during radiation therapy for head and neck cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1): S31-S32. .
[25]
AhmedS, BrodinP, GuhaC, et al. The radiation dose received by the parotid gland stem cell region based on mid-treatment imaging can predict patient-reported xerostomia[J]. Int J Radiat Oncol Biol Phys, 2019, 105(S1): E1552. .
[26]
XieDH, ChengWQ, LvSW, et al. Target delineation and dose prescription of adaptive replanning intensity-modulated radiotherapy for nasopharyngeal carcinoma[J]. Cancer Commun (Lond), 2019, 39(1): 18. .
[27]
ChowJCH, LuiJCF, AuKH, et al. Application of hypoglossal nerve constraint in definitive radiotherapy for nasopharyngeal carcinoma: a dosimetric feasibility study[J]. Med Dosim, 2021, 46(1): 39-44. .
[28]
HanN, LyuXT, LiG, et al. Impact of adaptive intensity-modulated radiotherapy on the neutrophil-to-lymphocyte ratio in patients with nasopharyngeal carcinoma[J]. Radiat Oncol, 2019, 14(1): 151. .
[29]
NishimuraY, IshikuraS, ShibataT, et al. A phase II study of adaptive two-step intensity-modulated radiation therapy (IMRT) with chemotherapy for loco-regionally advanced nasopharyngeal cancer (JCOG1015)[J]. Int J Clin Oncol, 2020, 25(7): 1250-1259. .
[30]
IlangovanB, VenkatramanM, BalasundaramS. Volume changes during head-and-neck radiotherapy and its impact on the parotid dose-a single-institution observational study[J]. J Cancer Res Ther, 2020, 16(3): 575-580. .
[31]
周露,张书旭,彭莹莹,等. 不同分期鼻咽癌自适应放疗中器官体积变化及其剂量学分析[J]. 广东医学, 2019, 40(2): 205-209. .
ZhouL, ZhangSX, PengYY, et al. The change of anatomical volume and corresponding dose distribution during adaptive radiotherapy for different stages of nasopharyngeal carcinoma[J]. Guangdong Med J, 2019, 40(2): 205-209. .[32]
黄慧娴,陆合明,冯国生,等. 靶区及危及器官剂量学改变与鼻咽癌自适应放疗计划优化时机[J]. 中华肿瘤防治杂志, 2016, 23(12): 799-805. .
HuangHX, LuHM, FengGS, et al. Timing of adaptive radiation therapy determined by dosimetric changes in targets and organs at risk for nasopharyngeal carcinoma[J]. Chin J Cancer Prev Treat, 2016, 23(12): 799-805. .[33]
AlyF, MillerAA, JamesonMG, et al. A prospective study of weekly intensity modulated radiation therapy plan adaptation for head and neck cancer: improved target coverage and organ at risk sparing[J]. Australas Phys Eng Sci Med, 2019, 42(1): 43-51. .
[34]
BelshawL, AgnewCE, IrvineDM, et al. Adaptive radiotherapy for head and neck cancer reduces the requirement for rescans during treatment due to spinal cord dose[J]. Radiat Oncol, 2019, 14(1): 189. .
[35]
HunterKU, FernandesLL, VinebergKA, et al. Parotid glands dose-effect relationships based on their actually delivered doses: implications for adaptive replanning in radiation therapy of head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2013, 87(4): 676-682. .
[36]
TsengM, HoF, LeongYH, et al. Emerging radiotherapy technologies and trends in nasopharyngeal cancer[J]. Cancer Commun (Lond), 2020, 40(9): 395-405. .
[37]
LeeVSC, SchettInoG, NisbetA. UK adaptive radiotherapy practices for head and neck cancer patients[J]. BJR Open, 2020, 2(1): 20200051. .
[38]
HendD, MnejjaW, FouratiN, et al. [Adaptive radiotherapy for nasopharyngeal carcinomas: Where are we?][J]. Bull Cancer, 2020, 107(5): 565-573. .
[39]
LuoY, QinY, LangJ. Effect of adaptive replanning in patients with locally advanced nasopharyngeal carcinoma treated by intensity-modulated radiotherapy: a propensity score matched analysis[J]. Clin Transl Oncol, 2017, 19(4): 470-476. .
[40]
HuYC, TsaiKW, LeeCC, et al. Which nasopharyngeal cancer patients need adaptive radiotherapy?[J]. BMC Cancer, 2018, 18(1): 1234. .
[41]
BrouwerCL, SteenbakkersRJHM, van der SchaafA, et al. Selection of head and neck cancer patients for adaptive radiotherapy to decrease xerostomia[J]. Radiother Oncol, 2016, 120(1): 36-40. .
[42]
YuTT, LamSK, ToLH, et al. Pretreatment prediction of adaptive radiation therapy eligibility using MRI-based radiomics for advanced nasopharyngeal carcinoma patients[J]. Front Oncol, 2019, 9: 1050. .
[43]
LiYQ, TanJSH, WeeJTS, et al. Adaptive radiotherapy for head and neck cancers: Fact or fallacy to improve therapeutic ratio?[J]. Cancer Radiother, 2018, 22(3): 287-295. .
[44]
LeeD, ZhangPP, NadeemS, et al. Predictive dose accumulation for HN adaptive radiotherapy[J]. Phys Med Biol, 2020, 65(23): 235011. .
[45]
杨鑫,李学妍,张晓婷,等. 基于自适应Unet网络的鼻咽癌放疗危及器官自动分割方法[J]. 南方医科大学学报, 2020, 40(11): 1579-1586. .
YangX, LiXY, ZhangXT, et al. Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a self-adaptive Unet network[J]. J South Med Univ, 2020, 40(11): 1579-1586. .[46]
FungNTC, HungWM, SzeCK, et al. Automatic segmentation for adaptive planning in nasopharyngeal carcinoma IMRT: time, geometrical, and dosimetric analysis[J]. Med Dosim, 2020, 45(1): 60-65. .
[47]
LiuXM, LiangYQ, ZhuJ, et al. A fast online replanning algorithm based on intensity field projection for adaptive radiotherapy[J]. Front Oncol, 2020, 10: 287. .
[48]
LimSN, AhunbayEE, NasiefH, et al. Indications of online adaptive replanning based on organ deformation[J]. Pract Radiat Oncol, 2020, 10(2): e95-e102. .
[49]
IntvenMPW, De Mol Van OtterlooSR, MookS, et al. Online adaptive MR-guided radiotherapy for rectal cancer; feasibility of the workflow on a 1.5T MR-linac: clinical implementation and initial experience[J]. Radiother Oncol, 2021, 154: 172-178. .
[50]
WinkelD, BolGH, KroonPS, et al. Adaptive radiotherapy: the Elekta Unity MR-linac concept[J]. Clin Transl Radiat Oncol, 2019, 18: 54-59. .
[51]
PötterR, TanderupK, SchmidMP, et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): a multicentre prospective cohort study[J]. Lancet Oncol, 2021, 22(4): 538-547. .
[52]
McNairHA, WisemanT, JoyceE, et al. International survey; current practice in on-line adaptive radiotherapy(ART) delivered using Magnetic Resonance Image(MRI) guidance[J]. Tech Innov Patient Support Radiat Oncol, 2020, 16: 1-9. .
[53]
YousafT, DervenoulasG, PolitisM. Advances in MRI methodology[J]. Int Rev Neurobiol, 2018, 141: 31-76. .
[54]
BrunoF, ArrigoniF, MarianiS, et al. Advanced magnetic resonance imaging (MRI) of soft tissue tumors: techniques and applications[J]. Radiol Med, 2019, 124(4): 243-252. .
[55]
BoekhoffMR, DefizeIL, BorggreveAS, et al. 3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy[J]. Radiother Oncol, 2020, 147: 1-7. .
[56]
HagueC, McPartlinA, LeeLW, et al. An evaluation of MR based deep learning auto-contouring for planning head and neck radiotherapy[J]. Radiother Oncol, 2021, 158: 112-117. .
[57]
FinazziT, HaasbeekCJA, SpoelstraFOB, et al. Clinical outcomes of stereotactic MR-guided adaptive radiation therapy for high-risk lung tumors[J]. Int J Radiat Oncol Biol Phys, 2020, 107(2): 270-278. .