标准与规范
糖尿病患者骨折风险管理中国专家共识
中华糖尿病杂志, 2019,11(7) : 445-456. DOI: 10.3760/cma.j.issn.1674-5809.2019.07.002
摘要

1型和2型糖尿病患者的骨质量受损,骨折风险升高。由于糖尿病患者的骨密度不一定下降,而且各种糖尿病治疗药物有可能对骨骼产生影响,给临床上如何管理糖尿病患者的骨折风险带来了挑战。中华医学会骨质疏松和骨矿盐疾病分会、中华医学会内分泌学分会、中华医学会糖尿病学分会和中国医师协会内分泌代谢科医师分会共同组织专家,在充分汇总复习文献的基础上,就如何在糖尿病患者中评估骨折风险、实施骨质疏松防治、合理使用各类降糖药物等问题达成共识。

引用本文: 中华医学会骨质疏松和骨矿盐疾病分会, 中华医学会内分泌学分会, 中华医学会糖尿病学分会, 等.  糖尿病患者骨折风险管理中国专家共识 [J] . 中华糖尿病杂志, 2019, 11(7) : 445-456. DOI: 10.3760/cma.j.issn.1674-5809.2019.07.002.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

一、前言

2型糖尿病在世界范围内呈流行趋势,我国糖尿病的患病率也高达11%左右[1,2],2型糖尿病的各种慢性并发症,如糖尿病大血管病变、视网膜病变、肾脏病变、神经病变等更可导致患者心血管死亡、截肢、失明、终末期肾衰,也是造成我国成人全因死亡的主要原因[3]

近年来,2型糖尿病患者的骨折风险越来越受到重视[4,5],2型糖尿病患者严重椎体骨折甚或与全因死亡率有关[6]。虽然双能X线骨密度仪(dual energy X-ray absorptiometry,DXA)测得的骨密度(bone mineral density)能反映非糖尿病患者的骨折风险,但却会低估2型糖尿病患者的骨折风险;因糖尿病患者可以在相对于非糖尿病患者较高的骨密度下发生骨折[7],而且各种降糖治疗也可能对骨代谢产生影响[8],从而给临床上如何管理2型糖尿病患者的骨折风险带来很大挑战。

同样不容忽视的是对1型糖尿病患者的骨折风险管理,这不仅仅是因为1型糖尿病患者的骨折风险明显高于2型糖尿病,还因为1型糖尿病患者在儿童青少年期的骨折风险就已升高[9,10]

鉴于此,中华医学会骨质疏松和骨矿盐疾病分会、中华医学会内分泌学分会、中华医学会糖尿病学分会和中国医师协会内分泌代谢科医师分会组织专家,就如何评估糖尿病患者的骨密度和骨质量、降糖治疗对骨代谢的影响,以及如何对糖尿病患者进行骨折风险管理等临床问题进行讨论并制定本共识。

二、1型糖尿病患者的骨密度、骨折风险及危险因素
1.1型糖尿病患者的骨密度降低、骨折风险升高:

1型糖尿病常起病于青少年时期,胰岛素绝对不足、胰岛素样生长因子-1的缺乏、高血糖、渗透性利尿导致的骨钙丢失、自身免疫和炎症反应损害等因素很容易导致成骨功能减退、骨强度下降,并可能影响骨量峰值的获得[11]。大多数研究显示1型糖尿病患者前臂骨密度中度下降,髋部及腰椎的骨量低于年龄配对的正常人[12,13]

Meta分析显示,青少年和成人1型糖尿病患者的髋骨骨折风险升高[RR 4.40(95%CI 2.58~7.50,P<0.001)][14]。对3万多例0~89岁1型糖尿病患者和年龄、性别匹配的30万例非糖尿病者的研究发现,1型糖尿病患者包括儿童青少年在内的各年龄段骨折发生率都高于非糖尿病者,其新发髋骨骨折的年龄比非糖尿病患者提前10~15年[10]

2.诸多因素与1型糖尿病患者骨密度和骨折风险有关:

(1)病程:如果患者是儿童,糖尿病对骨成熟和骨量减少的影响往往发生于起病后的最初几年内[15],成人起病(20~39岁)的1型糖尿病患者在诊断糖尿病时骨量就已经降低[16]。对1型糖尿病患者的10年随访研究显示,男性1型糖尿病患者的骨密度降低主要见于病程早期[17]。从这些研究结果看,与其说是1型糖尿病的病程,更不如说是1型糖尿病较早的起病年龄,影响了骨骼的健康生长和发育。(2)血糖控制和糖尿病慢性并发症:虽有报道称糖化血红蛋白(HbA1c)同1型糖尿病患者骨密度有关,较好的血糖控制可稳定骨密度[18],但也有报道认为两者无关[19]。1型糖尿病患者的慢性并发症,如神经病变和微血管病变会加重骨量丢失,其原因可能与骨组织局部血供、神经营养变化等因素有关。1型糖尿病视网膜病变患者发生骨量减少或骨质疏松的比例明显高于无视网膜病变的患者[18]。1型糖尿病患者尿白蛋白排泄率升高时,股骨颈和大转子的骨密度下降,松质骨和皮质骨骨密度与肌酐清除率正相关,与血浆甲状旁腺激素(parathyroid hormone,PTH)水平负相关,提示1型糖尿病患者的骨量减少可能与肾脏病变有关[20]。(3)其他:1型糖尿病患者的骨折风险还可能与低血糖以及1型糖尿病较强的自身免疫和炎症反应、骨对机械负荷的反应减弱等诸多因素有关[21,22]。1型糖尿病患病年龄在20岁以前,尚未达到骨骼的峰值骨量,也是骨折的危险因素[23]

三、2型糖尿病患者的骨密度、骨折风险及其危险因素
1.2型糖尿病患者的骨折风险升高:

大量流行病学研究表明糖尿病患者的骨折风险明显超过普通人群[8],其骨折部位多见于髋部、足部和近端股骨[24]

Iowa妇女健康研究对32 089名55~69岁绝经后妇女进行了11年的随访,发现与非糖尿病患者相比,2型糖尿病患者新发髋部骨折的风险是非糖尿病患者的1.7倍,骨折的发生随糖尿病病程延长而升高[25]。在另一项人群随访研究(23 236人·年)中,52%的2型糖尿病患者在30年随访中出现至少一次新发骨折,而且轻微外伤后的骨折占71%[26]。对纳入了130万例欧洲糖尿病患者骨折风险的Meta分析显示,2型糖尿病患者的髋骨骨折风险是无糖尿病对照组的1.38倍[27]。最新对5万例2型糖尿病患者和10万例非糖尿病患者6~8年的随访结果显示,即使在考虑2型糖尿病死亡这一混杂因素后,2型糖尿病患者的髋骨骨折风险仍然高于非糖尿病患者[28]

在亚洲,来自新加坡华人健康研究的大样本(n=63 257)12年随访研究也表明,糖尿病患者的骨折风险比非糖尿病者高1倍,而且其RR(95%CI)从病程不足5年时的1.40(1.08~1.82)升高到病程≥15年时的2.66(2.04~3.47)[29]。对中国台湾地区3万余新诊断2型糖尿病和6万余年龄、性别匹配的非糖尿病患者研究发现,糖尿病和非糖尿病患者每1 000人·年的骨折发生率分别为24.2和17.1,2型糖尿病患者校正后的骨折风险为1.66(95%CI 1.60~1.72)[30]

2.2型糖尿病患者的骨密度测值会低估骨折风险:

2型糖尿病患者的高骨折风险有别于普通人群,后者往往与骨密度下降有关,但2型糖尿病患者可以在一个比较高的骨密度水平下发生骨折[31,32]。例如,在相同髋骨骨折风险的情况下,糖尿病女性和男性患者骨密度的T值比非糖尿病患者分别高0.59(95%CI 0.31~0.87)和0.38(95%CI 0.09~0.66)[31]。中国2型糖尿病患者的骨密度也高于非糖尿病者[33,34]。需要说明的是,糖尿病患者中较高骨密度但又出现较高骨折风险的矛盾现象并不意味着骨密度不能预测糖尿病患者的骨折风险。事实上,来自白种人和中国人的研究显示,糖尿病患者的椎体和非椎体骨折风险仍然随着骨密度T值的下降而升高[31,35]。但是,即使是在校正了年龄、体质指数(BMI)、骨密度、骨生化指标、糖尿病并发症等因素后,2型糖尿病仍然是骨折的独立危险因素[32]

虽然2型糖尿病中常见的肥胖和高胰岛素血症可在一定程度上解释患者的高骨密度和低骨强度[36,37],但这并不提示骨折风险下降,无论是肥胖还是非肥胖的2型糖尿病妇女,其髋骨骨折发生率都超过体重匹配的非糖尿病妇女[25]

3.2型糖尿病患者的骨质量受损是造成骨折的重要内因:

造成2型糖尿病患者骨折的主要外因是患者更容易跌倒[38],低血糖、夜尿增加、视力下降(视网膜病变或白内障)、平衡功能减退(神经病变、足部溃疡、截肢)、直立性低血压和反应减退等都与糖尿病患者的跌倒及其所引起的骨折有关。

对9万多例2型糖尿病患者7年的前瞻性随访研究显示,即使是在校正了跌倒、骨折史等因素后,2型糖尿病患者的骨折风险仍然比非糖尿病患者高20%[7]。正如糖尿病是冠心病的等危症,糖尿病也是骨质疏松性骨折的等危症。骨强度下降、骨质量受损是2型糖尿病患者高骨折风险的内在因素。2型糖尿病患者的皮质骨厚度及小梁骨容量降低、皮质骨多孔性增加、骨骼材料学参数更差[39,40]。2型糖尿病患者的皮质骨微结构受损在合并糖尿病微血管病变的患者中更为明显[41],而骨强度变化是DXA无法检测到的[42],即DXA所测得的骨密度并不能完全反映2型糖尿病患者骨质量受损状态[43]

与糖尿病各种慢性并发症的发病机制类似,2型糖尿病的非酶促糖基化反应也被认为是造成骨质量下降的原因之一。高血糖导致有机骨基质中糖基化终末产物(AGE)积聚,成骨细胞上存在有AGE受体(RAGE),而2型糖尿病患者皮质骨中的AGE水平较高[44,45]。AGE的积聚会使骨基质中的Ⅰ型胶原变硬,骨强度下降,骨脆性增加,并能促进成骨细胞凋亡[46]

除骨胶原的非酶促糖基化反应外,造成糖尿病骨脆性增加的原因是多方面的,涉及糖尿病病程[47]、胰岛素抵抗[37]、骨髓脂肪堆积[48]以及较低的骨转换水平[49]等。除跌倒相关危险因素外[50,51,52,53],较大的空腹血糖波动[54]、缺乏维生素D所引起的继发性甲状旁腺功能亢进[55]等都是造成糖尿病患者骨折风险升高的内因。

四、糖尿病患者的骨质量评估

在DXA骨密度检测会低估糖尿病患者骨折风险的情况下,临床上如何评估糖尿病患者的骨折风险成为一个棘手问题。目前,可以用于评估糖尿病患者骨折风险的手段包括:骨折风险评估工具(fracture risk assessment tool,FRAX)、骨小梁评分(trabecular bone score,TBS)、高分辨率外周定量计算机断层扫描(high-resolution peripheral quantitative computed tomography,HR-pQCT)等[56]

1.FRAX:

这是一款世界卫生组织推荐的在线工具,该软件包含12项因素(性别、年龄、身高、体重、既往脆性骨折史、父母髋部骨折史、是否目前仍然吸烟、是否长期服用糖皮质激素类药物、是否有类风湿关节炎、是否有其他继发性骨质疏松因素、是否每日饮酒超过3个单位以及股骨颈骨密度),可评估未来10年髋部骨折和主要骨质疏松骨折的发生概率。若未来10年髋部骨折概率≥3%或任何主要骨质疏松骨折发生概率≥20%,则需要起始抗骨质疏松治疗。

但FRAX会低估2型糖尿病患者的骨折风险[57]。如果联合FRAX评分和TBS值,或以糖尿病替换FRAX中的类风湿性关节炎,或者在计算时将患者的年龄增加10岁或将骨密度的T值做适当调整,如减去0.5,有助于提高对2型糖尿病患者骨折风险的预测能力[31,58],但是各种调整方法没有明显的优劣之分[59]。需说明的是,糖尿病患者的FRAX评分虽然会低估骨折风险,但其变化仍然与骨折发生率平行[31]

2.TBS:

TBS是一个通过评估脊柱DXA图像中的灰阶变化,间接评估骨小梁微结构的临床工具,该技术已被广泛应用于评估原发性和继发性骨质疏松,如糖皮质激素性骨质疏松、糖尿病、甲状旁腺功能亢进症等患者的骨质量[60]

2型糖尿病患者的TBS值明显低于正常人,而且可反映发生过骨折或出现新的骨折[61],其预测绝经后2型糖尿病患者骨折风险的准确性也高于骨密度[62,63],且与骨强度的相关性更强。如果与骨密度结合,其预测骨折风险的价值更高。来自中国的一项研究也表明TBS联合骨密度测定值与2型糖尿病患者腰椎骨折的相关性好于骨密度[35]。与2型糖尿病类似,1型糖尿病患者的DXA骨密度与年龄、性别、身高和体重配对的对照组相同,但其TBS降低[64]

3.HR-pQCT:

这是一种新型无创的影像学检测方法,能够定量评价桡骨和胫骨远端皮质骨和松质骨的骨小梁微结构和骨矿物质密度。HR-pQCT数据结合有限元分析计算得到的骨强度与各种类型的骨折发生风险均密切相关,比DXA能更好地预测骨折风险。2型糖尿病患者合并骨折时以HR-pQCT所测得的胫骨和桡骨远端皮质骨孔隙率较不合并骨折的2型糖尿病患者明显增加[65]。最近来自Framingham研究1 069例的研究结果表明,校正年龄、性别、体重和身高后,2型糖尿病患者的皮质骨体积骨密度较低,皮质多孔性更多,胫骨的横截面面积更小[66],但对此也有不同的报道[67]

五、糖尿病治疗药物和代谢手术对糖尿病患者骨代谢的影响

降糖药物对骨代谢的影响越来越受到关注,这是因为服用噻唑烷二酮(thiazolidinedione,TZD)类药物后,骨折发生率升高。这种情况主要见于罗格列酮[68,69],也见于吡格列酮[70,71,72]。然而最新的一项系统综述和meta分析没有发现吡格列酮增加糖尿病患者的骨折风险[73]

1.二甲双胍:

双胍类药物能增加去卵巢的(ovariectomized,OVX)大鼠骨量,改善骨质量,还能降低2型糖尿病患者骨折风险。其机制与二甲双胍降低核因子-κβ受体活化因子(RANK)表达,抑制破骨细胞分化[74,75],抑制骨髓基质干细胞产生琥珀酸,减弱后者促进破骨细胞分化和骨吸收活性的作用有关[76]

包括ADOPT研究在内的数项临床研究,在2型糖尿病和1型糖尿病患者中评估了二甲双胍对骨折的影响[77,78],在校正既往骨折史等因素后,二甲双胍可使任何部位的骨折风险降低19%[78]。但最近一项研究未发现二甲双胍有提高2型糖尿病患者骨密度和TBS的作用[79]

2.胰高糖素样肽-1(GLP-1)受体激动剂:

成骨细胞存在GLP-1的功能性受体。对GK糖尿病大鼠的研究显示,GLP-1受体激动剂利拉鲁肽在降低糖尿病大鼠血糖的同时,具有改善骨密度和骨质量的作用[80],而且这种骨保护作用在OVX非糖尿病大鼠中同样存在[81]。另一个GLP-1受体激动剂艾塞那肽(exenatide)也能提高OVX大鼠的骨密度和骨质量[82]。这两种降糖药物对骨骼的有益作用在骨质疏松小鼠中也得到了验证[83]。在1型糖尿病小鼠模型中,利拉鲁肽有助于改善骨质量[84]

对糖尿病患者使用利拉鲁肽和艾塞那肽后骨折发生率的Meta分析显示,前者的骨折风险更低,而后者至少不增加骨折风险[85,86]。最近一项Meta分析显示,与其他抗糖尿病药物相比,2型糖尿病患者应用GLP-1受体激动剂治疗,尤其是艾塞那肽治疗后的骨折风险明显下降[87]

3.二肽基肽酶Ⅳ(DPP-4)抑制剂:

在沙格列汀(saxagliptin)的心血管结局临床试验(SAVOR-TIMI 53)中,无论在所有受试者还是在以种族、心血管风险或是肾功能分层的亚组人群中,治疗组和对照组的骨折发生率均相似[88]。但此前一项汇总了20项沙格列汀随机对照试验的安全性事后分析发现,沙格列汀组的骨折率略高于对照组[每100人·年,1.1对0.6,HR 1.81(95%CI 1.04~3.28)][89]。对包括11 880例接受DPP-4抑制剂治疗者和9 175例对照者的Meta分析显示,DPP-4抑制剂的使用与较低的骨折风险有关(OR 0.60,95%CI 0.37~0.99)[90]。在TECOS研究中,没有发现西格列汀(sitagliptin)与骨折风险,包括主要骨质疏松性骨折或髋骨骨折的关系[77]。一项来自韩国的全国性观察研究分析了20多万例50岁以上糖尿病患者的降糖药物治疗情况。结果显示,DPP-4抑制剂与二甲双胍联合治疗的骨折风险低于磺脲类与二甲双胍联合治疗[91]。总体而言,此类药物对骨折的影响偏向于中性。

4.钠-葡萄糖共转运蛋白2(SGLT2)抑制剂:

SGLT2抑制剂通过促进尿糖排泄、降低体重等多重作用,起到降低血糖的疗效。然而SGLT2抑制剂会增加肾小管对磷的重吸收,从而可能影响到钙磷代谢,使血磷升高,刺激PTH分泌,造成骨吸收增强。因此,此类药物对骨骼的影响引起了人们的高度关注[92,93]

在一项多中心的RCT研究中,104周的卡格列净治疗与安慰剂组相比,使2型糖尿病女性的总髋(而非股骨颈、腰椎或前臂远端)骨密度轻度但有意义的下降[92]。在对涉及9项活性药物和安慰剂对照的随机、双盲、Ⅲ期临床试验的分析中,以确认的骨折事件为不良事件(AE),发现与非卡格列净组相比,卡格列净组的骨折发生率更高,这主要见于有心血管疾病风险升高的患者(CANVAS研究),但在合并后的非-CANVAS研究中,没有观察到这一现象。进一步分析发现,CANVAS研究中的高骨折不良事件导致了合并CANVAS和非CANVAS研究后同样出现了卡格列净组骨折风险升高的问题[94]。此后不久的一个包括10项卡格列净、15项达格列净和13项恩格列净,总共涉及30 384例2型糖尿病患者、随访24~160周的Meta分析,没有发现这3种SGLT2抑制剂与骨折的关系[95]。但这一Meta分析没有包括CANVAS研究;该分析还发现在服用SGLT2抑制剂的亚洲患者中观察到骨折风险升高,但差异没有统计学差异意义[95]

国际多中心的RCT研究没有发现达格列净对2型糖尿病患者骨形成、骨吸收指标和骨密度影响[96]。在对恩格列净Ⅰ~Ⅲ期临床试验的分析中(n>12 000),以骨折作为不良事件的比例在恩格列净组与安慰剂组和格列美脲组之间相当,即恩格列净并不增加骨折风险[97]。对210 042例新使用非胰岛素类降糖药物患者所进行的一项巢式对照病例研究显示,与DPP-4抑制剂相比,2型糖尿病患者使用SGLT2抑制剂和其他糖尿病药物并不增加下肢和上肢骨折风险[98]

5.α-糖苷酶抑制剂:

有关α-糖苷酶抑制剂对骨代谢影响的报道非常有限[91],尚不足以得出提示性的结论。

6.磺脲类药物:

磺脲类药物对骨折一般呈现至少中性或有益的效果[99],但应注意用药后的低血糖对跌倒和骨折的影响[51],尤其当磺脲类药物与TZD类药物合用时,骨折风险高于二甲双胍加DPP-4抑制剂等其他联合用药[91]

7.胰岛素:

多项临床研究显示,胰岛素的应用与非椎体骨折风险升高有关[77,100]。最近一项来自550万患者数据库的真实世界研究中,与单用二甲双胍者相比,胰岛素单药治疗[校正的OR 1.63(95%CI 1.30~2.04)]或联合二甲双胍或磺脲类治疗[校正的OR 1.29(1.07~1.56)],都与骨折风险升高有关[101]。需要指出的是,应用胰岛素的糖尿病患者往往病程比较长,合并有多种糖尿病慢性并发症,注射胰岛素后出现低血糖的风险较高,这些都与糖尿病患者的跌倒和骨折风险有关。因此,胰岛素对糖尿病患者骨折的影响更可能是作为长期糖尿病的一个混杂因素。

8.代谢手术:

代谢手术后出现的体重快速下降、摄食不足和肠道营养吸收不良等会影响患者的骨骼健康[102]。研究发现,代谢手术1年、2年、5年和5年后患者(n=2 064)的骨折率分别为1.6%、2.37%、1.69%和2.06%,而对照的非手术者(n=5 027)则分别为1.51%、1.65%、1.53%和1.42%[103]。另外一项对12 000多例接受代谢手术、随访4.4年的回顾性巢式病例对照研究[104]和其他一些小样本研究也都显示代谢手术后的骨折风险升高2~3倍,但这一不良反应主要见于胆胰转流术[104]。接受Roux-en-Y胃旁路术的绝经后妇女在术后半年也可能出现骨小梁微结构的受损和骨密度下降[105]。代谢手术后的骨密度下降也见于中国肥胖患者,尤其是女性[106]。因此,对于拟进行代谢手术的患者,需在术前仔细评估其骨折风险,并在术后给予必要干预[105,107]

六、骨质疏松治疗药物对糖代谢的影响

骨骼是一种内分泌器官,基础研究提示骨骼对糖代谢和能量代谢具有一定调控作用,因此各种骨质疏松治疗药物对糖代谢的影响也引起了人们的关注[108,109]

1.钙和维生素D:

钙和维生素D是维持骨骼健康的基本要素,是骨质疏松治疗的基础。大量人群研究显示维生素D缺乏与肥胖和糖代谢受损相关。纵向随访研究和Meta分析也显示维生素D状态与新发2型糖尿病风险有关[110]

然而,旨在观察补充钙和维生素D是否能逆转糖尿病前期向糖尿病进展,从而起到预防糖尿病的作用,或对血糖控制产生影响的前瞻性临床研究并未取得一致的结果。Meta分析显示,补充维生素D可改善2型糖尿病患者的空腹血糖、HbA1c和稳态模型评估胰岛素抵抗指数(HOMA-IR)[111]。然而,在一些研究中观察到不论是单次大剂量(400 000 IU,观察6个月)[112],还是高剂量维持(30 000 IU,每周1次,持续8周)[113],抑或是间歇性大剂量(每月50 000 IU,持续6个月)[114]补充维生素D均不能对β细胞功能、胰岛素敏感性或血糖控制产生影响。RCT研究显示,无论是短至1年还是长达5年的小剂量(每天400 IU)或大剂量(每周20 000 IU)补充维生素D,都不影响糖尿病前期的进展及2型糖尿病的发病风险[115,116]

2.双膦酸盐:

双膦酸盐是一种抗骨吸收药物,广泛用于原发性骨质疏松和糖皮质激素性骨质疏松的治疗。无论是否合并2型糖尿病,绝经后妇女的体重、脂肪量、血清瘦素、胰岛素和血糖等指标并不受抗骨吸收制剂的影响[117]。回顾性研究发现,接受双膦酸盐治疗的骨质疏松患者经过8~10年治疗后,2型糖尿病风险下降30%,这种降低糖尿病风险的作用甚至在用双膦酸盐制剂2.5年以后就可显现[118]。骨质疏松治疗后患者更多的体力活动、同时补充维生素D、生活质量的提高[119],以及对过度活跃的骨吸收活性的恰当抑制[109,110,111,112,113,114,115,116,117,118,119,120],可能都有助于维持或改善骨质疏松患者的糖代谢。

3.PTH(1-34):

PTH(1-34)(特立帕肽)是一种促骨形成制剂,具有提高骨密度、改善骨质量的作用。临床前研究显示,PTH(1-34)在显著提高2型糖尿病大鼠骨密度和血清骨形成标志物骨钙素水平的同时,可改善2型糖尿病大鼠的胰岛素抵抗[121]。在人体研究中,PTH(1-34)治疗绝经后骨质疏松妇女12个月后,患者体重和脂肪量也减少,但血糖和胰岛素水平无变化[117]

4.激素替代治疗和选择性雌激素受体调节剂(SERM):

来自两项大型临床试验(WHI和HERS)的结果提示,激素替代治疗和选择性雌激素受体调节剂雷洛昔芬可改善高胰岛素血症绝经后妇女的胰岛素敏感性,促进胰岛素分泌,但该作用似乎与其抗骨吸收活性无关[122,123],而是雌激素本身保护β细胞的结果[124]

5.核因子-κB受体活化因子配体(RANKL)抑制剂:

小鼠研究提示RANKL信号途径与肝脏胰岛素敏感性有关,前瞻性人群研究中也发现较高的基线RANKL水平与较高的糖尿病风险有关[125],提示阻断RANKL信号对于预防2型糖尿病可能具有一定的有益作用。然而在以RANKL抑制剂地舒单抗(denosumab,迪诺塞麦)为骨质疏松治疗药物的临床试验中,未发现该药与患者的空腹血糖、胰岛素抵抗或糖尿病发生率有关[126],也未观察到denosumab对糖尿病前期和糖尿病患者血糖有影响[127]

6.硬骨抑素(sclerostin)单抗:

来自骨细胞的硬骨抑素能通过抑制Wnt-LRP5/6信号途径,抑制骨形成。抗硬骨抑素单抗也已经成为一种新型抗骨质疏松药物。然而小鼠研究发现,硬骨抑素具有促进白色脂肪棕色化的作用[128],由此引出了用于骨质疏松治疗的硬骨抑素单抗是否会造成肥胖或增加糖尿病风险的问题。在1 800多例无2型糖尿病病史个体的7.5年随访中,未发现基线硬骨抑素水平与糖尿病风险有关[129];在绝经后骨质疏松合并高危骨折风险的绝经后妇女大样本随机对照临床试验中,没有关于硬骨抑素单抗治疗组体重或BMI变化的报道[130]。有关硬骨抑素及其单抗对糖代谢的影响还需进一步观察。

七、糖尿病患者骨折风险的综合管理
1.控制血糖是关键:

虽然有研究提示严格控制血糖并不一定带来骨折风险下降的益处[131],但多项研究提示较差的血糖控制(HbA1c≥8%~9%)会增加1型糖尿病[132,133]和2型糖尿病患者[134,135]的骨折风险;诊断1型糖尿病后,如果血糖控制差,患者的骨矿物质积聚减少[136]。因此,对糖尿病患者而言,控制血糖仍然是首要的关键问题,应平稳降糖,避免低血糖,减少糖尿病相关的各类并发症[51,54,137]

2.仔细选用降糖药物:

对高骨折风险的糖尿病患者,应该选用不影响骨代谢、甚或有骨保护作用的降糖药物,如二甲双胍、GLP-1受体激动剂;对绝经后妇女或高骨折风险的男性,避免使用TZD类药物,尤其避免联合使用磺脲类药物和TZD类药物;对SGLT2抑制剂卡格列净在CANVAS研究中所出现的骨折发生率升高问题,虽然尚未在其他研究中得到重复,但要引起重视,尤其当患者为有心血管疾病风险的老年人,或基线肾小球滤过率低或正在进行大剂量利尿剂治疗时[94],需评估其骨折风险。

3.特别关注儿童青少年1型糖尿病患者的骨折风险:

1型糖尿病患者的骨折风险可以在早于达到骨量峰值的年龄前就开始升高。因此,一定要注意儿童青少年1型糖尿病患者骨折风险的评估和管理。注意筛查1型糖尿病患者其他自身免疫性疾病,如乳糜泻,因为后者不仅发病率高,而且与患者的低骨密度有关[22,138]

4.倡导健康生活方式:

运动有助于改善骨强度和骨骼生物力学性能[139]。糖尿病患者应该改变生活方式,适度运动,均衡饮食,补充足够的钙和维生素D,这对儿童青少年1型糖尿病患者尤为重要;此外,还应减少钠盐摄入并戒烟。但糖尿病患者,尤其是1型糖尿病患者在增加体力活动时,更要注意调整进食和胰岛素剂量,避免低血糖后的跌倒[22]

八、糖尿病患者抗骨质疏松药物的使用指征
1.国际组织推荐意见:

鉴于如果将诊断原发性骨质疏松症的骨密度标准作为糖尿病患者骨质疏松治疗干预的切点有可能延误治疗,2018年7月,国际骨质疏松基金会骨与糖尿病工作组建议采用DXA腰椎或髋部骨密度T值-2.0作为糖尿病患者骨折干预的阈值,但也同时指出该切点可能更适合于欧洲人群。该工作组进一步建议应该对糖尿病患者每年评估骨折风险,每2年监测骨密度,如果连续2次的骨密度检查显示骨量丢失≥5%或T值接近-2.0,也可以考虑开始骨质疏松治疗[140]

2.中国专家推荐意见:

虽然中国糖尿病患者的病理生理特点不同于西方国家患者,即肥胖程度较轻,胰岛素抵抗不很明显,但胰岛素抵抗对骨折风险的影响仍然存有争议[36,37,141]。流行病学和队列研究都说明包括中国人在内的亚洲糖尿病患者的骨骼特点与白种人相近:与非糖尿病者相比,骨折风险升高,骨密度升高[29,30,34,49];骨折风险随骨密度T值的降低而升高[35];有着与白种人一样的骨折危险因素,如低血糖[51]和血糖控制不佳[135]等。但我们目前还不清楚中国糖尿病患者的骨密度T值和(或)FRAX评分到底在多大程度上低估了骨折风险,这需要做大量的工作。

由于缺乏可以广泛开展的骨质量检查手段,而骨密度T值和FRAX评分虽然会低估糖尿病患者的骨折风险,但还是能有效区分高骨折风险和低骨折风险的糖尿病患者,本次中国专家共识认为,对于哪些糖尿病患者、在何时开始抗骨质疏松药物治疗等临床问题,仍然建议采用与非糖尿病患者一样的策略。具体如下:(1)可以继续在糖尿病患者中应用DXA检测骨密度,因为骨密度测值虽然有可能低估糖尿病患者骨折风险,但仍然与患者骨折风险变化相一致[31,35,142];(2)凡具备以下情况之一者,需进行抗骨质疏松药物治疗:椎体或髋部脆性骨折;DXA(腰椎、股骨颈、全髋或桡骨远端1/3)骨密度T值≤-2.5;骨量低下(-2.5<T值<-1.0),伴有脆性骨折(肱骨上段,前臂远端或骨盆);和(或)FRAX计算出的10年髋部骨折概率≥3%或任何主要骨质疏松性骨折概率≥20%[143];(3)鉴于调整FRAX参数有助于提高其评估2型糖尿病患者骨折风险的能力,而且各种调整方案没有明显的优劣之分[59]。由于我国尚未大规模应用TBS,而且缺乏中国人群中糖尿病和非糖尿病患者在相似骨折风险情况下的年龄或骨密度T值究竟相差多少的数据,本共识建议在采用FRAX评估糖尿病患者骨折风险时,将其中的类风湿关节炎替换为糖尿病。

九、抗骨质疏松药物在糖尿病患者中的疗效和注意事项
1.糖尿病不影响抗骨质疏松药物疗效:

对于糖尿病患者使用抗骨质疏松药物治疗时的疗效是否与非糖尿病患者有差异的问题,目前缺乏直接比较糖尿病和非糖尿病患者使用抗骨质疏松药物后骨密度和骨折疗效的前瞻性研究。

在对FIT(Fracture intervention trial)研究的事后分析中,与安慰剂相比,糖尿病患者经过3年阿仑膦酸钠治疗后,腰椎和髋骨骨密度升高[144]。在一项开放标记、前瞻性、非对照、观察性研究(DANCE研究)中,由医师决定有高危骨折风险的骨质疏松男女是否需要抗骨质疏松药物治疗(双膦酸盐、特立帕肽、雷洛昔芬),其中包括2型糖尿病患者291例,非糖尿病患者3 751例。对这些患者治疗2年并随访2年后发现,PTH(1-34)可降低糖尿病和非糖尿病患者的新发骨折率,糖尿病并不影响PTH(1-34)对糖尿病患者的骨折疗效,两组椎体和总髋骨密度升高没有差异,2型糖尿病患者的股骨颈骨密度升高比非糖尿病患者更为明显[145]。对1型和2型糖尿病患者抗骨质疏松药物治疗的Meta分析显示,阿伦膦酸钠、利塞膦酸钠和雷洛昔芬升高骨密度、降低骨折率的疗效与非糖尿病患者相似[146]。小鼠研究显示,PTH可抑制1型糖尿病小鼠的成骨细胞凋亡,提高松质骨骨密度[147]。PTH(1-34)还能促进2型糖尿病OVX大鼠骨质疏松性骨折的愈合[148],但缺乏在1型糖尿病患者中应用PTH(1-34)的经验。

总体而言,无论是骨吸收抑制剂,还是骨形成促进制剂对糖尿病患者都能起到降低骨折风险的作用。

2.糖尿病患者骨质疏松药物治疗的共性和特殊性:

本专家共识认为对糖尿病患者的骨质疏松进行药物治疗,在通过阳光照射或补充普通维生素D使血清25-羟维生素D水平达到充足状态的同时,可以采用抗骨吸收制剂或骨形成促进剂,其基本使用原则、方法和疗程同原发性骨质疏松症[143]

虽然如此,在对糖尿病患者骨质疏松进行药物治疗时,需考虑其特殊性。糖尿病患者常患有不同程度的糖尿病肾病,也可能有胃肠道并发症,因此在应用骨吸收抑制剂前,需仔细评估糖尿病患者的肾功能,了解其胃肠道症状;在考虑抗骨质疏松序贯治疗时,应该先以骨形成促进剂治疗,随后予以抗骨吸收治疗,这对于以骨质量下降和骨转换减慢为特点的糖尿病患者而言,更可能起到改善骨质量、维持抗骨质疏松疗效的作用。

十、今后的方向

骨质疏松是一种以骨密度降低、骨强度下降,从而导致骨折风险升高为特点的全身性疾病。在仍然将DXA骨密度检测作为筛查骨折风险一个重要手段的同时,必须认识到骨形态学指标,如皮质骨厚度、松质骨骨体积分数(BV/TV)、松质骨连续性,以及骨组织的机械性能参数,如骨强度等,对于评估骨质量和骨折风险都具有同样重要的意义[36],而这点在糖尿病患者中显得尤为明显。

要在中国糖尿病患者群中,积极探索基于DXA骨密度启动抗骨质疏松治疗的循证医学证据并确定阈值;探索以各种非创伤性手段,如定量骨超声、TBS和FRAX等,评估糖尿病骨质量的可靠性和可重复性,以及联合DXA检测和其他骨代谢相关指标,评估糖尿病患者骨折风险的可能性[149]

要进一步评估糖尿病药物单用和联合治疗对骨折的影响,积极探索最符合糖尿病患者骨代谢特点的抗骨质疏松治疗方案。

要探索与糖尿病和原发性骨质疏松症共同的遗传因素[150],开展高血糖状态和糖尿病影响骨骼,包括成骨功能和破骨活性的分子机制研究。

十一、小结

1型糖尿病和2型糖尿病患者即使骨密度与非糖尿病者相似或更高,但骨质量下降,骨折风险升高;使用DXA的骨密度检查和FRAX会低估糖尿病患者的骨折风险;虽然不能确定严格控制血糖是否有助于降低骨折风险,但较差的血糖控制会增加骨折风险。因此,糖尿病患者仍然应该积极进行糖尿病治疗。

从骨折风险管理看,无论是2型糖尿病还是1型糖尿病患者尤其需注意适度运动、加强肌力、需摄入或补充足够的钙和维生素D;糖尿病患者应该经常检查视力、预防跌倒,避免使用可能影响骨代谢的药物,尤其是65岁以上女性和高骨折风险患者应该避免使用TZD类药物,对个别SGLT2抑制剂在有心血管疾病风险的糖尿病患者(CANVAS研究)中所出现的骨折风险升高问题要引起注意;糖尿病患者应该平稳降糖,避免出现低血糖,尤其是在应用胰岛素治疗时;应于术前仔细评估代谢手术患者的骨折风险并在术后给予必要随访干预;对糖尿病患者的骨折风险管理原则可类似于原发性骨质疏松症。虽然不必因为糖尿病而刻意调整骨质疏松治疗方案[151],但需注意到糖尿病患者的特殊性。

十二、中国专家共识要点

1.糖尿病患者骨质量下降,骨折风险升高;

2.糖尿病患者,尤其是高危骨折患者应避免使用TZD类药物,注意个别SGLT2抑制剂可能存在的骨折风险问题;代谢手术后的骨骼健康问题值得关注;

3.糖尿病患者的DXA骨密度和FRAX评分会低估骨折风险,但其变化仍然能提示骨折风险;

4.以FRAX评估糖尿病患者骨折风险时,建议将类风湿性关节炎替换为糖尿病;仍然可以DXA检测并随访糖尿病患者的骨密度;

5.糖尿病患者的骨折风险管理原则同原发性骨质疏松症,当以骨密度T值作为决定是否起始抗骨质疏松药物治疗时,其阈值仍然建议为-2.5;根据患者病情,个体化选用骨质疏松药物;糖尿病患者可以应用骨吸收抑制剂或骨形成促进剂;如果拟采取序贯治疗,则先促骨形成治疗,后抗骨吸收治疗。

参与讨论和制定本共识的专家

参与讨论和制定本共识的专家(按姓氏笔画排列) 王卫庆(上海交通大学医学院附属瑞金医院)、宁光(上海交通大学医学院附属瑞金医院)、母义明(解放军总医院)、匡洪宇(哈尔滨医科大学附属第一医院)、朱大龙(南京大学医学院附属鼓楼医院)、朱梅(天津医科大学总医院)、刘建民(上海交通大学医学院附属瑞金医院)、严励(中山大学孙逸仙纪念医院)、李小英(复旦大学附属中山医院)、李玉坤(河北医科大学第三医院)、李延兵(中山大学附属第一医院)、李梅(中国医学科学院北京协和医院)、时立新(贵州医科大学附属医院)、吴文(广东省人民医院)、余学锋(华中科技大学同济医学院附属同济医院)、陈丽(山东大学齐鲁医院)、陈莉明(天津医科大学代谢病医院)、陈德才(四川大学华西医院)、陈璐璐(华中科技大学同济医学院附属协和医院)、林华(南京大学医学院附属鼓楼医院)、金小岚(成都军区总医院)、周智广(中南大学湘雅二院)、单忠艳(中国医科大学附属第一医院)、赵家军(山东省立医院)、侯建明(福建省立医院)、洪天配(北京大学第三医院)、秦贵军(郑州大学第一附属医院)、夏维波(中国医学科学院北京协和医院)、徐进(山东省立医院)、郭立新(北京医院)、姬秋和(第四军医大学西京医院)、章振林(上海交通大学附属第六人民医院)、彭永德(上海交通大学附属第一人民医院)、童南伟(四川大学华西医院)、谢忠建(中南大学湘雅二医院)、廖二元(中南大学湘雅二医院)

利益冲突
利益声明

所有作者均声明无利益冲突

参考文献
[1]
WangL, GaoP, ZhangM, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523. DOI: 10.1001/jama.2017.7596.
[2]
XuY, WangL, HeJ, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013,310(9):948-959. DOI: 10.1001/jama.2013.168118.
[3]
BraggF, HolmesMV, IonaA, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China[J]. JAMA, 2017,317(3):280-289. DOI: 10.1001/jama.2016.19720.
[4]
HofbauerLC, Lecka-CzernikB, SeibelMJ. Sweet and brittle-diabetes mellitus and the skeleton[J]. Bone, 2016,82:1. DOI: 10.1016/j.bone.2015.09.001.
[5]
WalshJS, VilacaT. Obesity, type 2 diabetes and bone in adults[J]. Calcif Tissue Int, 2017,100(5):528-535. DOI: 10.1007/s00223-016-0229-0.
[6]
MiyakeH, KanazawaI, SugimotoT. Association of bone mineral density, bone turnover markers, and vertebral fractures with all-cause mortality in type 2 diabetes mellitus[J]. Calcif Tissue Int, 2018,102(1):1-13. DOI: 10.1007/s00223-017-0324-x.
[7]
BondsDE, LarsonJC, SchwartzAV, et al. Risk of fracture in women with type 2 diabetes: the Women′s Health Initiative Observational Study[J]. J Clin Endocrinol Metab, 2006,91(9):3404-3410. DOI: 10.1210/jc.2006-0614.
[8]
GilbertMP, PratleyRE. The impact of diabetes and diabetes medications on bone health[J]. Endocr Rev, 2015,36(2):194-213. DOI: 10.1210/er.2012-1042.
[9]
RubinMR. Skeletal fragility in diabetes[J]. Ann N Y Acad Sci, 2017,1402(1):18-30. DOI: 10.1111/nyas.13463.
[10]
WeberDR, HaynesK, LeonardMB, et al. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN)[J]. Diabetes Care, 2015,38(10):1913-1920. DOI: 10.2337/dc15-0783.
[11]
ZhukouskayaVV, Eller-VainicherC, ShepelkevichAP, et al. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice[J]. J Endocrinol Invest, 2015,38(9):941-950. DOI: 10.1007/s40618-015-0284-9.
[12]
KaurH, JosheeP, FranquemontS, et al. Bone mineral content and bone density is lower in adolescents with type 1 diabetes: a brief report from the RESISTANT and EMERALD studies[J]. J Diabetes Complications, 2018,32(10):931-933. DOI: 10.1016/j.jdiacomp.2018.06.004.
[13]
ShahVN, HarrallKK, ShahCS, et al. Bone mineral density at femoral neck and lumbar spine in adults with type 1 diabetes: a meta-analysis and review of the literature[J]. Osteoporos Int, 2017,28(9):2601-2610. DOI: 10.1007/s00198-017-4097-x.
[14]
ThongEP, HerathM, WeberDR, et al. Fracture risk in young and middle-aged adults with type 1 diabetes mellitus: a systematic review and meta-analysis[J]. Clin Endocrinol (Oxf), 2018,89(3):314-323. DOI: 10.1111/cen.13761.
[15]
GunczlerP, LanesR, PaoliM, et al. Decreased bone mineral density and bone formation markers shortly after diagnosis of clinical type 1 diabetes mellitus[J]. J Pediatr Endocrinol Metab, 2001,14(5):525-528.
[16]
López-IbarraPJ, PastorMM, Escobar-JiménezF, et al. Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus[J]. Endocr Pract, 2001,7(5):346-351. DOI: 10.4158/EP.7.5.346.
[17]
HamiltonEJ, DrinkwaterJJ, SAPC, et al. A 10-year prospective study of bone mineral density and bone turnover in males and females with type 1 diabetes[J]. J Clin Endocrinol Metab, 2018,103(9):3531-3539. DOI: 10.1210/jc.2018-00850.
[18]
CamposPMM, López-IbarraPJ, Escobar-JiménezF, et al. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study[J]. Osteoporos Int, 2000,11(5):455-459.
[19]
KeminkSA, HermusAR, SwinkelsLM, et al. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology[J]. J Endocrinol Invest, 2000,23(5):295-303. DOI: 10.1007/BF03343726.
[20]
SouzaKSC, GomesIS, OliveiraY, et al. Albuminuria and low bone mineral density in paediatric patients with type 1 diabetes[J].. J Paediatr Child Health,2019, 55(4):411-415. DOI: 10.1111/jpc.14214.
[21]
SanjeeviN, LipskyLM, NanselTR. Greater inflammation and adiposity are associated with lower bone mineral density in youth with type 1 diabetes[J]. Diabetes Res Clin Pract, 2018,144:10-16. DOI: 10.1016/j.diabres.2018.07.032.
[22]
ShahVN, CarpenterRD, FergusonVL, et al. Bone health in type 1 diabetes[J]. Curr Opin Endocrinol Diabetes Obes, 2018,25(4):231-236. DOI: 10.1097/MED.0000000000000421.
[23]
DhaliwalR, FosterNC, BoyleC, et al. Determinants of fracture in adults with type 1 diabetes in the USA: Results from the T1D Exchange Clinic Registry[J]. J Diabetes Complications, 2018,32(11):1006-1011. DOI: 10.1016/j.jdiacomp.2018.08.016.
[24]
JanghorbaniM, Van DamRM, WillettWC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture[J]. Am J Epidemiol, 2007,166(5):495-505. DOI: 10.1093/aje/kwm106.
[25]
NicodemusKK, FolsomAR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women[J]. Diabetes Care, 2001,24(7):1192-1197. DOI: 10.2337/diacare.24.7.1192.
[26]
MeltonLJ, LeibsonCL, AchenbachSJ, et al. Fracture risk in type 2 diabetes: update of a population-based study[J]. J Bone Miner Res, 2008,23(8):1334-1342. DOI: 10.1359/jbmr.080323.
[27]
VestergaardP. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis[J]. Osteoporos Int, 2007,18(4):427-444. DOI: 10.1007/s00198-006-0253-4.
[28]
TebéC, Martinez-LagunaD, MorenoV, et al. Differential mortality and the excess rates of hip fracture associated with type 2 diabetes: accounting for competing risks in fracture prediction matters[J]. J Bone Miner Res, 2018,33(8):1417-1421. DOI: 10.1002/jbmr.3435.
[29]
KohWP, WangR, AngLW, et al. Diabetes and risk of hip fracture in the Singapore Chinese Health Study[J]. Diabetes Care, 2010,33(8):1766-1770. DOI: 10.2337/dc10-0067.
[30]
LiaoCC, LinCS, ShihCC, et al. Increased risk of fracture and postfracture adverse events in patients with diabetes: two nationwide population-based retrospective cohort studies[J]. Diabetes Care, 2014,37(8):2246-2252. DOI: 10.2337/dc13-2957.
[31]
SchwartzAV, VittinghoffE, BauerDC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes[J]. JAMA, 2011,305(21):2184-2192. DOI: 10.1001/jama.2011.715.
[32]
YamamotoM, YamaguchiT, YamauchiM, et al. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications[J]. J Bone Miner Res, 2009,24(4):702-709. DOI: 10.1359/jbmr.081207.
[33]
LiKH, LiuYT, YangYW, et al. A positive correlation between blood glucose level and bone mineral density in Taiwan[J]. Arch Osteoporos, 2018, 13(1):78. DOI: 10.1007/s11657-018-0494-9.
[34]
TaoB, LiuJM, ZhaoHY, et al. Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women[J]. J Clin Endocrinol Metab, 2008,93(5):1670-1675. DOI: 10.1210/jc.2007-1760.
[35]
ChenFP, KuoSF, LinYC, et al. Status of bone strength and factors associated with vertebral fracture in postmenopausal women with type 2 diabetes[J]. Menopause, 2019,26(2):182-188. DOI: 10.1097/GME.0000000000001185.
[36]
JepsenKJ, SchlechtSH. Biomechanical mechanisms: resolving the apparent conundrum of why individuals with type II diabetes show increased fracture incidence despite having normal BMD[J]. J Bone Miner Res, 2014,29(4):784-786. DOI: 10.1002/jbmr.2189.
[37]
SrikanthanP, CrandallCJ, Miller-MartinezD, et al. Insulin resistance and bone strength: findings from the study of midlife in the United States[J]. J Bone Miner Res, 2014,29(4):796-803. DOI: 10.1002/jbmr.2083.
[38]
GreggEW, BecklesGL, WilliamsonDF, et al. Diabetes and physical disability among older U.S. adults[J]. Diabetes Care, 2000,23(9):1272-1277. DOI: 10.2337/diacare.23.9.1272.
[39]
ManavalanJS, CremersS, DempsterDW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2012,97(9):3240-3250. DOI: 10.1210/jc.2012-1546.
[40]
FarrJN, DrakeMT, AminS, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes[J]. J Bone Miner Res, 2014,29(4):787-795. DOI: 10.1002/jbmr.2106.
[41]
ShanbhogueVV, HansenS, FrostM, et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease[J]. Eur J Endocrinol, 2016,174(2):115-124. DOI: 10.1530/EJE-15-0860.
[42]
HolzerG, vonSG, HolzerLA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength[J]. J Bone Miner Res, 2009,24(3):468-474. DOI: 10.1359/jbmr.081108.
[43]
FarrJN, KhoslaS. Determinants of bone strength and quality in diabetes mellitus in humans[J]. Bone, 2016,82:28-34. DOI: 10.1016/j.bone.2015.07.027.
[44]
KarimL, MoultonJ, Van VlietM, et al. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes[J]. Bone, 2018,114:32-39. DOI: 10.1016/j.bone.2018.05.030.
[45]
GarneroP, BorelO, GineytsE, et al. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone[J]. Bone, 2006, 38(3):300-309.
[46]
AlikhaniM, AlikhaniZ, BoydC, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways[J]. Bone, 2007, 40(2):345-353.
[47]
JangM, KimH, LeaS, et al. Effect of duration of diabetes on bone mineral density: a population study on East Asian males[J]. BMC Endocr Disord, 2018,18(1):61. DOI: 10.1186/s12902-018-0290-y.
[48]
PoianaC, CapatinaC. Fracture risk assessment in patients with diabetes mellitus[J]. J Clin Densitom, 2017,20(3):432-443. DOI: 10.1016/j.jocd.2017.06.011.
[49]
JiajueR, JiangY, WangO, et al. Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus[J]. Osteoporos Int, 2014,25(8):1999-2005. DOI: 10.1007/s00198-014-2714-5.
[50]
NapoliN, ChandranM, PierrozDD, et al. Mechanisms of diabetes mellitus-induced bone fragility[J]. Nat Rev Endocrinol, 2017,13(4):208-219. DOI: 10.1038/nrendo.2016.153.
[51]
HungYC, LinCC, ChenHJ, et al. Severe hypoglycemia and hip fracture in patients with type 2 diabetes: a nationwide population-based cohort study[J]. Osteoporos Int, 2017,28(7):2053-2060. DOI: 10.1007/s00198-017-4021-4.
[52]
ViégasM, CostaC, LopesA, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications[J]. J Diabetes Complications, 2011,25(4):216-221. DOI: 10.1016/j.jdiacomp.2011.02.004.
[53]
XiaJ, ZhongY, HuangG, et al. The relationship between insulin resistance and osteoporosis in elderly male type 2 diabetes mellitus and diabetic nephropathy[J]. Ann Endocrinol (Paris), 2012,73(6):546-551. DOI: 10.1016/j.ando.2012.09.009.
[54]
ChiangJI, LiTC, LiCI, et al. Visit-to-visit variation of fasting plasma glucose is a predictor of hip fracture in older persons with type 2 diabetes: the Taiwan Diabetes Study[J]. Osteoporos Int, 2016,27(12):3587-3597. DOI: 10.1007/s00198-016-3689-1.
[55]
WangXF, YuJJ, WangXJ, et al. The associations between hypovitaminosis D, higher PTH levels with bone mineral densities, and risk of the 10-year prboablity of osteoporotic fractures in Chinese patients with T2DM[J]. Endocr Pract, 2018,24(4):334-341. DOI: 10.4158/EP-2017-0164.
[56]
JiangN, XiaW. Assessment of bone quality in patients with diabetes mellitus[J]. Osteoporos Int, 2018,29(8):1721-1736. DOI: 10.1007/s00198-018-4532-7.
[57]
GiangregorioLM, LeslieWD, LixLM, et al. FRAX underestimates fracture risk in patients with diabetes[J]. J Bone Miner Res, 2012,27(2):301-308. DOI: 10.1002/jbmr.556.
[58]
IkiM, FujitaY, TamakiJ, et al. Trabecular bone score may improve FRAX® prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study[J]. Osteoporos Int, 2015,26(6):1841-1848. DOI: 10.1007/s00198-015-3092-3.
[59]
LeslieWD, JohanssonH, McCloskeyEV, et al. Comparison of methods for improving fracture risk assessment in diabetes: the manitoba BMD registry[J]. J Bone Miner Res, 2018,33(11):1923-1930. DOI: 10.1002/jbmr.3538.
[60]
HarveyNC, GlüerCC, BinkleyN, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice[J]. Bone, 2015,78:216-224. DOI: 10.1016/j.bone.2015.05.016.
[61]
LeslieWD, Aubry-RozierB, LamyO, et al. TBS (trabecular bone score) and diabetes-related fracture risk[J]. J Clin Endocrinol Metab, 2013,98(2):602-609. DOI: 10.1210/jc.2012-3118.
[62]
ChoiYJ, OckSY, ChungYS. Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes[J]. J Clin Densitom, 2016,19(4):507-514. DOI: 10.1016/j.jocd.2016.04.001.
[63]
ZhukouskayaVV, Eller-VainicherC, Ellen-VainicherC, et al. The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients[J]. Osteoporos Int, 2016,27(1):49-56. DOI: 10.1007/s00198-015-3212-0.
[64]
CarvalhoAL, MassaroB, SilvaLTPE, et al. Emerging aspects of the body composition, bone marrow adipose tissue and skeletal phenotypes in type 1 diabetes mellitus[J]. J Clin Densitom, 2018, pii: S1094-6950(18)30072-6. DOI: 10.1016/j.jocd.2018.06.007.
[65]
BurghardtAJ, IsseverAS, SchwartzAV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2010,95(11):5045-5055. DOI: 10.1210/jc.2010-0226.
[66]
SamelsonEJ, DemissieS, CupplesLA, et al. Diabetes and deficits in cortical bone density, microarchitecture, and bone size: Framingham HR-pQCT Study[J]. J Bone Miner Res, 2018,33(1):54-62. DOI: 10.1002/jbmr.3240.
[67]
NilssonAG, SundhD, JohanssonL, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study[J]. J Bone Miner Res, 2017,32(5):1062-1071. DOI: 10.1002/jbmr.3057.
[68]
HabibZA, HavstadSL, WellsK, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2010,95(2):592-600. DOI: 10.1210/jc.2009-1385.
[69]
LinHF, LiaoKF, ChangCM, et al. Use of thiazolidinediones and risk of hip fracture in old people in a case-control study in Taiwan[J]. Medicine (Baltimore), 2017,96(36):e7712. DOI:10.1097/MD.0000000000007712.
[70]
KalraS, KumarA. Response to comments on Sanjay Kalra et al (J Pak Med Assoc. 2019; 69(1): 127) Diabetes as a communicable disease[J]. J Pak Med Assoc, 2019,69(5):760.
[71]
ViscoliCM, InzucchiSE, YoungLH, et al. Pioglitazone and risk for bone fracture: safety data from a randomized clinical trial[J]. J Clin Endocrinol Metab, 2017,102(3):914-922. DOI: 10.1210/jc.2016-3237.
[72]
SpenceJD, ViscoliCM, InzucchiSE, et al. Pioglitazone therapy in patients with stroke and prediabetes: a post Hoc analysis of the IRIS randomized clinical trial[J]. JAMA Neurol, 2019, DOI: 10.1001/jamaneurol.2019.0079. [Epub ahead of print].
[73]
PavlovaV, FilipovaE, UzunovaK, et al. Pioglitazone therapy and fractures: systematic review and meta-analysis[J]. Endocr Metab Immune Disord Drug Targets, 2018,18(5):502-507. DOI: 10.2174/1871530318666180423121833.
[74]
GaoY, LiY, XueJ, et al. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats[J]. Eur J Pharmacol, 2010,635(1-3):231-236. DOI: 10.1016/j.ejphar.2010.02.051.
[75]
MolinuevoMS, SchurmanL, McCarthyAD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies[J]. J Bone Miner Res, 2010,25(2):211-221. DOI: 10.1359/jbmr.090732.
[76]
GuoY, XieC, LiX, et al. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis[J]. Nat Commun, 2017,8:15621. DOI: 10.1038/ncomms15621.
[77]
JosseRG, MajumdarSR, ZhengY, et al. Sitagliptin and risk of fractures in type 2 diabetes: results from the TECOS trial[J]. Diabetes Obes Metab, 2017, 19(1):78-86. DOI: 10.1111/dom.12786.
[78]
VestergaardP, RejnmarkL, MosekildeL. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk[J]. Diabetologia, 2005,48(7):1292-1299. DOI: 10.1007/s00125-005-1786-3.
[79]
NordklintAK, AlmdalTP, VestergaardP, et al. The effect of metformin versus placebo in combination with insulin analogues on bone mineral density and trabecular bone score in patients with type 2 diabetes mellitus: a randomized placebo-controlled trial[J]. Osteoporos Int, 2018,29(11):2517-2526. DOI: 10.1007/s00198-018-4637-z.
[80]
SunHX, LuN, LuoX, et al. Liraglutide, the glucagon-like peptide-1 receptor agonist, has anabolic bone effects in diabetic Goto-Kakizaki rats[J]. J Diabetes, 2015,7(4):584-588. DOI: 10.1111/1753-0407.12282.
[81]
LuN, SunH, YuJ, et al. Glucagon-like peptide-1 receptor agonist liraglutide has anabolic bone effects in ovariectomized rats without diabetes[J]. PLoS One, 2015,10(7):e0132744. DOI: 10.1371/journal.pone.0132744.
[82]
SunHX, LuN, LiuDM, et al. The bone-preserving effects of exendin-4 in ovariectomized rats[J]. Endocrine, 2016,51(2):323-332. DOI: 10.1007/s12020-015-0667-x.
[83]
PereiraM, JeyabalanJ, JørgensenCS, et al. Chronic administration of glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice[J]. Bone, 2015,81:459-467. DOI: 10.1016/j.bone.2015.08.006.
[84]
MansurSA, MieczkowskaA, BouvardB, et al. Stable incretin mimetics counter rapid deterioration of bone quality in type 1 diabetes mellitus[J]. J Cell Physiol, 2015,230(12):3009-3018. DOI: 10.1002/jcp.25033.
[85]
ThayerKA, DoergeDR, HuntD, et al. Pharmacokinetics of bisphenol A in humans following a single oral administration[J]. Environ Int, 2015,83:107-115. DOI: 10.1016/j.envint.2015.06.008.
[86]
MabilleauG, MieczkowskaA, ChappardD. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials[J]. J Diabetes, 2014,6(3):260-266. DOI: 10.1111/1753-0407.12102.
[87]
ZhangYS, WengWY, XieBC, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials[J]. Osteoporos Int, 2018,29(12):2639-2644. DOI: 10.1007/s00198-018-4649-8.
[88]
MosenzonO, WeiC, DavidsonJ, et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI 53 trial[J]. Diabetes Care, 2015,38(11):2142-2150. DOI: 10.2337/dc15-1068.
[89]
HirshbergB, ParkerA, EdelbergH, et al. Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus[J]. Diabetes Metab Res Rev, 2014,30(7):556-569. DOI: 10.1002/dmrr.2502.
[90]
MonamiM, DicembriniI, AntenoreA, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials[J]. Diabetes Care, 2011,34(11):2474-2476. DOI: 10.2337/dc11-1099.
[91]
ChoiHJ, ParkC, LeeYK, et al. Risk of fractures and diabetes medications: a nationwide cohort study[J]. Osteoporos Int, 2016,27(9):2709-2715. DOI: 10.1007/s00198-016-3595-6.
[92]
BilezikianJP, WattsNB, UsiskinK, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin[J]. J Clin Endocrinol Metab, 2016,101(1):44-51. DOI: 10.1210/jc.2015-1860.
[93]
TaylorSI, BlauJE, RotherKI. Possible adverse effects of SGLT2 inhibitors on bone[J]. Lancet Diabetes Endocrinol, 2015, 3(1):8-10. DOI: 10.1016/S2213-8587(14)70227-X.
[94]
WattsNB, BilezikianJP, UsiskinK, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2016,101(1):157-166. DOI: 10.1210/jc.2015-3167.
[95]
TangHL, LiDD, ZhangJJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials[J]. Diabetes Obes Metab, 2016,18(12):1199-1206. DOI: 10.1111/dom.12742.
[96]
LjunggrenÖ, BolinderJ, JohanssonL, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin[J]. Diabetes Obes Metab, 2012,14(11):990-999. DOI: 10.1111/j.1463-1326.2012.01630.x.
[97]
KohlerS, KaspersS, SalsaliA, et al. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride[J]. Diabetes Care, 2018,41(8):1809-1816. DOI: 10.2337/dc17-1525.
[98]
SchmedtN, AndersohnF, WalkerJ, et al. Sodium-glucose co-transporter-2 inhibitors and the risk of fractures of the upper or lower limbs in patients with type 2 diabetes: a nested case-control study[J]. Diabetes Obes Metab, 2019, 21(1):52-60. DOI: 10.1111/dom.13480.
[99]
ZinmanB, HaffnerSM, HermanWH, et al. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes[J]. J Clin Endocrinol Metab, 2010,95(1):134-142. DOI: 10.1210/jc.2009-0572.
[100]
NapoliN, StrotmeyerES, EnsrudKE, et al. Fracture risk in diabetic elderly men: the MrOS study[J]. Diabetologia, 2014,57(10):2057-2065. DOI: 10.1007/s00125-014-3289-6.
[101]
LosadaE, SoldevilaB, AliMS, et al. Real-world antidiabetic drug use and fracture risk in 12,277 patients with type 2 diabetes mellitus: a nested case-control study[J]. Osteoporos Int, 2018,29(9):2079-2086. DOI: 10.1007/s00198-018-4581-y.
[102]
Ben-PoratT, ElazaryR, Sherf-DaganS, et al. Bone health following bariatric surgery: implications for management strategies to attenuate bone loss[J]. Adv Nutr, 2018, 9(2):114-127. DOI: 10.1093/advances/nmx024.
[103]
LuCW, ChangYK, ChangHH, et al. Fracture risk after bariatric surgery: a 12-year nationwide cohort study[J]. Medicine (Baltimore), 2015,94(48):e2087. DOI: 10.1097/MD.0000000000002087.
[104]
RousseauC, JeanS, GamacheP, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study[J]. BMJ, 2016,354:i3794. DOI: 10.1136/bmj.i3794.
[105]
SchaferAL, KazakiaGJ, VittinghoffE, et al. Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women[J]. J Bone Miner Res, 2018,33(6):975-986. DOI: 10.1002/jbmr.3371.
[106]
WangX, LiL, ZhuC, et al. Alteration of bone mineral density differs between genders in obese subjects after laparoscopic sleeve gastrectomy: bone morphogenetic protein 4 may count[J]. Obes Surg, 2018,28(10):3221-3226. DOI: 10.1007/s11695-018-3298-5.
[107]
NakamuraKM, HaglindEG, ClowesJA, et al. Fracture risk following bariatric surgery: a population-based study[J]. Osteoporos Int, 2014,25(1):151-158. DOI: 10.1007/s00198-013-2463-x.
[108]
LiuJM, RosenCJ, DucyP, et al. Regulation of glucose handling by the skeleton: insights from mouse and human studies[J]. Diabetes, 2016,65(11):3225-3232. DOI: 10.2337/db16-0053.
[109]
LiuDM, MosialouI, LiuJM. Bone: Another potential target to treat, prevent and predict diabetes[J]. Diabetes Obes Metab, 2018,20(8):1817-1828. DOI: 10.1111/dom.13330.
[110]
ForouhiNG, YeZ, RickardAP, et al. Circulating 25-hydroxyvitamin D concentration and the risk of type 2 diabetes: results from the European Prospective Investigation into Cancer (EPIC)-Norfolk cohort and updated meta-analysis of prospective studies[J]. Diabetologia, 2012,55(8):2173-2182. DOI: 10.1007/s00125-012-2544-y.
[111]
MirhosseiniN, VatanparastH, MazidiM, et al. The Effect of improved serum 25-Hydroxyvitamin D status on glycemic control in diabetic patients: a meta-analysis[J]. J Clin Endocrinol Metab, 2017,102(9):3097-3110. DOI: 10.1210/jc.2017-01024.
[112]
GulsethHL, WiumC, AngelK, et al. Effects of vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: a randomized controlled trial[J]. Diabetes Care, 2017,40(7):872-878. DOI: 10.2337/dc16-2302.
[113]
WagnerH, AlvarssonM, MannheimerB, et al. No effect of high-dose vitamin D treatment on β-cell function, insulin sensitivity, or glucose homeostasis in subjects with abnormal glucose tolerance: a randomized clinical trial[J].Diabetes Care,2016,39(3):345-352. DOI: 10.2337/dc15-1057.
[114]
Krul-PoelYH, WestraS, tenBE, et al. Effect of vitamin D supplementation on glycemic control in patients with type 2 diabetes (SUNNY Trial): a randomized placebo-controlled trial[J]. Diabetes Care, 2015,38(8):1420-1426. DOI: 10.2337/dc15-0323.
[115]
JordeR, SollidST, SvartbergJ, et al. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes[J]. J Clin Endocrinol Metab, 2016,101(4):1647-1655. DOI: 10.1210/jc.2015-4013.
[116]
SiedhoffMT, CareyET, FindleyAD, et al. Effect of extreme obesity on outcomes in laparoscopic hysterectomy[J]. J Minim Invasive Gynecol, 2012,19(6):701-707. DOI: 10.1016/j.jmig.2012.07.005.
[117]
SchaferAL, SellmeyerDE, SchwartzAV, et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1-84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study)[J]. J Clin Endocrinol Metab, 2011,96(12):E1982-1989. DOI: 10.1210/jc.2011-0587.
[118]
ToulisKA, NirantharakumarK, RyanR, et al. Bisphosphonates and glucose homeostasis: a population-based, retrospective cohort study[J]. J Clin Endocrinol Metab, 2015,100(5):1933-1940. DOI: 10.1210/jc.2014-3481.
[119]
HaginoH, SoenS, SugimotoT, et al. Changes in quality of life in patients with postmenopausal osteoporosis receiving weekly bisphosphonate treatment: a 2-year multicenter study in Japan[J]. J Bone Miner Metab, 2019,37(2):273-281. DOI: 10.1007/s00774-018-0914-3.
[120]
LiuTT, LiuDM, XuanY, et al. The association between the baseline bone resorption marker CTX and incident dysglycemia after 4 years[J]. Bone Res, 2017,5:17020. DOI: 10.1038/boneres.2017.20.
[121]
KimuraS, SasaseT, OhtaT, et al. Parathyroid hormone (1-34) improves bone mineral density and glucose metabolism in spontaneously diabetic Torii-Lepr(fa) rats[J]. J Vet Med Sci, 2012,74(1):103-105.
[122]
CucinelliF, SorannaL, RomualdiD, et al. The effect of raloxifene on glyco-insulinemic homeostasis in healthy postmenopausal women: a randomized placebo-controlled study[J]. J Clin Endocrinol Metab, 2002,87(9):4186-4192. DOI: 10.1210/jc.2001-011302.
[123]
HulleyS, GradyD, BushT, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group[J]. JAMA,1998, 280(7):605-613.
[124]
HevenerAL, CleggDJ, Mauvais-JarvisF. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome[J]. Mol Cell Endocrinol, 2015, 418Pt 3:306-321. DOI: 10.1016/j.mce.2015.05.020.
[125]
KiechlS, WittmannJ, GiaccariA, et al. Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus[J]. Nat Med, 2013, 19(3):358-363. DOI: 10.1038/nm.3084.
[126]
SchwartzAV, SchaferAL, GreyA, et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials[J]. J Bone Miner Res, 2013,28(6):1348-1354. DOI: 10.1002/jbmr.1865.
[127]
NapoliN, PannacciulliN, VittinghoffE, et al. Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial[J]. Diabetes Metab Res Rev, 2018,34(4):e2991. DOI: 10.1002/dmrr.2991.
[128]
FulzeleK, LaiF, DedicC, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots[J]. J Bone Miner Res, 2017,32(2):373-384. DOI: 10.1002/jbmr.3001.
[129]
YuOH, RichardsB, BergerC, et al. The association between sclerostin and incident type 2 diabetes risk: a cohort study[J]. Clin Endocrinol (Oxf), 2017,86(4):520-525. DOI: 10.1111/cen.13300.
[130]
SaagKG, PetersenJ, BrandiML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis[J]. N Engl J Med, 2017, 377(15):1417-1427. DOI: 10.1056/NEJMoa1708322.
[131]
SchwartzAV, MargolisKL, SellmeyerDE, et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial[J]. Diabetes Care, 2012,35(7):1525-1531. DOI: 10.2337/dc11-2184.
[132]
VavanikunnelJ, CharlierS, BeckerC, et al. Association between glycemic control and risk of fracture in diabetic patients: a nested case-control study[J]. J Clin Endocrinol Metab, 2019,104(5):1645-1654. DOI: 10.1210/jc.2018-01879.
[133]
ChenSC, ShepherdS, McMillanM, et al. Skeletal fragility & its clinical determinants in children with type 1 diabetes[F]. J Clin Endocrinol Metab, 2019, pii: jc.2019-00084. DOI: 10.1210/jc.2019-00084. [Epub ahead of print].
[134]
OeiL, ZillikensMC, DehghanA, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study[J]. Diabetes Care, 2013,36(6):1619-1628. DOI: 10.2337/dc12-1188.
[135]
LiCI, LiuCS, LinWY, et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study[J]. J Bone Miner Res, 2015,30(7):1338-1346. DOI: 10.1002/jbmr.2462.
[136]
WeberDR, GordonRJ, KelleyJC, et al. Poor glycemic control is associated with impaired bone accrual in the year following a diagnosis of type 1 diabetes[J]. J Clin Endocrinol Metab, 2019, pii: jc.2019-00035. DOI: 10.1210/jc.2019-00035. [Epub ahead of print].
[137]
NtouvaA, ToulisKA, KeerthyD, et al. Hypoglycaemia is associated with increased risk of fractures in patients with type 2 diabetes mellitus: a cohort study[J]. Eur J Endocrinol, 2019,180(1):51-58. DOI: 10.1530/EJE-18-0458.
[138]
KurppaK, LaitinenA, AgardhD. Coeliac disease in children with type 1 diabetes[J]. Lancet Child Adolesc Health, 2018,2(2):133-143. DOI: 10.1016/S2352-4642(17)30172-4.
[139]
PickeAK, SylowL, LLVM, et al. Differential effects of high-fat diet and exercise training on bone and energy metabolism[J]. Bone, 2018,116:120-134. DOI: 10.1016/j.bone.2018.07.015.
[140]
FerrariSL, AbrahamsenB, NapoliN, et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge[J]. Osteoporos Int, 2018,29(12):2585-2596. DOI: 10.1007/s00198-018-4650-2.
[141]
ChoyKW, ChoyKH. Letter to the editor: hypothyroidism following hemithyroidectomy: incidence, risk factors, and clinical characteristics (Ahn D, Sohn JH, Jeon JH. Hypothyroidism following hemithyroidectomy: incidence, risk factors, and clinical characteristics. J Clin Endocrinol Metab. 2016;101(4):1429-1436.)[J]. J Clin Endocrinol Metab, 2016,101(10):L93. DOI: 10.1210/jc.2016-2633.
[142]
SchacterGI, LeslieWD. DXA-based measurements in diabetes: can they predict fracture risk?[J]. Calcif Tissue Int, 2017, 100(2):150-164. DOI: 10.1007/s00223-016-0191-x
[143]
中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(2017)[J].中华骨质疏松和骨矿盐疾病杂志201710(5):413-443. DOI: 10.3969/j.issn.1674-2591.2017.05.002.
[144]
KeeganTH, SchwartzAV, BauerDC, et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial[J]. Diabetes Care, 2004, 27(7):1547-1553. DOI: 10.2337/diacare.27.7.1547.
[145]
SchwartzAV, PavoI, AlamJ, et al. Teriparatide in patients with osteoporosis and type 2 diabetes[J]. Bone, 2016,91:152-158. DOI: 10.1016/j.bone.2016.06.017.
[146]
AnagnostisP, PaschouSA, GkekasNN, et al. Efficacy of anti-osteoporotic medications in patients with type 1 and 2 diabetes mellitus: a systematic review[J]. Endocrine, 2018,60(3):373-383. DOI: 10.1007/s12020-018-1548-x.
[147]
MotylKJ, McCauleyLK, McCabeLR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival[J]. J Cell Physiol, 2012,227(4):1326-1334. DOI: 10.1002/jcp.22844.
[148]
LiuGY, CaoGL, TianFM, et al. Parathyroid hormone (1-34) promotes fracture healing in ovariectomized rats with type 2 diabetes mellitus[J]. Osteoporos Int, 2017,28(10):3043-3053. DOI: 10.1007/s00198-017-4148-3.
[149]
KanazawaI, NotsuM, MiyakeH, et al. Assessment using serum insulin-like growth factor-I and bone mineral density is useful for detecting prevalent vertebral fractures in patients with type 2 diabetes mellitus[J]. Osteoporos Int, 2018,29(11):2527-2535. DOI: 10.1007/s00198-018-4638-y.
[150]
HuY, TanLJ, ChenXD, et al. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method[J]. Bone, 2018,117:6-14. DOI: 10.1016/j.bone.2018.08.020.
[151]
PaschouSA, DedeAD, AnagnostisPG, et al. Type 2 diabetes and osteoporosis: a guide to optimal management[J]. J Clin Endocrinol Metab, 2017,102(10):3621-3634. DOI: 10.1210/jc.2017-00042.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词