参考文献[1]
WangL, GaoP, ZhangM, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24):2515-2523. .
[2]
XuY, WangL, HeJ, et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013,310(9):948-959. .
[3]
BraggF, HolmesMV, IonaA, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China[J]. JAMA, 2017,317(3):280-289. .
[4]
HofbauerLC, Lecka-CzernikB, SeibelMJ. Sweet and brittle-diabetes mellitus and the skeleton[J]. Bone, 2016,82:1. .
[5]
WalshJS, VilacaT. Obesity, type 2 diabetes and bone in adults[J]. Calcif Tissue Int, 2017,100(5):528-535. .
[6]
MiyakeH, KanazawaI, SugimotoT. Association of bone mineral density, bone turnover markers, and vertebral fractures with all-cause mortality in type 2 diabetes mellitus[J]. Calcif Tissue Int, 2018,102(1):1-13. .
[7]
BondsDE, LarsonJC, SchwartzAV, et al. Risk of fracture in women with type 2 diabetes: the Women′s Health Initiative Observational Study[J]. J Clin Endocrinol Metab, 2006,91(9):3404-3410. .
[8]
GilbertMP, PratleyRE. The impact of diabetes and diabetes medications on bone health[J]. Endocr Rev, 2015,36(2):194-213. .
[9]
RubinMR. Skeletal fragility in diabetes[J]. Ann N Y Acad Sci, 2017,1402(1):18-30. .
[10]
WeberDR, HaynesK, LeonardMB, et al. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN)[J]. Diabetes Care, 2015,38(10):1913-1920. .
[11]
ZhukouskayaVV, Eller-VainicherC, ShepelkevichAP, et al. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice[J]. J Endocrinol Invest, 2015,38(9):941-950. .
[12]
KaurH, JosheeP, FranquemontS, et al. Bone mineral content and bone density is lower in adolescents with type 1 diabetes: a brief report from the RESISTANT and EMERALD studies[J]. J Diabetes Complications, 2018,32(10):931-933. .
[13]
ShahVN, HarrallKK, ShahCS, et al. Bone mineral density at femoral neck and lumbar spine in adults with type 1 diabetes: a meta-analysis and review of the literature[J]. Osteoporos Int, 2017,28(9):2601-2610. .
[14]
ThongEP, HerathM, WeberDR, et al. Fracture risk in young and middle-aged adults with type 1 diabetes mellitus: a systematic review and meta-analysis[J]. Clin Endocrinol (Oxf), 2018,89(3):314-323. .
[15]
GunczlerP, LanesR, PaoliM, et al. Decreased bone mineral density and bone formation markers shortly after diagnosis of clinical type 1 diabetes mellitus[J]. J Pediatr Endocrinol Metab, 2001,14(5):525-528.
[16]
López-IbarraPJ, PastorMM, Escobar-JiménezF, et al. Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus[J]. Endocr Pract, 2001,7(5):346-351. .
[17]
HamiltonEJ, DrinkwaterJJ, SAPC, et al. A 10-year prospective study of bone mineral density and bone turnover in males and females with type 1 diabetes[J]. J Clin Endocrinol Metab, 2018,103(9):3531-3539. .
[18]
CamposPMM, López-IbarraPJ, Escobar-JiménezF, et al. Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study[J]. Osteoporos Int, 2000,11(5):455-459.
[19]
KeminkSA, HermusAR, SwinkelsLM, et al. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology[J]. J Endocrinol Invest, 2000,23(5):295-303. .
[20]
SouzaKSC, GomesIS, OliveiraY, et al. Albuminuria and low bone mineral density in paediatric patients with type 1 diabetes[J].. J Paediatr Child Health,2019, 55(4):411-415. .
[21]
SanjeeviN, LipskyLM, NanselTR. Greater inflammation and adiposity are associated with lower bone mineral density in youth with type 1 diabetes[J]. Diabetes Res Clin Pract, 2018,144:10-16. .
[22]
ShahVN, CarpenterRD, FergusonVL, et al. Bone health in type 1 diabetes[J]. Curr Opin Endocrinol Diabetes Obes, 2018,25(4):231-236. .
[23]
DhaliwalR, FosterNC, BoyleC, et al. Determinants of fracture in adults with type 1 diabetes in the USA: Results from the T1D Exchange Clinic Registry[J]. J Diabetes Complications, 2018,32(11):1006-1011. .
[24]
JanghorbaniM, Van DamRM, WillettWC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture[J]. Am J Epidemiol, 2007,166(5):495-505. .
[25]
NicodemusKK, FolsomAR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women[J]. Diabetes Care, 2001,24(7):1192-1197. .
[26]
MeltonLJ, LeibsonCL, AchenbachSJ, et al. Fracture risk in type 2 diabetes: update of a population-based study[J]. J Bone Miner Res, 2008,23(8):1334-1342. .
[27]
VestergaardP. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis[J]. Osteoporos Int, 2007,18(4):427-444. .
[28]
TebéC, Martinez-LagunaD, MorenoV, et al. Differential mortality and the excess rates of hip fracture associated with type 2 diabetes: accounting for competing risks in fracture prediction matters[J]. J Bone Miner Res, 2018,33(8):1417-1421. .
[29]
KohWP, WangR, AngLW, et al. Diabetes and risk of hip fracture in the Singapore Chinese Health Study[J]. Diabetes Care, 2010,33(8):1766-1770. .
[30]
LiaoCC, LinCS, ShihCC, et al. Increased risk of fracture and postfracture adverse events in patients with diabetes: two nationwide population-based retrospective cohort studies[J]. Diabetes Care, 2014,37(8):2246-2252. .
[31]
SchwartzAV, VittinghoffE, BauerDC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes[J]. JAMA, 2011,305(21):2184-2192. .
[32]
YamamotoM, YamaguchiT, YamauchiM, et al. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications[J]. J Bone Miner Res, 2009,24(4):702-709. .
[33]
LiKH, LiuYT, YangYW, et al. A positive correlation between blood glucose level and bone mineral density in Taiwan[J]. Arch Osteoporos, 2018, 13(1):78. .
[34]
TaoB, LiuJM, ZhaoHY, et al. Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women[J]. J Clin Endocrinol Metab, 2008,93(5):1670-1675. .
[35]
ChenFP, KuoSF, LinYC, et al. Status of bone strength and factors associated with vertebral fracture in postmenopausal women with type 2 diabetes[J]. Menopause, 2019,26(2):182-188. .
[36]
JepsenKJ, SchlechtSH. Biomechanical mechanisms: resolving the apparent conundrum of why individuals with type II diabetes show increased fracture incidence despite having normal BMD[J]. J Bone Miner Res, 2014,29(4):784-786. .
[37]
SrikanthanP, CrandallCJ, Miller-MartinezD, et al. Insulin resistance and bone strength: findings from the study of midlife in the United States[J]. J Bone Miner Res, 2014,29(4):796-803. .
[38]
GreggEW, BecklesGL, WilliamsonDF, et al. Diabetes and physical disability among older U.S. adults[J]. Diabetes Care, 2000,23(9):1272-1277. .
[39]
ManavalanJS, CremersS, DempsterDW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2012,97(9):3240-3250. .
[40]
FarrJN, DrakeMT, AminS, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes[J]. J Bone Miner Res, 2014,29(4):787-795. .
[41]
ShanbhogueVV, HansenS, FrostM, et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease[J]. Eur J Endocrinol, 2016,174(2):115-124. .
[42]
HolzerG, vonSG, HolzerLA, et al. Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength[J]. J Bone Miner Res, 2009,24(3):468-474. .
[43]
FarrJN, KhoslaS. Determinants of bone strength and quality in diabetes mellitus in humans[J]. Bone, 2016,82:28-34. .
[44]
KarimL, MoultonJ, Van VlietM, et al. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes[J]. Bone, 2018,114:32-39. .
[45]
GarneroP, BorelO, GineytsE, et al. Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone[J]. Bone, 2006, 38(3):300-309.
[46]
AlikhaniM, AlikhaniZ, BoydC, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways[J]. Bone, 2007, 40(2):345-353.
[47]
JangM, KimH, LeaS, et al. Effect of duration of diabetes on bone mineral density: a population study on East Asian males[J]. BMC Endocr Disord, 2018,18(1):61. .
[48]
PoianaC, CapatinaC. Fracture risk assessment in patients with diabetes mellitus[J]. J Clin Densitom, 2017,20(3):432-443. .
[49]
JiajueR, JiangY, WangO, et al. Suppressed bone turnover was associated with increased osteoporotic fracture risks in non-obese postmenopausal Chinese women with type 2 diabetes mellitus[J]. Osteoporos Int, 2014,25(8):1999-2005. .
[50]
NapoliN, ChandranM, PierrozDD, et al. Mechanisms of diabetes mellitus-induced bone fragility[J]. Nat Rev Endocrinol, 2017,13(4):208-219. .
[51]
HungYC, LinCC, ChenHJ, et al. Severe hypoglycemia and hip fracture in patients with type 2 diabetes: a nationwide population-based cohort study[J]. Osteoporos Int, 2017,28(7):2053-2060. .
[52]
ViégasM, CostaC, LopesA, et al. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications[J]. J Diabetes Complications, 2011,25(4):216-221. .
[53]
XiaJ, ZhongY, HuangG, et al. The relationship between insulin resistance and osteoporosis in elderly male type 2 diabetes mellitus and diabetic nephropathy[J]. Ann Endocrinol (Paris), 2012,73(6):546-551. .
[54]
ChiangJI, LiTC, LiCI, et al. Visit-to-visit variation of fasting plasma glucose is a predictor of hip fracture in older persons with type 2 diabetes: the Taiwan Diabetes Study[J]. Osteoporos Int, 2016,27(12):3587-3597. .
[55]
WangXF, YuJJ, WangXJ, et al. The associations between hypovitaminosis D, higher PTH levels with bone mineral densities, and risk of the 10-year prboablity of osteoporotic fractures in Chinese patients with T2DM[J]. Endocr Pract, 2018,24(4):334-341. .
[56]
JiangN, XiaW. Assessment of bone quality in patients with diabetes mellitus[J]. Osteoporos Int, 2018,29(8):1721-1736. .
[57]
GiangregorioLM, LeslieWD, LixLM, et al. FRAX underestimates fracture risk in patients with diabetes[J]. J Bone Miner Res, 2012,27(2):301-308. .
[58]
IkiM, FujitaY, TamakiJ, et al. Trabecular bone score may improve FRAX® prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study[J]. Osteoporos Int, 2015,26(6):1841-1848. .
[59]
LeslieWD, JohanssonH, McCloskeyEV, et al. Comparison of methods for improving fracture risk assessment in diabetes: the manitoba BMD registry[J]. J Bone Miner Res, 2018,33(11):1923-1930. .
[60]
HarveyNC, GlüerCC, BinkleyN, et al. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice[J]. Bone, 2015,78:216-224. .
[61]
LeslieWD, Aubry-RozierB, LamyO, et al. TBS (trabecular bone score) and diabetes-related fracture risk[J]. J Clin Endocrinol Metab, 2013,98(2):602-609. .
[62]
ChoiYJ, OckSY, ChungYS. Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes[J]. J Clin Densitom, 2016,19(4):507-514. .
[63]
ZhukouskayaVV, Eller-VainicherC, Ellen-VainicherC, et al. The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients[J]. Osteoporos Int, 2016,27(1):49-56. .
[64]
CarvalhoAL, MassaroB, SilvaLTPE, et al. Emerging aspects of the body composition, bone marrow adipose tissue and skeletal phenotypes in type 1 diabetes mellitus[J]. J Clin Densitom, 2018, . .
[65]
BurghardtAJ, IsseverAS, SchwartzAV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2010,95(11):5045-5055. .
[66]
SamelsonEJ, DemissieS, CupplesLA, et al. Diabetes and deficits in cortical bone density, microarchitecture, and bone size: Framingham HR-pQCT Study[J]. J Bone Miner Res, 2018,33(1):54-62. .
[67]
NilssonAG, SundhD, JohanssonL, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study[J]. J Bone Miner Res, 2017,32(5):1062-1071. .
[68]
HabibZA, HavstadSL, WellsK, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2010,95(2):592-600. .
[69]
LinHF, LiaoKF, ChangCM, et al. Use of thiazolidinediones and risk of hip fracture in old people in a case-control study in Taiwan[J]. Medicine (Baltimore), 2017,96(36):e7712. .
[70]
KalraS, KumarA. Response to comments on Sanjay Kalra et al (J Pak Med Assoc. 2019; 69(1): 127) Diabetes as a communicable disease[J]. J Pak Med Assoc, 2019,69(5):760.
[71]
ViscoliCM, InzucchiSE, YoungLH, et al. Pioglitazone and risk for bone fracture: safety data from a randomized clinical trial[J]. J Clin Endocrinol Metab, 2017,102(3):914-922. .
[72]
SpenceJD, ViscoliCM, InzucchiSE, et al. Pioglitazone therapy in patients with stroke and prediabetes: a post Hoc analysis of the IRIS randomized clinical trial[J]. JAMA Neurol, 2019, .
[73]
PavlovaV, FilipovaE, UzunovaK, et al. Pioglitazone therapy and fractures: systematic review and meta-analysis[J]. Endocr Metab Immune Disord Drug Targets, 2018,18(5):502-507. .
[74]
GaoY, LiY, XueJ, et al. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats[J]. Eur J Pharmacol, 2010,635(1-3):231-236. .
[75]
MolinuevoMS, SchurmanL, McCarthyAD, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies[J]. J Bone Miner Res, 2010,25(2):211-221. .
[76]
GuoY, XieC, LiX, et al. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis[J]. Nat Commun, 2017,8:15621. .
[77]
JosseRG, MajumdarSR, ZhengY, et al. Sitagliptin and risk of fractures in type 2 diabetes: results from the TECOS trial[J]. Diabetes Obes Metab, 2017, 19(1):78-86. .
[78]
VestergaardP, RejnmarkL, MosekildeL. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk[J]. Diabetologia, 2005,48(7):1292-1299. .
[79]
NordklintAK, AlmdalTP, VestergaardP, et al. The effect of metformin versus placebo in combination with insulin analogues on bone mineral density and trabecular bone score in patients with type 2 diabetes mellitus: a randomized placebo-controlled trial[J]. Osteoporos Int, 2018,29(11):2517-2526. .
[80]
SunHX, LuN, LuoX, et al. Liraglutide, the glucagon-like peptide-1 receptor agonist, has anabolic bone effects in diabetic Goto-Kakizaki rats[J]. J Diabetes, 2015,7(4):584-588. .
[81]
LuN, SunH, YuJ, et al. Glucagon-like peptide-1 receptor agonist liraglutide has anabolic bone effects in ovariectomized rats without diabetes[J]. PLoS One, 2015,10(7):e0132744. .
[82]
SunHX, LuN, LiuDM, et al. The bone-preserving effects of exendin-4 in ovariectomized rats[J]. Endocrine, 2016,51(2):323-332. .
[83]
PereiraM, JeyabalanJ, JørgensenCS, et al. Chronic administration of glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice[J]. Bone, 2015,81:459-467. .
[84]
MansurSA, MieczkowskaA, BouvardB, et al. Stable incretin mimetics counter rapid deterioration of bone quality in type 1 diabetes mellitus[J]. J Cell Physiol, 2015,230(12):3009-3018. .
[85]
ThayerKA, DoergeDR, HuntD, et al. Pharmacokinetics of bisphenol A in humans following a single oral administration[J]. Environ Int, 2015,83:107-115. .
[86]
MabilleauG, MieczkowskaA, ChappardD. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials[J]. J Diabetes, 2014,6(3):260-266. .
[87]
ZhangYS, WengWY, XieBC, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials[J]. Osteoporos Int, 2018,29(12):2639-2644. .
[88]
MosenzonO, WeiC, DavidsonJ, et al. Incidence of fractures in patients with type 2 diabetes in the SAVOR-TIMI 53 trial[J]. Diabetes Care, 2015,38(11):2142-2150. .
[89]
HirshbergB, ParkerA, EdelbergH, et al. Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus[J]. Diabetes Metab Res Rev, 2014,30(7):556-569. .
[90]
MonamiM, DicembriniI, AntenoreA, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials[J]. Diabetes Care, 2011,34(11):2474-2476. .
[91]
ChoiHJ, ParkC, LeeYK, et al. Risk of fractures and diabetes medications: a nationwide cohort study[J]. Osteoporos Int, 2016,27(9):2709-2715. .
[92]
BilezikianJP, WattsNB, UsiskinK, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin[J]. J Clin Endocrinol Metab, 2016,101(1):44-51. .
[93]
TaylorSI, BlauJE, RotherKI. Possible adverse effects of SGLT2 inhibitors on bone[J]. Lancet Diabetes Endocrinol, 2015, 3(1):8-10. .
[94]
WattsNB, BilezikianJP, UsiskinK, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus[J]. J Clin Endocrinol Metab, 2016,101(1):157-166. .
[95]
TangHL, LiDD, ZhangJJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials[J]. Diabetes Obes Metab, 2016,18(12):1199-1206. .
[96]
LjunggrenÖ, BolinderJ, JohanssonL, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin[J]. Diabetes Obes Metab, 2012,14(11):990-999. .
[97]
KohlerS, KaspersS, SalsaliA, et al. Analysis of fractures in patients with type 2 diabetes treated with empagliflozin in pooled data from placebo-controlled trials and a head-to-head study versus glimepiride[J]. Diabetes Care, 2018,41(8):1809-1816. .
[98]
SchmedtN, AndersohnF, WalkerJ, et al. Sodium-glucose co-transporter-2 inhibitors and the risk of fractures of the upper or lower limbs in patients with type 2 diabetes: a nested case-control study[J]. Diabetes Obes Metab, 2019, 21(1):52-60. .
[99]
ZinmanB, HaffnerSM, HermanWH, et al. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes[J]. J Clin Endocrinol Metab, 2010,95(1):134-142. .
[100]
NapoliN, StrotmeyerES, EnsrudKE, et al. Fracture risk in diabetic elderly men: the MrOS study[J]. Diabetologia, 2014,57(10):2057-2065. .
[101]
LosadaE, SoldevilaB, AliMS, et al. Real-world antidiabetic drug use and fracture risk in 12,277 patients with type 2 diabetes mellitus: a nested case-control study[J]. Osteoporos Int, 2018,29(9):2079-2086. .
[102]
Ben-PoratT, ElazaryR, Sherf-DaganS, et al. Bone health following bariatric surgery: implications for management strategies to attenuate bone loss[J]. Adv Nutr, 2018, 9(2):114-127. .
[103]
LuCW, ChangYK, ChangHH, et al. Fracture risk after bariatric surgery: a 12-year nationwide cohort study[J]. Medicine (Baltimore), 2015,94(48):e2087. .
[104]
RousseauC, JeanS, GamacheP, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study[J]. BMJ, 2016,354:i3794. .
[105]
SchaferAL, KazakiaGJ, VittinghoffE, et al. Effects of gastric bypass surgery on bone mass and microarchitecture occur early and particularly impact postmenopausal women[J]. J Bone Miner Res, 2018,33(6):975-986. .
[106]
WangX, LiL, ZhuC, et al. Alteration of bone mineral density differs between genders in obese subjects after laparoscopic sleeve gastrectomy: bone morphogenetic protein 4 may count[J]. Obes Surg, 2018,28(10):3221-3226. .
[107]
NakamuraKM, HaglindEG, ClowesJA, et al. Fracture risk following bariatric surgery: a population-based study[J]. Osteoporos Int, 2014,25(1):151-158. .
[108]
LiuJM, RosenCJ, DucyP, et al. Regulation of glucose handling by the skeleton: insights from mouse and human studies[J]. Diabetes, 2016,65(11):3225-3232. .
[109]
LiuDM, MosialouI, LiuJM. Bone: Another potential target to treat, prevent and predict diabetes[J]. Diabetes Obes Metab, 2018,20(8):1817-1828. .
[110]
ForouhiNG, YeZ, RickardAP, et al. Circulating 25-hydroxyvitamin D concentration and the risk of type 2 diabetes: results from the European Prospective Investigation into Cancer (EPIC)-Norfolk cohort and updated meta-analysis of prospective studies[J]. Diabetologia, 2012,55(8):2173-2182. .
[111]
MirhosseiniN, VatanparastH, MazidiM, et al. The Effect of improved serum 25-Hydroxyvitamin D status on glycemic control in diabetic patients: a meta-analysis[J]. J Clin Endocrinol Metab, 2017,102(9):3097-3110. .
[112]
GulsethHL, WiumC, AngelK, et al. Effects of vitamin D supplementation on insulin sensitivity and insulin secretion in subjects with type 2 diabetes and vitamin D deficiency: a randomized controlled trial[J]. Diabetes Care, 2017,40(7):872-878. .
[113]
WagnerH, AlvarssonM, MannheimerB, et al. No effect of high-dose vitamin D treatment on β-cell function, insulin sensitivity, or glucose homeostasis in subjects with abnormal glucose tolerance: a randomized clinical trial[J].Diabetes Care,2016,39(3):345-352. .
[114]
Krul-PoelYH, WestraS, tenBE, et al. Effect of vitamin D supplementation on glycemic control in patients with type 2 diabetes (SUNNY Trial): a randomized placebo-controlled trial[J]. Diabetes Care, 2015,38(8):1420-1426. .
[115]
JordeR, SollidST, SvartbergJ, et al. Vitamin D 20,000 IU per week for five years does not prevent progression from prediabetes to diabetes[J]. J Clin Endocrinol Metab, 2016,101(4):1647-1655. .
[116]
SiedhoffMT, CareyET, FindleyAD, et al. Effect of extreme obesity on outcomes in laparoscopic hysterectomy[J]. J Minim Invasive Gynecol, 2012,19(6):701-707. .
[117]
SchaferAL, SellmeyerDE, SchwartzAV, et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1-84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH study)[J]. J Clin Endocrinol Metab, 2011,96(12):E1982-1989. .
[118]
ToulisKA, NirantharakumarK, RyanR, et al. Bisphosphonates and glucose homeostasis: a population-based, retrospective cohort study[J]. J Clin Endocrinol Metab, 2015,100(5):1933-1940. .
[119]
HaginoH, SoenS, SugimotoT, et al. Changes in quality of life in patients with postmenopausal osteoporosis receiving weekly bisphosphonate treatment: a 2-year multicenter study in Japan[J]. J Bone Miner Metab, 2019,37(2):273-281. .
[120]
LiuTT, LiuDM, XuanY, et al. The association between the baseline bone resorption marker CTX and incident dysglycemia after 4 years[J]. Bone Res, 2017,5:17020. .
[121]
KimuraS, SasaseT, OhtaT, et al. Parathyroid hormone (1-34) improves bone mineral density and glucose metabolism in spontaneously diabetic Torii-Lepr(fa) rats[J]. J Vet Med Sci, 2012,74(1):103-105.
[122]
CucinelliF, SorannaL, RomualdiD, et al. The effect of raloxifene on glyco-insulinemic homeostasis in healthy postmenopausal women: a randomized placebo-controlled study[J]. J Clin Endocrinol Metab, 2002,87(9):4186-4192. .
[123]
HulleyS, GradyD, BushT, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group[J]. JAMA,1998, 280(7):605-613.
[124]
HevenerAL, CleggDJ, Mauvais-JarvisF. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome[J]. Mol Cell Endocrinol, 2015, 418Pt 3:306-321. .
[125]
KiechlS, WittmannJ, GiaccariA, et al. Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus[J]. Nat Med, 2013, 19(3):358-363. .
[126]
SchwartzAV, SchaferAL, GreyA, et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials[J]. J Bone Miner Res, 2013,28(6):1348-1354. .
[127]
NapoliN, PannacciulliN, VittinghoffE, et al. Effect of denosumab on fasting glucose in women with diabetes or prediabetes from the FREEDOM trial[J]. Diabetes Metab Res Rev, 2018,34(4):e2991. .
[128]
FulzeleK, LaiF, DedicC, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots[J]. J Bone Miner Res, 2017,32(2):373-384. .
[129]
YuOH, RichardsB, BergerC, et al. The association between sclerostin and incident type 2 diabetes risk: a cohort study[J]. Clin Endocrinol (Oxf), 2017,86(4):520-525. .
[130]
SaagKG, PetersenJ, BrandiML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis[J]. N Engl J Med, 2017, 377(15):1417-1427. .
[131]
SchwartzAV, MargolisKL, SellmeyerDE, et al. Intensive glycemic control is not associated with fractures or falls in the ACCORD randomized trial[J]. Diabetes Care, 2012,35(7):1525-1531. .
[132]
VavanikunnelJ, CharlierS, BeckerC, et al. Association between glycemic control and risk of fracture in diabetic patients: a nested case-control study[J]. J Clin Endocrinol Metab, 2019,104(5):1645-1654. .
[133]
ChenSC, ShepherdS, McMillanM, et al. Skeletal fragility & its clinical determinants in children with type 1 diabetes[F]. J Clin Endocrinol Metab, 2019, . .
[134]
OeiL, ZillikensMC, DehghanA, et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study[J]. Diabetes Care, 2013,36(6):1619-1628. .
[135]
LiCI, LiuCS, LinWY, et al. Glycated hemoglobin level and risk of hip fracture in older people with type 2 diabetes: a competing risk analysis of Taiwan Diabetes Cohort Study[J]. J Bone Miner Res, 2015,30(7):1338-1346. .
[136]
WeberDR, GordonRJ, KelleyJC, et al. Poor glycemic control is associated with impaired bone accrual in the year following a diagnosis of type 1 diabetes[J]. J Clin Endocrinol Metab, 2019, . .
[137]
NtouvaA, ToulisKA, KeerthyD, et al. Hypoglycaemia is associated with increased risk of fractures in patients with type 2 diabetes mellitus: a cohort study[J]. Eur J Endocrinol, 2019,180(1):51-58. .
[138]
KurppaK, LaitinenA, AgardhD. Coeliac disease in children with type 1 diabetes[J]. Lancet Child Adolesc Health, 2018,2(2):133-143. .
[139]
PickeAK, SylowL, LLVM, et al. Differential effects of high-fat diet and exercise training on bone and energy metabolism[J]. Bone, 2018,116:120-134. .
[140]
FerrariSL, AbrahamsenB, NapoliN, et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge[J]. Osteoporos Int, 2018,29(12):2585-2596. .
[141]
ChoyKW, ChoyKH. Letter to the editor: hypothyroidism following hemithyroidectomy: incidence, risk factors, and clinical characteristics (Ahn D, Sohn JH, Jeon JH. Hypothyroidism following hemithyroidectomy: incidence, risk factors, and clinical characteristics. J Clin Endocrinol Metab. 2016;101(4):1429-1436.)[J]. J Clin Endocrinol Metab, 2016,101(10):L93. .
[142]
SchacterGI, LeslieWD. DXA-based measurements in diabetes: can they predict fracture risk?[J]. Calcif Tissue Int, 2017, 100(2):150-164.
[143]
中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(2017)[J].中华骨质疏松和骨矿盐疾病杂志,2017,10(5):413-443. .
[144]
KeeganTH, SchwartzAV, BauerDC, et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial[J]. Diabetes Care, 2004, 27(7):1547-1553. .
[145]
SchwartzAV, PavoI, AlamJ, et al. Teriparatide in patients with osteoporosis and type 2 diabetes[J]. Bone, 2016,91:152-158. .
[146]
AnagnostisP, PaschouSA, GkekasNN, et al. Efficacy of anti-osteoporotic medications in patients with type 1 and 2 diabetes mellitus: a systematic review[J]. Endocrine, 2018,60(3):373-383. .
[147]
MotylKJ, McCauleyLK, McCabeLR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival[J]. J Cell Physiol, 2012,227(4):1326-1334. .
[148]
LiuGY, CaoGL, TianFM, et al. Parathyroid hormone (1-34) promotes fracture healing in ovariectomized rats with type 2 diabetes mellitus[J]. Osteoporos Int, 2017,28(10):3043-3053. .
[149]
KanazawaI, NotsuM, MiyakeH, et al. Assessment using serum insulin-like growth factor-I and bone mineral density is useful for detecting prevalent vertebral fractures in patients with type 2 diabetes mellitus[J]. Osteoporos Int, 2018,29(11):2527-2535. .
[150]
HuY, TanLJ, ChenXD, et al. Identification of novel variants associated with osteoporosis, type 2 diabetes and potentially pleiotropic loci using pleiotropic cFDR method[J]. Bone, 2018,117:6-14. .
[151]
PaschouSA, DedeAD, AnagnostisPG, et al. Type 2 diabetes and osteoporosis: a guide to optimal management[J]. J Clin Endocrinol Metab, 2017,102(10):3621-3634. .