标准与规范
中国老年患者围术期脑健康多学科专家共识(二)
中华医学杂志, 2019,99(29) : 2252-2269. DOI: 10.3760/cma.j.issn.0376-2491.2019.29.004
引用本文: 中华医学会麻醉学分会老年人麻醉学组, 国家老年疾病临床医学研究中心中华医学会精神病学分会, 国家睡眠研究中心, 等.  中国老年患者围术期脑健康多学科专家共识(二) [J] . 中华医学杂志, 2019, 99(29) : 2252-2269. DOI: 10.3760/cma.j.issn.0376-2491.2019.29.004.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 0  关键词  0
English Abstract
评论
阅读 0  评论  0
相关资源
引用 | 论文 | 视频

版权归中华医学会所有。

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。

围术期认知功能障碍
一、概念

围术期认知功能障碍(PND)包括术前已经存在的和术后新发生的神经认知功能损害[如术后神经认知障碍(POCD)][1]

二、术前认知功能障碍

随着人口老年化,需行手术治疗的老年患者逐年增多。有研究显示在行择期手术的老年患者中,22%~23%术前存在认知功能损害[2]。术前合并认知功能障碍不仅与术后并发症、谵妄、认知功能损害加重和死亡率增加密切相关,而且伴随术后住院时间延长和医疗费用增加[3,4,5,6]。因此,评估术前认知功能具有重要的临床意义(表1)。

点击查看表格
表1

导致术前认知功能障碍的常见疾病及发生率

表1

导致术前认知功能障碍的常见疾病及发生率

疾病种类发生率
内分泌、营养、代谢性疾病 
 糖尿病在合并2型糖尿病的老年人中,认知功能损害的发生率为11.3%[7],痴呆的年发生率为1.64%~5.31%,轻度认知功能损害(MCI)转化为痴呆的年发生率为8.79%[8]。严重复发性低血糖和较差的初始认知功能与认知功能加速衰退有关[9]
 肥胖年龄影响肥胖(BMI>30 kg/m2)与痴呆的关系:年龄<65岁时,肥胖与痴呆呈正相关(RR=1.41);而年龄≥65岁时则呈负相关(RR=0.83)[10]
 营养不良痴呆患者的血清维生素D浓度显著低于轻度认知功能损害患者和认知正常者[11];补充叶酸、维生素B6和B12可使轻度认知功能损害患者的脑萎缩发生率降低30%,特别是海马和内侧颞叶区域[12];在>80岁的人群中,每日消费大豆产品者患痴呆的风险较从不消费者降低20%[12]
呼吸系统疾病 
 慢性阻塞性肺疾病(COPD)COPD伴低氧血症的患者中,认知功能障碍的发生率为77%[13];低血氧饱和度与认知功能障碍风险增加有关(血氧饱和度≤88%时,OR=5.45);经常氧疗可降低此类患者认知功能障碍的风险(OR=0.14)[14,15]
循环系统疾病 
 高血压病未经治疗的高血压病患者痴呆发病率为1.78%~8.31%;接受降压治疗的高血压患者痴呆发病率为0.89%~7.47%[16]
 心脏血管疾病择期冠状动脉旁路移植手术患者中,35%术前存在认知功能障碍[17];60岁以上行血管手术患者中,68%的患者术前存在认知功能障碍或痴呆,88.3%的患者被漏诊[18]
神经系统疾病 
 脑卒中10%的患者在第一次脑卒中前并存痴呆,10%的患者在第一次脑卒中后不久发展为新的痴呆,超过1/3的患者在复发性脑卒中后发生痴呆[19];脑卒中后3个月,痴呆的发病率为15%~30%[20];脑卒中后第1年痴呆的发病率为7%~41%,并以每年1.7%~3%的速率增加[19]
 其他相关痴呆在>60岁的中国老年人群中,轻度认知功能损害发病率15.3%~42.0%[21,22,23],痴呆的发病率为4.7%~10.44%[24,25,26]。在痴呆的病因中,Alzheimer病(AD)最常见;其次为血管性痴呆(VaD),约占痴呆患者的15%[20]
 帕金森病(PD)帕金森病初诊患者中轻度认知功能损害的发生率是健康老年人的两倍;帕金森病在诊断后3~5年内患轻度认知功能损害的发病率是20%~57%[27];在合并轻度认知功能损害的帕金森病患者中,36个月后痴呆的发病率是8%[28];帕金森病患者发生痴呆的可能性是健康人的3~5倍,帕金森病痴呆的发病率估计为2%~3%[27]
 脑炎脑炎的死亡率通常为5%~15%,幸存者中认知功能损害很普遍[29]
睡眠障碍 
 阻塞性睡眠呼吸暂停综合征(OSA)痴呆症更可能发生在诊断OSA的前2.5年;OSA患者罹患痴呆的危险比总体为1.7,女性为2.38;50岁男性OSA患者发展为痴呆的风险增加5.08倍,≥70岁女性OSA患者增加2.20倍[30]
 其他失眠及使用催眠药的患者罹患痴呆的风险较高(HR=2.34)[31]
精神、行为疾病 
 抑郁30%~40%的非痴呆老年抑郁症患者在认知检查中表现出执行功能障碍[32,33]
肿瘤 
 中枢性脑部肿瘤经放射治疗后长于6个月的幸存者,出现致残性认知功能障碍的发生率为50%~90%[34]
 非中枢性化疗相关的认知功能损害发生率为14%~85%[35]
消化系统 
 肝硬化发作过肝性脑病的肝硬化患者表现为学习能力丧失形式的持续性认知功能损害,且损害的严重程度随着肝性脑病的发作次数而增加[36,37]
其他 
 脆弱综合征脆弱综合征的定义:握力差、缓慢步速、低体力活动、体重无原因减轻和疲惫,满足3项以上[38];脆弱综合征是痴呆和血管性痴呆的短期预测因素,其与痴呆风险增加显著相关(校正风险比为1.85),特别是血管性痴呆(校正风险比为2.68)[39]

注:MCI:轻度认知功能障碍;BMI:体质指数;RR:相对危险度;COPD:慢性阻塞性肺疾病;OR:比值比;VaD:血管性痴呆;PD:帕金森病;HR:风险比;OSA:阻塞性睡眠呼吸暂停综合征

【推荐意见】存在糖尿病控制不佳、慢性阻塞性肺疾病(COPD)伴低氧血症、脑卒中病史、帕金森病史、抑郁、肿瘤经放/化疗等情况的患者,应高度警惕其术前是否合并认知功能障碍,建议评估其认知功能

三、认知功能评估

美国外科医师学会(ACS)和美国老年医学学会(AGS)在其关于老年人术前评估指南以及术后谵妄指南中均推荐医护人员术前对老年患者进行认知功能评估[40]。了解手术前患者的认知状态对风险评估分层至关重要,并影响后续的预防、监测和治疗。

1.术前认知功能评估:

简易精神状态检查量表(MMSE)是国际最具影响、最普及的认知功能障碍筛查工具之一,测试内容涵盖了时间、地点定向、即刻记忆、注意力、计算力、短时记忆、语言及视空间结构能力。MMSE总分30分,<27分即被认为存在认知功能障碍,完成整个测试耗时5~10 min。MMSE总分与韦氏成人智力量表(WAIS)的言语及操作测试得分的相关系数分别为0.78和0.66,表明其与WAIS有较好的相关性[41]。但MMSE目前需要许可协议和使用费用。

也可使用简易智力状态评估量表(Mini-Cog)进行术前认知功能筛查[40]。Mini-Cog涉及记忆的3项词语回忆测试和作为干扰的时钟绘图测试;它测试视觉空间展示、回忆和执行功能。Mini-Cog按5分制评分,其中5分为满分,2分或更低分数被认为可能认知受损[42]。蒙特利尔认知评估量表(MoCA)覆盖的认知领域较MMSE广,包括注意力、执行功能、记忆、语言、视空间结构技能、抽象思维、计算力和定向力;满分30分,正常人得分≥26分;其用于轻度认知功能障碍(MCI)的筛查较MMSE更准确(表2)。

点击查看表格
表2

常用认知功能评估量表

表2

常用认知功能评估量表

量表敏感度a(%)特异度a(%)评估用时(min)
MMSE[38]63.465.45~10
Mini-cog[39]76~10054~852~4
MoCA[38]80~10050~7010~15

注:MMSE:简易精神状态检查量表;Mini-cog:简易智力状态评估量表;MoCA:蒙特利尔认知评估量表;a识别轻度认知功能障碍(MCI)时的敏感度和特异度

2.术前认知功能障碍的进一步检查:

对于轻度认知功能障碍及痴呆患者,应进一步检测日常生活能力(如Barthel指数量表,总分0~100分;得分越高,独立性越强、依赖性越小),精神行为症状评估(如焦虑、抑郁等),特定领域认知功能检测。必要时可进一步进行生物标志物检查(如淀粉样蛋白等)和影像学检查(如核磁和CT)[18, 38]

目前常用于诊断认知功能障碍的神经心理测验主要包括记忆、语言、精神运动速度和注意力/集中力等4个方面。常用的神经心理测验项目有:韦氏成人记忆量表中的累加(测验注意力集中程度)、视觉再生(测验视觉记忆能力)、联想学习(测验语言学习和记忆能力)和数字广度-顺向/逆向(测验注意力集中能力)测验;韦氏成人智力量表(修订)中的数字符号测验(测验精神运动速度),以上测验项目得分越高代表功能越好;以及联线测验(测验注意力转移和精神运动速度)和钉板测验-利手/非利手(测验精细运动功能),此两项测验项目得分越低代表功能越好[42,43]

3.术后新发认知功能障碍的诊断:

根据传统的定义,POCD是指术后在两个及以上的认知功能领域出现新发的、持续两周以上的损害[44]。基于该定义,经典的方法是采用可靠性变化指数原则(I-RCI rule)对测验结果进行分析[45]。该方法要求设一组不接受手术的正常人对照组,在与手术患者同样的时间间隔接受神经心理测验。首先将对照组正常人相同时间间隔后的测验值与基础值相减,得到量化的学习效应。然后将患者的术后测验值与术前基础值相减,再减去平均学习效应,除以对照组学习效应的标准差,得到每个测验项目的Z值;将单个患者所有测验项目的Z值相加,除以对照组所有测验项目Z值之和的标准差,得到该患者总Z值。患者如果有两个以上测验项目Z值≤1.96或总Z值≤1.96,则诊断发生了认知功能障碍。为与文献描述保持一致,本文中仍然使用POCD的表述。

根据2018年的新命名规则,传统的POCD按发生时间被分为三类:术后30 d内的神经认知功能恢复延迟(delayed neurocognitive recovery)、术后30 d~1年的术后轻度/重度神经认知功能障碍(postoperative mild/major neurocognitive disorder)和1年以后的轻度/重度神经认知功能减退(mild/major neurocognitive disorder)[1]。其诊断均采用DSM-Ⅴ中轻度/重度神经认知功能损害的标准。该标准要求在1个或多个认知领域内(复杂的注意、执行功能、学习和记忆、语言、知觉运动或社会认知),与先前表现的水平相比存在轻度/显著的认知衰退。其中轻度神经认知功能障碍(mild NCD)是指认知功能评分较基础值或对照组降低1~2个标准差,认知缺陷不干扰日常活动的独立性;重度神经认知功能障碍(major NCD)是指认知功能评分较基础值或对照组降低超过2个标准差以上,认知缺陷干扰了日常活动的独立性[46]

【推荐意见】建议在手术前对高危老年患者常规进行认知功能障碍筛查。对于存在术前认知功能障碍及痴呆的患者,应进一步评估其日常生活能力和精神行为症状,必要时行神经心理测验和实验室及影像学检查。术后重复认知功能筛查或神经心理测验有助于识别新发认知功能损害。

四、术前准备与干预
1.改善基础状态和认知功能:

如上所述,缺乏睡眠、慢性压力、长期饮酒、感知功能(如视听感觉)障碍、代谢和内分泌失调、疾病等均对认知功能有负面影响,衰弱和营养不良也伴随认知功能损害风险增加[43]。而术前认知功能损害是术后认知功能并发症的重要危险因素。

纠正不良生活习惯,改善感知功能(校正视力、佩戴助听器),维持正常的代谢和内分泌功能,积极治疗并存疾病等是改善术前机体状况的基础。此外,还可实施针对性干预。积极参与体育锻炼、重视和发展社交以及正念训练等被证明可改善患者身心健康和认知表现[43]。对于轻度认知功能障碍患者,荟萃分析显示联合使用多种认知训练干预可刺激主要神经通路并促进备用神经通路参与,从而改善患者的认知功能[45]。术前改善营养状态、进行体能锻炼、给予行为学干预和实施认知功能训练等可有效改善认知功能并减少POCD发生率[18, 40, 43]

应重视团队协作对优化老年人围术期管理的重要性。荟萃分析显示,对于有认知功能损害的老年患者,术前老年病学专家会诊和干预能减少术后谵妄的发生[47]。如果可能,应将药物滥用患者转诊给专科医生进行戒毒治疗。

【推荐意见】对于术前合并认知功能损害患者,除基础治疗外,建议积极实施针对性干预,包括改善营养状态、进行体能锻炼和实施认知功能训练。

2.改善认知功能药物的管理:

目前有多种药物被用于改善已有认知功能损害患者的认知功能,包括维生素类,γ-氨基丁酸类(如吡拉西坦、奥拉西坦等),麦角生物碱类(如双氢麦角碱),钙离子拮抗剂(如尼莫地平),胆碱酯酶抑制剂(如多奈哌齐和利伐斯的明),谷氨酸受体拮抗剂(如美金刚),神经营养因子类(如神经生长因子、神经节苷脂)等[17, 38]。但这些药物对手术患者的效果仍待证实。

围术期需注意上述药物与麻醉药物的相互作用。如麦角生物碱类有较强的α受体阻断作用,可抑制血管收缩、降低血压,可能增加围术期低血压风险。胆碱酯酶抑制剂可抑制乙酰胆碱酯酶、增加神经肌肉接头处乙酰胆碱浓度,使琥珀酰胆碱的作用时间延长至50 min;使用此类药物的患者可考虑使用非去极化肌松药物,但需注意无法使用抗胆碱能药物进行拮抗[18, 40]。胆碱酯酶抑制剂的其他不良反应有窦性心动过缓、平滑肌张力增加或惊厥等[40]

认知功能障碍患者可能会同时接受抗抑郁等精神药物治疗,还需要注意精神类药物与麻醉药物的相互作用(参见焦虑和抑郁部分)。

【推荐意见】需详细询问患者的术前药物治疗,必要时请神经或精神科医生指导围术期用药;需要注意药物不良反应及其与麻醉药物可能发生的相互作用。

五、麻醉和术中管理
(一)术前用药

抗胆碱药物可干扰脑内信息存储,导致记忆、学习和注意力下降。合并认知功能障碍患者术前禁忌使用抗胆碱药物;如果必须要用,应尽可能选择透过血脑屏障少的药物。常用的抗胆碱能药物的血脑屏障通过率:格隆溴铵<阿托品<东莨胆碱<戊乙奎醚。

咪达唑仑因其顺行性遗忘作用而用于消除患者在麻醉中的不良记忆,但大剂量或反复使用也会产生逆行性遗忘,破坏记忆功能的稳定性。术前合并认知功能障碍的患者,应尽量避免反复或大剂量使用苯二氮类药物。

【推荐意见】术前禁忌使用抗胆碱药物,慎用苯二氮类药物。

(二)麻醉药物的选择
1.丙泊酚:

丙泊酚麻醉术后早期,患者空间认知能力、记忆和思维能力均有不同程度的降低,24 h后逐渐恢复[48]。与吸入麻醉相比,静脉麻醉对认知功能影响更小[49,50,51]

2.依托咪脂:

依托咪酯对老年患者术后认知功能障碍的报道较少,有研究显示依托咪酯与丙泊酚对老年患者术后出现POCD发生率的影响无显著差异[52]。但在动物研究中,即使单次麻醉剂量的依托咪酯也会引起长时间(长达1周)记忆功能损害,该作用与其引起的海马神经元表面含α5亚单位的GABA受体增多有关[53];而逆转该作用可改善动物的记忆功能[54,55]。尽管依托咪酯具有对老年患者血流动力学影响小的优点,但考虑到其对术后记忆功能及肾上腺皮质功能的潜在不良影响,不建议将其常规用于老年患者麻醉。

3.氯胺酮:

氯胺酮神经功能保护作用的研究结果存在争议[56,57,58,59,60]。虽然2018年的一项荟萃分析显示术中小剂量氯胺酮降低POCD的发生,但纳入的研究样本量小、质量低[60]。一项大样本量随机对照研究未发现术中小剂量氯胺酮能减少老年患者术后谵妄发生,反而增加了精神症状不良事件[60]

4.吸入麻醉药物:

吸入麻醉药物(如七氟烷、地氟烷、异氟烷)与神经功能保护和损伤关系均有研究报道,尚无法明确哪种药物在降低POCD发生方面具有优势[61,62,63]

5.静脉镇痛药物:

阿片类药物是围术期常用的镇痛药物,但大剂量阿片类药物增加术后谵妄风险[64]。在所有阿片类药物中,哌替啶具有明显增加谵妄的作用[64];而谵妄发生会导致认知功能障碍的风险增加。此外,哌替啶与单胺氧化酶抑制剂和5-羟色胺再摄取抑制剂等抗抑郁药物合用时可能导致急性5-羟色胺中毒症状(参见焦虑抑郁部分)[65]。因此老年患者忌用哌替啶。其他阿片类药物术后认知功能的影响还需进一步研究[66,67]。另一方面,非甾体类抗炎药(如帕瑞昔布钠、氟比洛芬酯)和对乙酰氨基酚被证实能减少术后谵妄的发生,可能有助于改善术后认知功能[68,69]

6.肌松药物:

目前未发现肌松药对认知功能有影响[70,71]

7.局麻药物:

静脉持续输注利多卡因对术后POCD的影响仍存在争议,大样本量随机对照研究未发现围术期利多卡因对心脏手术患者有脑保护作用[72,73,74]

8.右美托咪啶:

右美托咪啶是高选择性的α2肾上腺素能受体激动药。多项荟萃分析显示,围术期应用右美托咪啶可减少术后认知功能障碍的发生[75,76,77,78,79]。最近的荟萃分析还显示,围术期右美托咪啶也减少了术后谵妄的发生[80,81];而谵妄是认知功能障碍的重要危险因素。

9.乌司他丁:

乌司他丁是一种广谱的蛋白酶抑制剂,术中使用可减轻手术诱发的过度炎症反应。多项随机对照研究显示,术中给予乌司他丁可减少术后早期认知功能障碍的发生[82,83,84]

【推荐意见】老年手术患者首选丙泊酚为基础的静脉麻醉,围术期可复合右美托咪啶,无禁忌证者可给予NSAID类药物或对乙酰氨基酚,高危患者可预防性给予乌司他丁。

(三)麻醉方法的选择
1.全凭静脉麻醉与吸入麻醉:

2018年的一项荟萃分析纳入了28项随机对照研究,涉及接受各种手术(包括心血管手术)的4 507例老年患者。结果显示与吸入麻醉维持相比,采用以丙泊酚为基础的全静脉麻醉维持减少了术后早期认知功能障碍的发生(低质量证据)[85]。随后的一项随机对照研究也证实,在接受肿瘤手术的老年患者中,丙泊酚静脉麻醉与七氟烷吸入麻醉相比减少了术后早期认知功能障碍的发生[86]

2.全身麻醉与区域阻滞麻醉:

2014年的一项系统回顾显示,与全身麻醉相比,区域阻滞麻醉减少了术后早期(1周之内)认知功能障碍的发生,但1周以后的认知功能恢复无差异[87]。以后的多项随机对照研究也报道了类似结果,即区域阻滞改善了术后早期认知功能恢复,但1周后的认知功能结局两组间无明显差异[88,89,90,91]

3.区域麻醉复合镇静:

有研究比较了腰麻期间不同深度丙泊酚镇静的影响,发现与深镇静患者相比,浅镇静患者术后认知功能恢复更好,尤其是有合并症的患者[92,93];在有合并疾病的重症患者中,浅镇静组患者的远期存活也较深镇静患者有改善[94]。另一项回顾性队列研究观察了在区域阻滞麻醉下接受骨科手术的老年患者,发现与丙泊酚镇静相比,采用右美托咪啶镇静能够减少术后躁动的发生[95]

【推荐意见】对于老年手术患者,建议首选区域阻滞麻醉。对于需要全身麻醉的患者,建议采用基于丙泊酚的静脉麻醉。对于需要镇静的区域阻滞麻醉患者,建议采用右美托咪啶浅镇静。

(四)术中监测与管理
1.麻醉深度监测:

脑电双频指数(BIS)是临床上应用最为广泛的麻醉深度监测手段。术前存在认知损害的患者,麻醉期间更容易出现BIS过低[96]。在多项临床研究中,术中采用麻醉深度监测(BIS)避免麻醉过深可以减少术后谵妄和(或)POCD的发生[97,98,99,100,101,102,103],尽管也有不同结果[104]。一项荟萃分析发现术中采用麻醉深度监测可以减少POCD发生[105]

【推荐意见】全身麻醉期间建议使用麻醉深度监测,避免麻醉过深。

2.无创脑氧饱和度监测:

无创脑氧饱和度监测可反映脑灌注变化,指导脑氧供需平衡的管理。成人无创脑氧饱和度监测具有高度的变异性,约为(71±6)%。术中脑氧饱和度值过低(如低于50%)伴随术后新发脑损伤和认知功能降低风险增加,且降低的持续时间与术后认知功能障碍的程度相关;而依据无创脑氧饱和度监测的循环管理可能改善术后认知功能恢复[106,107,108]。当然研究结果不完全一致[109]。荟萃分析显示术中脑氧饱和度监测下的循环管理可能减少术后早期认知功能障碍发生[110]

【推荐意见】高危患者建议在脑氧保护度监测下维护脑氧供需平衡。

3.术中循环管理:

术前合并认知障碍的老年患者,脑血管的自我调节能力往往有不同程度的受损[111]。在以往的研究中,术中低血压伴随脑卒中发现增加[112,113]和术后谵妄发生增加[114,115]。但最近的一项随机对照研究未能发现术中目标导向血压管理减少术后3个月认知功能障碍发生[116]。尽管如此,对于术前合并认知障碍手术患者,术中应注意维持血压稳定,血压波动不应超过术前基线血压的20%。有研究表明,贫血伴随危重患者的认知功能损害风险增加[117,118];围术期老年患者血红蛋白水平应尽可能维持100 g/L以上。

【推荐意见】老年患者围术期血压应维持稳定,波动范围不应超过术前基线血压的20%;危重患者血红蛋白水平应尽可能维持100 g/L以上。

4.术中呼吸管理:

有研究发现,术中采用肺保护通气模式(根据患者的情况调节潮气量频率)可减少术后谵妄和认知功能损害发生,认为可能与减轻了全身炎症反应有关[119]。对合并认知障碍的老年患者,麻醉维持期将吸入氧浓度维持在30%~40%之间有助于减少术后认知障碍及神经退行性疾病的发生[120];但应避免低氧血症,后者也可导致神经递质释放减少和认知功能损害。术中过度通气(PaCO2)可使脑血流量降低、氧供减少[121],这对已有认知功能损害的患者尤为不利;因此应避免过度通气,维持PaCO2在正常水平(35~45 mmHg,1 mmHg=0.133 kPa)。

【推荐意见】建议采用肺保护通气策略(小潮气量、PEEP和肺复张策略等);避免过度通气,维持PaCO2在35~45 mmHg;围术期应避免低氧血症,维持SpO2不低于90%。

5.体温管理:

术中低体温可导致患者术后伤口感染发生率增加、伤口愈合延迟、围手术期出血量显著增加、心血管事件增加。这会增加脑功能脆弱的老年患者术后认知障碍发生的风险。老年人由于机体体温调节功能减退,术中极易发生低体温。老年患者术中应常规监测体温,并通过加温设备维持术中体温不低于36 ℃[122]

【推荐意见】术中应常规监测体温,积极保温,维持术中体温不低于36 ℃。

六、术后管理

术前及术中需要预防处理的问题在术后同样适用。在对认知功能障碍患者的术后管理中,应该建立以患者为中心的医疗护理模式,让患者家属或患者熟悉的人来参与医疗护理,改善患者愈后。

(一)一般治疗

对患者继续进行必要的监测,除基本生命体征外,必要时监测血糖、电解质、有创动脉血压、液体出入量、器官功能指标等。注意及时纠正酸碱失衡和电解质紊乱,保持血糖水平稳定,维持内环境稳定,还要继续治疗导致认知功能障碍的原发疾病。积极进行营养支持;注意对吞咽困难者、鼻饲者应防误吸和窒息风险[123]。根据患者自身情况,早期进行被动或主动活动;但要强调个体化原则,注意预防坠床和跌倒。进行认知功能评估,个体化实施认知功能训练,包括记忆力训练、定向力训练、语言交流能力训练、视空间与执行能力训练、计算能力训练等[123,124]

(二)术后疼痛管理

术后镇痛不足会影响睡眠、诱发谵妄及术后认知功能障碍等不良后果,并延长住院时间、加重经济负担。充分完善的术后镇痛对已有认知功能障碍的患者尤为重要。

1.疼痛评估:

对于认知功能障碍患者,疼痛评估可能会因伴随的记忆、认知、表达、交流障碍而增加难度[125]。轻中度认知功能损害患者可选择视觉模拟评分法(VAS)、数字等级评定量表(NRS)或语言等级评定量表(VRS);不能表述(如气管插管)的患者可使用Wong-Baker面部表情量表[126]。对于重度认知功能障碍患者,可选择中文版晚期老年痴呆症疼痛评估量表(C-PAINAD)[127,128],总分0~10分,分数高表示疼痛严重(表3)。需要注意的是术后应重复进行疼痛评估,还要重视患者活动时疼痛评估;患者能耐受咳嗽或一般活动可认为镇痛充分[127]

点击查看表格
表3

中文版晚期老年痴呆症疼痛评估量表(C-PAINAD)

表3

中文版晚期老年痴呆症疼痛评估量表(C-PAINAD)

项目0分1分2分评分
呼吸正常偶尔呼吸困难/短时间的换气过度呼吸困难兼发出吵闹声响/长时间的换气过度/潮式呼吸a
负面的声音表达没有偶尔呻吟/低沉的声音,带有负面的语气重复性的叫嚷/大声呻吟/哭泣
面部表情微笑,或无表情难过/恐惧/皱眉头愁眉苦脸
身体语言轻松绷紧/紧张步伐/坐立不安僵硬/紧握拳头/膝盖提起/拉扯或推开/推撞
可安抚程度无需安抚通过分散注意力或触摸、安慰,可安抚患者通过分散注意力或触摸安慰,也不可安抚患者

注:观察时间约5 min,总分10分;a又称Cheyne-Strokes呼吸,是一种呼吸由浅慢逐渐变为深快,然后再由深快转为浅慢,再经一段时间的呼吸暂停,又开始重复以上的周期性变化,其形态如潮水起伏

2.镇痛管理:

对于老年患者,尤其是合并认知障碍的老年患者,必须采用更精确的个体化镇痛方案和更严密的监测,在达到理想镇痛效果同时,尽可能减少不良反应。建议采用多模式镇痛,即镇痛方法联合应用外周(如椎管内阻滞、外周神经阻滞或局部浸润)和全身性镇痛,镇痛药物联合应用阿片类药物、曲马多、对乙酰氨基酚、非甾体抗炎药物、局部麻醉药和(或)右美托咪啶[126]。需要注意的是,对使用阿片类药物进行术后疼痛管理的系统评价显示,哌替啶是阿片类药物中唯一与谵妄发生肯定相关的药物(见麻醉药物选择部分);因此老年患者(特别是术前合并认知障碍的患者)应避免使用哌替啶镇痛。

(三)预防术后并发症

多数老年患者会合并各种疾病,术后更易发生并发症、需要更长的住院时间、有更高的围术期死亡率[6, 18, 129,130,131,132,133,134,135]。与术前无认知功能障碍的患者相比,有认知功能障碍的患者更易在术后发生谵妄[6, 130,131, 133,134,135]、肺部感染[6, 129, 132]、尿路感染[129,130, 132, 134]等并发症,这会进一步加重认知功能损害,并恶化患者预后。预防术后并发症的发生至关重要。老年患者在并发症发生早期的症状不明显或不典型,特别是因认知功能障碍而存在感知、交流困难的患者,发病早期常难以发现,更需要及早识别并积极干预,以改善患者预后。

1.谵妄(参见谵妄部分):

术前认知功能障碍[131, 134,135]和痴呆[6, 130,131, 133]被认为是谵妄发生的独立危险因素,痴呆患者中超过2/3会发生谵妄。老年患者术后谵妄的预防、诊断和治疗部分请参见本专家共识的谵妄部分[136,137,138]

2.肺部感染:

痴呆患者术后肺部感染发生率为非痴呆患者的2~3倍。为了减少肺部感染的发生,建议对相关人员进行教育培训,在日常临床实践中实施以下措施:无禁忌症时抬高床头30°~45°;充分术后镇痛;积极预防血栓;优先肠内营养;及早进行肺部康复治疗,如呼吸锻炼、拍背吸痰;有吞咽困难者注意避免误吸;尽早下床活动[139]

3.其他并发症:

(1)预防泌尿系感染:定时清洗尿道、会阴部,必要时膀胱冲洗[123];(2)预防压疮:定时翻身、协助患者在床上进行轻微的活动,及时更换衣物、保持皮肤干燥清洁,有条件可应用气垫床[125]

【推荐意见】(1)老年患者术后仍需严密监测,除原有治疗外还应积极给予支持治疗,包括营养支持、尽早活动和认知功能训练;(2)认真做好疼痛评估,根据个体化原则给予多模式镇痛,在达到理想镇痛效果同时尽量减少不良反应;(3)早期识别并积极预防术后并发症,尤其注意谵妄、肺部感染和尿路感染,以改善患者预后。

谵妄
一、概述

谵妄是一种急性暂时性脑功能异常,常常在数小时至数天之内发生,以注意力不集中、意识水平改变和认知功能障碍为特征,病情往往在短时间内呈波动性变化[140]。谵妄的发生伴随预后恶化,包括术后近期并发症增多、住院时间延长、医疗费用增加和死亡率升高[141,142,143],以及术后远期认知能力及生存质量下降、存活时间缩短[143,144,145]

老年住院患者中谵妄发生率为7%~35%;在急诊、外伤性骨折等需要进行手术的老年患者中,术前谵妄的发生率可高达60%[146,147]。术后谵妄发生率与手术的创伤程度相关。研究显示白内障术后谵妄发生率为4%,非心脏大手术后谵妄发生率为10%~30%,而心脏手术后谵妄发生率可高达50%[148,149,150,151]

二、谵妄的危险因素

谵妄的发生通常是易感因素和促发因素相互作用的结果(表4)。易感因素与患者的基础状况密切相关,其中大脑老龄化、衰弱和痴呆等被认为是谵妄发生的重要易感因素。对于术后患者,围术期应激、麻醉/镇痛药物、疼痛和电解质紊乱等是谵妄发生的重要促发因素。

点击查看表格
表4

术后谵妄的易感因素和促发因素[152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174]

表4

术后谵妄的易感因素和促发因素[152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174]

易感因素促发因素
高龄(≥65岁)药物
认知功能储备减少镇静催眠药
痴呆抗胆碱药
认知功能损害多种药物治疗
抑郁酒精或药物戒断
脑萎缩手术
生理功能储备减少心血管手术
衰弱矫形外科手术
自主活动受限长时间体外循环
活动耐量降低非心脏手术
视觉或听觉损害各种诊断性操作
经口摄入减少术中低血压
脱水术中低脑氧饱和度
电解质紊乱收住ICU
营养不良环境改变
并存疾病身体束缚
严重疾病导尿管和各种引流管
多种并存疾病疼痛刺激
精神疾病精神紧张
脑卒中史并发疾病
代谢紊乱感染
创伤或骨折医源性并发症
终末期疾病严重急性疾病
合并HIV感染代谢紊乱
睡眠呼吸紊乱/失眠症发热或低体温
药物应用休克
有精神作用的药物低氧血症
应用多种药物贫血
药物依赖脱水
酗酒低蛋白血症
ApoE4基因型营养不良
-疼痛
-睡眠障碍
-脑卒中

注:"-"示此项无内容

三、谵妄的诊断
1.谵妄诊断的"金标准":

美国精神疾病与诊断手册第5版(DSM-5)和国际疾病编码-10(ICD-10)中关于谵妄的定义是用于诊断谵妄的"金标准"(表5)。但是该标准缺少结构化的测试方法、标准化的操作流程,且每次评估耗时约30 min,主要适用于精神科医生[152,153]

点击查看表格
表5

DSM-5和ICD-10中谵妄的定义

表5

DSM-5和ICD-10中谵妄的定义

金标准谵妄定义
DSM-51.注意力障碍(如注意力指向、集中、保持和转移障碍)和意识障碍(如对环境的定向能力损害)
2.在短时间内发生(通常是几小时至数天),表现为注意力和认知功能从基线状态开始的急性改变,且严重程度在1 d内呈现波动性
3.可伴随认知功能出现损害(如记忆力、定向力、语言、视觉、空间感觉和理解力损害)
4.症状A和C的发生不能被已有的、已确诊的、进展中的神经精神疾病所解释;且在意识水平严重受损(如昏迷)的患者中未发生
5.根据病史、查体、实验室检查可以明确致病因素,如药物中毒/戒断、暴露于有毒物质或多因素致病
ICD-101.意识紊乱(从意识模糊到昏迷)和注意力损害(注意力集中、维持及转移能力降低)
2.认知功能全面恶化(知觉失真,错觉和幻觉,抽象思维和理解力损害,即时记忆和近期记忆障碍而远期记忆相对完好,对时间、地点、人物的定向力障碍)
3.精神运动障碍(活动过少或过多及无预兆的相互转换,反应时间延长,语速增快或变慢,惊吓反应增强)
4.睡眠-觉醒周期紊乱(失眠或完全无眠或睡眠-觉醒周期颠倒,白天嗜睡,夜间症状加重,多梦或恶梦,觉醒后可出现幻觉)
5.情感障碍(如抑郁、焦虑或恐惧、易怒、欣快、淡漠、迷惑)
6.症状常突然发作,1 d内病情有波动,总持续时间不超过6个月
2.谵妄的量化诊断评估工具:

未经过培训的非精神科医务人员(如护士等)实施谵妄评估时,谵妄的漏诊及误诊率可高达70%[154]。为便于非精神科医师实施快速、准确的谵妄评估,研究者开发了多种结构化量表(表6)。其中意识错乱评估方法(CAM)是目前应用最为广泛的量表之一[155]。它基于9项谵妄常见特征进行诊断,包括急性起病、注意力不集中、思维紊乱、意识水平改变、定向力障碍、记忆力损害、理解力下降、神经源性躁动和睡眠-觉醒周期改变。该量表在中国人群的敏感度和特异度分别为76%和100%[156]。监护室患者的意识错乱评估方法(CAM-ICU)是为机械通气患者而设计,对于某些特殊亚组患者的诊断也有很大价值,如年龄>65岁、怀疑患有痴呆和急性生理与慢性健康评分Ⅱ(APCHHE Ⅱ)≥23分的患者[157]。其在中国人群中的敏感度和特异度分别为81.8%~93.4%和87.7%~90.8%[158]

点击查看表格
表6

常用谵妄评估量表

表6

常用谵妄评估量表

量表敏感度(%)特异度(%)特点及适用人群
CAM76.0100基于DSM-3R制定;已在中国人群进行验证;适用于住院老年患者[156]
CAM-ICU81.8~93.487.7~90.8基于DSM-Ⅳ制定;已在中国人群进行验证;适用于气管插管、重症监护室和急诊患者[158]
3D-CAM95.094.0基于CAM设计并提供了标准化的评估方法;尚未在中国人群进行验证;适用于老年和合并痴呆患者[159]
DRS-98--基于DSM-Ⅲ R设计;尚未在中国人群进行验证;包含10项诊断标准,分值分别为0-4分,分数越高代表症状程度越严重;可用于谵妄严重程度分级[160]
Nu-DESC80.092.0诊断界值为3分;已在中国人群验证;适用于谵妄筛查[161]
MDAS91.899.0诊断界值为7.5分;已在中国人群验证;适用于谵妄筛查[162]

注:CAM:意识错乱评估方法;CAM-ICU:意识错乱评估方法-ICU;3D-CAM:3D-意识错乱评估方法;DRS-98:谵妄等级评估表-98;Nu-DESC:护理谵妄筛选表格;MDAS:认知谵妄评估量表;DSM:美国精神疾病诊断与统计手册

【推荐意见】建议对围术期老年患者实施谵妄评估。

四、围术期管理
1.术前评估与准备:

术前详细评估患者病史和检查结果有助于发现高危患者和危险因素,从而针对性给予预防措施[163]。术前评估包括了解患者的现病史、合并疾病、精神状态、活动状态、营养状态、药物治疗等情况,查看患者有无检查结果异常如电解质紊乱等。术前抑郁和焦虑是谵妄发生的重要危险因素,通过术前宣教等干预可有效缓解抑郁和焦虑,从而降低谵妄发生率[164,165]。术前进行认知功能训练、改善营养状态、纠正电解质紊乱、改善睡眠等都被证实可以减少谵妄发生率[166,167,168]

一项荟萃分析显示,术前避免使用苯二氮类药物和抗胆碱能药物可减少术后谵妄发生率[169]。但是对于长期使用苯二氮类药物的患者,术前停用药物有可能诱发戒断症状。建议邀请精神科医生指导此类患者的围术期用药管理(参见焦虑和抑郁部分)。

【推荐意见】对于高危患者,推荐术前实施认知功能训练、心理干预、改善基础状态和睡眠等非药物预防措施,避免使用增加谵妄风险的术前用药。

2.麻醉方法选择:

在接受人工关节置换手术的患者中,有研究显示椎管内麻醉和神经阻滞降低术后谵妄发生率[170,171,172]。但一项荟萃分析纳入15项针对髋关节骨折患者的观察性研究,结果显示全身麻醉与区域阻滞麻醉对谵妄发生率的影响没有统计学差异[173]。另一项荟萃分析纳入104项针对髋部骨折患者的研究(包括随机对照研究),也未发现局部麻醉和全身麻醉影响术后谵妄的发生率[174]

【推荐意见】已有的证据未发现麻醉方法选择(全身麻醉或区域阻滞麻醉)对术后谵妄发生率的影响有差异。

3.麻醉药物选择:

一项荟萃分析纳入了28项随机对照研究,涉及接受各种手术(包括心血管手术)的4 507例老年患者。结果显示与吸入麻醉维持相比,采用以丙泊酚为基础的全静脉麻醉维持减少了术后早期认知功能障碍的发生(低质量证据),但对术后谵妄、死亡率及住院时间的影响无明显差异[85]。随后的一项随机对照研究也证实,在接受肿瘤手术的老年患者中,丙泊酚静脉麻醉与七氟烷吸入麻醉相比减少了术后早期认知功能障碍的发生[86]

【推荐意见】对于接受大手术的老年患者,丙泊酚全静脉麻醉可能较挥发性吸入麻醉有助于改善术后早期认知功能恢复。

4.术中麻醉深度监测:

有3项前瞻性随机对照研究显示全身麻醉过程中使用麻醉深度监测避免麻醉过深可以使老年患者术后谵妄的风险降低[97,175,176]。一项荟萃分析也显示对于非心脏、非神经外科老年患者,使用处理的脑电图和诱发电位监测优化麻醉深度维持有助于减少术后谵妄的发生;对术后住院时间和死亡率无明显影响[177]。但最近一项随机对照研究显示基于脑电图监测的麻醉深度未能减少术后早期谵妄发生[178]

【推荐意见】术中建议在脑电图监测下维持适宜麻醉深度,避免麻醉过深。

5.术中镇静深度:

一项随机对照研究比较BIS 50和80两种丙泊酚镇静深度对椎管内麻醉老年患者术后谵妄发生率的影响,结果显示浅镇静(BIS 80)组患者的谵妄发生风险较深镇静(BIS 50)组降低约50%[92]。另一项随机对照研究比较不同丙泊酚镇静深度(OASS镇静评分0~2分与3~5分)对腰麻下髋关节骨折手术老年患者术后谵妄发生率的影响,结果显示两组谵妄发生率无统计学差异;但在无术前合并疾病的患者中,浅镇静患者术后谵妄发生率更低[93]

【推荐意见】对于接受区域阻滞麻醉的老年患者,建议术中应避免镇静过深。

6.脑氧饱和度监测:

利用无创技术(如近红外光谱)可对大脑氧饱和度进行连续监测并实时反映其变化[179]。一项前瞻性队列研究观察了20例接受腹部手术老年患者脑氧饱和度与谵妄的关系,结果显示谵妄患者术前脑氧饱和度低于非谵妄患者,但是两组患者术中脑氧饱和度的变化不存在显著差异[180]。多项队列研究显示依据脑氧饱和度监测的循环管理可降低心脏手术和重症监护室患者谵妄发生率[181,182,183]。一项纳入15项随机对照研究的荟萃分析显示,术中在脑氧饱和度监测下管理循环可减少术后认知功能障碍、缩短ICU停留时间,但未减少术后谵妄发生[184]

【推荐意见】对于脑缺血高危患者,在脑氧饱和度监测下管理循环可能有助于改善术后认知功能恢复。

7.术中血压管理:

在POISE研究和一项巢式病例对照研究中,术中低血压伴随术后脑卒中风险增加[185,186]。在一项针对心脏手术患者的队列研究和一项针对胃肠道手术患者的系统回顾中,术中低血压伴随术后谵妄风险增加[114,115]。但最近的一项随机对照研究未能发现术中目标导向血压管理减少术后3个月认知功能障碍发生[116]。在一项针对体外循环下心脏手术患者的队列研究中,体外循环期间血压过高(超出脑血管自身调节范围)也伴随术后谵妄增加[187]

【推荐意见】建议术中采用目标导向血压管理,避免低血压或血压过高。

8.术后镇痛:

阿片类药物是目前常用的镇痛药物,但大剂量阿片类药物增加术后谵妄风险[64]。多项随机对照研究显示采用多模式镇痛可以改善镇痛效果、减少阿片类药物用量,并降低术后谵妄发生率。多模式镇痛方式包括复合使用对乙酰氨基酚或非甾体类抗炎药物,或复合区域阻滞(外周神经阻滞和硬膜外阻滞)等[68,69,177,188,189]

【推荐意见】建议采用多模式镇痛以改善镇痛效果、减少阿片类药物使用剂量。

9.机械通气患者的镇静深度:

对于监护室机械通气患者,采用浅镇静可减少谵妄的发生;采用每日镇静中断或目标导向镇静策略有助于避免镇静过深[190]。一项荟萃分析比较了在监护室内使用BIS监测与镇静量表评估镇静深度与患者预后的关系,结果显示BIS在ICU内镇静深度监测并不具有优势[191]

【推荐意见】对于监护室机械通气患者,避免镇静过深可降低谵妄发生率。

10.机械通气患者镇静药物的选择:

荟萃分析显示使用苯二氮类药物镇静可致谵妄发生风险增加2.59倍,并增加监护室内滞留时间和机械通气时间;而非苯二氮类(右美托咪啶、丙泊酚)在ICU患者镇静方面具有显著优势[192,193,194]

【推荐意见】监护室机械通气患者应避免使用苯二氮类药物进行镇静,建议优先选择非苯二氮类药物(丙泊酚和右美托咪定)。

五、谵妄的预防
1.非药物预防:

非药物措施是预防谵妄的首要选择。非药物干预主要是针对谵妄的促发危险因素包括认知损害、睡眠剥夺、制动、视觉损害、听觉损害和脱水,所采取的针对性措施包括保持定向力、改善认知功能、早期活动、改善睡眠、积极交流、佩戴眼镜和助听器、预防脱水等(表7)。多项荟萃分析结果显示非药物干预治疗可以使谵妄发生风险降低约53%[195,196]

点击查看表格
表7

谵妄非药物预防措施

表7

谵妄非药物预防措施

危险因素干预措施
认知损害改善认知功能;改善定向力;避免应用影响认知功能的药物
活动受限早期活动;每日进行理疗或康复训练
水电解质失衡维持血清钠、钾正常;控制血糖;及时发现并处理脱水或液体过负荷
高危药物减量或停用苯二氮类、抗胆碱能药物、抗组胺药和哌替啶;减量或停用其他药物,以减少药物相互作用和不良反应
疼痛使用对乙酰氨基酚或非甾体抗炎药物;使用神经阻滞;有效控制术后疼痛;避免使用哌替啶
视觉、听力损害佩戴眼镜或使用放大镜改善视力;佩戴助听器改善听力
营养不良正确使用假牙;给予营养支持
医源性并发症术后尽早拔除导尿管,避免尿储留或尿失禁;加强皮肤护理,预防压疮;促进胃肠功能恢复、必要时可用促进胃肠蠕动的药物;必要时进行胸部理疗或吸氧;适当的抗凝治疗;防止尿路感染
睡眠剥夺减少环境干扰包括声音和灯光;非药物措施改善睡眠

【推荐意见】所有老年患者均应给予非药物措施预防谵妄发生。

2.药物预防:

多项荟萃分析显示,围术期使用右美托咪啶可以降低术后谵妄发生率[81,197];尽管在这方面也有不同意见[198,199]。一项为期3年的随访研究显示,术后小剂量使用右美托咪啶在减少老年患者术后谵妄发生的同时可能改善远期预后[200]

一项荟萃分析显示,预防性给予氟哌啶醇对术后谵妄发生率的影响尚不明确[201]。一项大样本量随机对照研究显示,预防性给予氯胺酮不能减少术后谵妄发生率[59]。此外,ICU患者中使用氟哌啶醇、氯胺酮等未发现能够改善其他临床结局[190]

【推荐意见】围术期给予右美托咪定可减少术后谵妄发生。其对远期预后的影响需要进一步研究。

六、谵妄的治疗
(一)非药物治疗

非药物干预治疗可以降低谵妄的发生风险[195,196],这些措施同样适用于谵妄患者的治疗(表7[155,202,203,204,205,206,207]。非药物措施是谵妄的首选治疗[208]

【推荐意见】谵妄患者建议首先采用非药物措施治疗。

(二)药物治疗
1.精神类药物:

氟哌啶醇和非经典类精神药物如喹硫平和奥氮平均被用于治疗躁动型谵妄[209,210,211,212]。但是需要警惕此类药物的不良反应,如锥体外系反应、QT间期延长等。

【推荐意见】可使用氟哌啶醇或非典型抗精神病药物治疗术后躁动型谵妄。

2.右美托咪啶:

一项荟萃分析显示右美托咪啶用于躁动型谵妄患者治疗可缩短谵妄持续时间[213]

【推荐意见】建议使用右美托咪啶治疗术后躁动型谵妄。

委员会成员

项目主持者:王天龙(首都医科大学宣武医院麻醉科);王东信(北京大学第一医院麻醉科)

执笔者(按姓氏汉语拼音排序):高和(空军总医院航空航天睡眠医学中心);李民(北京大学第三医院麻醉科);穆东亮(北京大学第一医院麻醉科);梅伟(华中科技大学同济医学院附属同济医院麻醉科);倪东妹(北京大学第一医院麻醉科);欧阳文(中南大学湘雅三医院麻醉科);孙新宇(北京大学第六医院老年科);王朝东(首都医科大学宣武医院神经内科);王东信(北京大学第一医院麻醉科);王天龙(首都医科大学宣武医院麻醉科);王雪花(北京大学国际医院Upenn-PKU睡眠中心);肖玮(首都医科大学宣武医院麻醉科);严敏(浙江大学医学院附属第二医院麻醉科);左明章(北京医院麻醉科)

顾问(协作组成员):黄宇光(北京协和医院麻醉科);熊利泽(第四军医大学西京医院麻醉科);邓小明[第二军医大学第一附属医院(长海医院)麻醉科]

利益冲突
利益冲突

所有作者均声明不存在利益冲突

参考文献
[1]
EveredL, SilbertB, KnopmanDS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018[J]. Br J Anaesth, 2018, 121(5): 1005-1012. DOI: 10.1016/j.bja.2017.11.087.
[2]
CulleyDJ, FlahertyD, ReddyS, et al. Preoperative cognitive stratification of older elective surgical patients: across-sectional study[J]. Anesth Analg,2016,123(1):186-192. DOI:10.1213/ANE.0000000000001277.
[3]
RobinsonTN, WuDS, PointerLF, et al. Preoperative cognitive dysfunction is related to adverse postoperative outcomes in the elderly[J]. J Am Coll Surg,2012,215(1):12-18. DOI: 10.1016/j.jamcollsurg.2012.02.007.
[4]
ChiuHC, ChenCM, SuTY, et al. Dementia predicted one-year mortality for patients with first hip fracture: a population-based study[J]. Bone Joint J, 2018, 100-B(9): 1220-1226. DOI: 10.1302/0301-620X.100B9.BJJ-2017-1342.R1.
[5]
HarringtonMB, KraftM, GrandeLJ, et al. Independent association between preoperative cognitive status and discharge location after cardiac surgery[J]. Am J Crit Care, 2011,20(2):129-137. DOI: 10.4037/ajcc2011275.
[6]
KassahunWT. The effects of pre-existing dementia on surgical outcomes in emergent and nonemergent general surgical procedures: assessing differences in surgical risk with dementia[J]. BMC Geriatr, 2018, 18(1): 153. DOI: 10.1186/s12877-018-0844-x.
[7]
KodlCT, SeaquistER. Cognitive dysfunction and diabetes mellitus[J]. Endocr Rev, 2008, 29(4): 494-511. DOI: 10.1210/er.2007-0034.
[8]
MaF, WuT, MiaoR, et al. Conversion of mild cognitive impairment to dementia among subjects with diabetes: a population-based study of incidence and risk factors with five years of follow-up[J]. J Alzheimers Dis,2015,43(4):1441-1449. DOI: 10.3233/JAD-141566.
[9]
FeinkohlI, AungPP, KellerM, et al. Severe hypoglycemia and cognitive decline in older people with type 2 diabetes: the Edinburgh type 2 diabetes study[J]. Diabetes Care,2014,37(2): 507-515. DOI: 10.2337/dc13-1384.
[10]
PedditziE, PetersR, BeckettN. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies[J]. Age Ageing,2016,45(1):14-21. DOI: 10.1093/ageing/afv151.
[11]
WiseJ. Low vitamin D is linked to faster cognitive decline in older adults[J]. BMJ, 2015, 351: h4916. DOI: 10.1136/bmj.h4916.
[12]
HogervorstE, KassamS, KridawatiA, et al. Nutrition research in cognitive impairment/dementia, with a focus on soya and folate[J]. Proc Nutr Soc, 2017, 76(4): 437-442. DOI: 10.1017/S0029665117000404.
[13]
GrantI, HeatonRK, McSweenyAJ, et al. Neuropsychologic findings in hypoxemic chronic obstructive pulmonary disease[J]. Arch Intern Med, 1982, 142(8): 1470-1476. DOI: 10.1001/archinte.1982.00340210062015.
[14]
FriedTR, VazFC, RabowMW. Caring for the older person with chronic obstructive pulmonary disease[J]. JAMA, 2012, 308(12):1254-1263. DOI: 10.1001/jama.2012.12422.
[15]
ThakurN, BlancPD, JulianLJ, et al. COPD and cognitive impairment: the role of hypoxemia and oxygen therapy[J]. Int J Chron Obstruct Pulmon Dis, 2010, 5: 263-269. DOI: 10.2147/COPD.S10684.
[16]
McGuinnessB, ToddS, PassmoreP, et al. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia[J]. Cochrane Database Syst Rev, 2009, 4: CD004034. DOI: 10.1002/14651858.CD004034.pub3.
[17]
SilbertBS, ScottDA, EveredLA, et al. Preexisting cognitive impairment in patients scheduled for elective coronary artery bypass graft surgery[J]. Anesth Analg,2007,104(5):1023-1028. DOI: 10.1213/01.ane.0000263285.03361.3a.
[18]
PartridgeJS, DhesiJK, CrossJD, et al. The prevalence and impact of undiagnosed cognitive impairment in older vascular surgical patients[J]. J Vasc Surg,2014,60(4):1002-1011. DOI: 10.1016/j.jvs.2014.04.041.
[19]
PendleburyST, RothwellPM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis[J]. Lancet Neurol,2009,8(11):1006-1018. DOI:10.1016/S1474-4422(09)70236-4.
[20]
O′BrienJT, ThomasA. Vascular dementia[J]. Lancet,2015,386(10004):1698-1706. DOI: 10.1016/S0140-6736(15)00463-8.
[21]
VancampfortD, StubbsB, LaraE, et al. Mild cognitive impairment and physical activity in the general population: Findings from six low-and middle-income countries[J]. Exp Gerontol, 2017, 100: 100-105. DOI: 10.1016/j.exger.2017.10.028.
[22]
HaoL, WangX, ZhangL, et al. Prevalence, risk factors, and complaints screening tool exploration of subjective cognitive decline in a large cohort of the Chinese population[J]. J Alzheimers Dis, 2017, 60(2): 371-388. DOI: 10.3233/JAD-170347.
[23]
LiuW, WuY, BaiL, et al. Sex differences in the prevalence of and risk factors for nonvascular cognitive function in rural, low-income elderly in Tianjin, China[J]. Neuroepidemiology, 2018,51(3-4):138-148. DOI: 10.1159/000490496.
[24]
BakreAT, ChenR, KhutanR, et al. Association between fish consumption and risk of dementia: a new study from China and a systematic literature review and meta-analysis[J]. Public Health Nutr, 2018, 21(10): 1921-1932. DOI: 10.1017/S136898001800037X.
[25]
DengJ, CaoC, JiangY, et al. Prevalence and effect factors of dementia among the community elderly in Chongqing, China[J]. Psychogeriatrics, 2018, 18(5): 412-420. DOI: 10.1111/psyg.12343.
[26]
JiaJ, WangF, WeiC, et al. The prevalence of dementia in urban and rural areas of China[J]. Alzheimers Dement,2014,10(1):1-9. DOI: 10.1016/j.jalz.2013.01.012.
[27]
KehagiaAA, BarkerRA, RobbinsTW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson′s disease[J]. Lancet Neurol,2010,9(12):1200-1213. DOI: 10.1016/S1474-4422(10)70212-X.
[28]
LawsonRA, YarnallAJ, DuncanGW, et al. Stability of mild cognitive impairment in newly diagnosed Parkinson′s disease[J]. J Neurol Neurosurg Psychiatry, 2017, 88(8): 648-652. DOI: 10.1136/jnnp-2016-315099.
[29]
VenkatesanA. Epidemiology and outcomes of acute encephalitis[J]. Curr Opin Neurol, 2015, 28(3): 277-282. DOI: 10.1097/WCO.0000000000000199.
[30]
PanW, KastinAJ. Can sleep apnea cause Alzheimer′s disease? [J]. Neurosci Biobehav Rev, 2014, 47: 656-669. DOI: 10.1016/j.neubiorev.2014.10.019.
[31]
YaffeK, FalveyCM, HoangT. Connections between sleep and cognition in older adults[J]. Lancet Neurol, 2014, 13(10): 1017-1028. DOI: 10.1016/S1474-4422(14)70172-3.
[32]
MorimotoSS, KanellopoulosD, ManningKJ, et al. Diagnosis and treatment of depression and cognitive impairment in late life[J]. Ann N Y Acad Sci, 2015, 1345: 36-46. DOI: 10.1111/nyas.12669.
[33]
AlexopoulosGS, KiossesDN, HeoM, et al. Executive dysfunction and the course of geriatric depression[J]. Biol Psychiatry, 2005, 58(3): 204-210. DOI: 10.1016/j.biopsych.2005.04.024.
[34]
MakaleMT, McDonaldCR, Hattangadi-GluthJA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours[J]. Nat Rev Neurol, 2017, 13(1):52-64. DOI: 10.1038/nrneurol.2016.185.
[35]
HodgsonKD, HutchinsonAD, WilsonCJ, et al. A meta-analysis of the effects of chemotherapy on cognition in patients with cancer[J]. Cancer Treat Rev,2013,39(3):297-304. DOI: 10.1016/j.ctrv.2012.11.001.
[36]
UmapathyS, DhimanRK, GroverS, et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy[J]. Am J Gastroenterol, 2014, 109(7): 1011-1019. DOI: 10.1038/ajg.2014.107.
[37]
BajajJS, SchubertCM, HeumanDM, et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy[J]. Gastroenterology, 2010, 138(7): 2332-2340. DOI: 10.1053/j.gastro.2010.02.015.
[38]
RobertsonDA, SavvaGM, CoenRF, et al. Cognitive function in the prefrailty and frailty syndrome[J]. J Am Geriatr Soc, 2014,62(11):2118-2124. DOI: 10.1111/jgs.13111.
[39]
SolfrizziV, ScafatoE, FrisardiV, et al. Frailty syndrome and the risk of vascular dementia: the Italian Longitudinal Study on Aging[J]. Alzheimers Dement, 2013, 9(2): 113-122. DOI: 10.1016/j.jalz.2011.09.223.
[40]
ChowWB, RosenthalRA, MerkowRP, et al. Optimal preoperative assessment of the geriatric surgical patient: a best practices guideline from the American College of Surgeons National Surgical Quality Improvement Program and the American Geriatrics Society[J]. J Am Coll Surg, 2012, 215(4):453-466. DOI: 10.1016/j.jamcollsurg.2012.06.017.
[41]
周小炫谢敏陶静,.简易智能精神状态检查量表的研究和应用[J].中国康复医学杂志,2016,31(6):694-696,706. DOI: 10.3969/j.issn.1001-1242.2016.06.019.
[42]
BorsonS, ScanlanJM, ChenP, et al. The Mini-Cog as a screen for dementia: validation in a population-based sample[J]. J Am Geriatr Soc, 2003, 51(10): 1451-1454. DOI: 10.1046/j.1532-5415.2003.51465.x.
[43]
BruhlAB, SahakianBJ. Drugs, games, and devices for enhancing cognition: implications for work and society[J]. Ann N Y Acad Sci, 2016, 1369(1): 195-217. DOI: 10.1111/nyas.13040.
[44]
AssociationAP. Diagnostic and statistical manual of mental disorder[M]. 4th ed. Washington DC: American Psychiatirc Association,1994:143-146.
[45]
ShermanDS, MauserJ, NunoM, et al. The efficacy of cognitive intervention in mild cognitive impairment (MCI): a meta-analysis of outcomes on neuropsychological measures[J]. Neuropsychol Rev, 2017, 27(4): 440-484. DOI: 10.1007/s11065-017-9363-3.
[46]
AssociationAP. Diagnostic and statistical manual of mental disorders(DSM-5®)[M]. Washington DC: American Psychiatric Pub,2013.
[47]
MoyceZ, RodsethRN, BiccardBM. The efficacy of peri-operative interventions to decrease postoperative delirium in non-cardiac surgery: a systematic review and meta-analysis[J]. Anaesthesia, 2014, 69(3): 259-269. DOI: 10.1111/anae.12539.
[48]
PadmanabhanU, LeslieK, EerAS, et al. Early cognitive impairment after sedation for colonoscopy: the effect of adding midazolam and/or fentanyl to propofol[J]. Anesth Analg,2009, 109(5):1448-1455. DOI: 10.1213/ane.0b013e3181a6ad31.
[49]
杨其林.静脉麻醉与吸入麻醉对老年患者术后认知功能影响的比较[J].中国当代医药,2017(5): 112-114, 127. DOI: 10.3969/j.issn.1674-4721.2017.05.036.
[50]
XuD, YangW, ZhaoG. Effect of propofol and inhalation anesthesia on postoperative cognitive dysfunction in the elderly: a meta-analysis[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2012, 32(11): 1623-1627. DOI: 10.3969/j.issn.1673-4254.2012.11.022.
[51]
TangN, OuC, LiuY, et al. Effect of inhalational anaesthetic on postoperative cognitive dysfunction following radical rectal resection in elderly patients with mild cognitive impairment[J]. J Int Med Res, 2014, 42(6): 1252-1261. DOI: 10.1177/0300060514549781.
[52]
李琳韩继成芦相玉.老年患者全麻术后认知功能障碍影响的研究进展及相关预防[J/CD].中华临床医师杂志(电子版),2016(11):305-306.
[53]
ZurekAA, YuJ, WangDS, et al. Sustained increase in alpha5 GABAA receptor function impairs memory after anesthesia[J]. J Clin Invest, 2014, 124(12): 5437-5441. DOI: 10.1172/JCI76669.
[54]
MartinLJ, OhGH, OrserBA. Etomidate targets alpha5 gamma-aminobutyric acid subtype A receptors to regulate synaptic plasticity and memory blockade[J]. Anesthesiology, 2009, 111(5): 1025-1035. DOI: 10.1097/ALN.0b013e3181bbc961.
[55]
WangDS, KaneshwaranK, LeiG, et al. Dexmedetomidine prevents excessive gamma-aminobutyric acid type A receptor function after anesthesia[J]. Anesthesiology, 2018, 129(3): 477-489. DOI: 10.1097/ALN.0000000000002311.
[56]
LeeKH, KimJY, KimJW, et al. Influence of ketamine on early postoperative cognitive function after orthopedic surgery in elderly patients[J]. Anesth Pain Med, 2015, 5(5): e28844. DOI: 10.5812/aapm.28844.
[57]
HudetzJA, IqbalZ, GandhiSD, et al. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery[J]. Acta Anaesthesiol Scand,2009,53(7):864-872. DOI: 10.1111/j.1399-6576.2009.01978.x.
[58]
Rascon-MartinezDM, Fresan-OrellanaA, Ocharan-HernandezME, et al. The effects of ketamine on cognitive function in elderly patients undergoing ophthalmic surgery: a pilot study[J]. Anesth Analg, 2016, 122(4): 969-975. DOI: 10.1213/ANE.0000000000001153.
[59]
AvidanMS, MaybrierHR, AbdallahAB, et al. Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial[J]. Lancet, 2017, 390(10091):267-275. DOI: 10.1016/S0140-6736(17)31467-8.
[60]
HovaguimianF, TschoppC, Beck-SchimmerB, et al. Intraoperative ketamine administration to prevent delirium or postoperative cognitive dysfunction: A systematic review and meta-analysis[J]. Acta Anaesthesiol Scand, 2018, 62(9): 1182-1193. DOI: 10.1111/aas.13168.
[61]
CascellaM, BimonteS. The role of general anesthetics and the mechanisms of hippocampal and extra-hippocampal dysfunctions in the genesis of postoperative cognitive dysfunction[J]. Neural Regen Res, 2017, 12(11): 1780-1785. DOI: 10.4103/1673-5374.219032.
[62]
ManatponP, KofkeWA. Toxicity of inhaled agents after prolonged administration[J]. J Clin Monit Comput,2018,32(4): 651-666. DOI: 10.1007/s10877-017-0077-0.
[63]
AlalawiR, YasmeenN. Postoperative cognitive dysfunction in the elderly: a review comparing the effects of desflurane and sevflurane[J]. J Perianesth Nurs, 2018, 33(5): 732-740. DOI: 10.1016/j.jopan.2017.04.009.
[64]
SwartLM, van der ZandenV, SpiesPE, et al. The comparative risk of delirium with different opioids: a systematic review[J]. Drugs Aging,2017,34(6):437-443. DOI: 10.1007/s40266-017-0455-9.
[65]
BaldoBA. Opioid analgesic drugs and serotonin toxicity (syndrome): mechanisms, animal models, and links to clinical effects[J]. Arch Toxicol,2018,92(8):2457-2473. DOI: 10.1007/s00204-018-2244-6.
[66]
Khodayari-RostamabadA, OlesenSS, GraversenC, et al. Disruption of cortical connectivity during remifentanil administration is associated with cognitive impairment but not with analgesia[J]. Anesthesiology, 2015, 122(1): 140-149. DOI: 10.1097/ALN.0000000000000510.
[67]
SilbertBS, ScottDA, EveredLA, et al. A comparison of the effect of high-and low-dose fentanyl on the incidence of postoperative cognitive dysfunction after coronary artery bypass surgery in the elderly[J]. Anesthesiology, 2006, 104(6): 1137-1145. DOI: 10.1097/00000542-200606000-00007.
[68]
MuDL, ZhangDZ, WangDX, et al. Parecoxib supplementation to morphine analgesia decreases incidence of delirium in elderly patients after hip or knee replacement surgery: a randomized controlled trial[J]. Anesth Analg, 2017, 124(6):1992-2000. DOI: 10.1213/ANE.0000000000002095.
[69]
SubramaniamB, ShankarP, ShaefiS, et al. Effect of intravenous acetaminophen vs placebo combined with propofol or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: the DEXACET randomized clinical trial[J]. JAMA, 2019, 321(7): 686-696. DOI: 10.1001/jama.2019.0234.
[70]
BergerM, BurkeJ, EckenhoffR, et al. Alzheimer′s disease, anesthesia, and surgery: a clinically focused review[J]. J Cardiothorac Vasc Anesth, 2014, 28(6): 1609-1623. DOI: 10.1053/j.jvca.2014.04.014.
[71]
Di NinoG, AdversiM, SamolskyDB, et al. Peri-operative risk management in patients with Alzheimer′s disease[J]. J Alzheimers Dis, 2010, 22(Suppl 3): 121-127. DOI: 10.3233/JAD-2010-101299.
[72]
MathewJP, MackensenGB, Phillips-ButeB, et al. Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery[J]. Stroke, 2009, 40(3): 880-887. DOI: 10.1161/STROKEAHA.108.531236.
[73]
MitchellSJ, MerryAF. Lignocaine: neuro-protective or wishful thinking? [J].J Extra Corpor Technol,2009,41(1):P37-P42.
[74]
HabibiMR, HabibiV, HabibiA, et al. Lidocaine dose-response effect on postoperative cognitive deficit: meta-analysis and meta-regression[J]. Expert Rev Clin Pharmacol, 2018, 11(4): 361-371. DOI: 10.1080/17512433.2018.1425614.
[75]
ValentinLS, PereiraVF, PietrobonRS, et al. Effects of single low dose of dexamethasone before noncardiac and nonneurologic surgery and general anesthesia on postoperative cognitive dysfunction-a phase Ⅲ double blind, randomized clinical trial[J]. PLoS One, 2016, 11(5): e0152308. DOI: 10.1371/journal.pone.0152308.
[76]
HirschJ, VacasS, TerrandoN, et al. Perioperative cerebrospinal fluid and plasma inflammatory markers after orthopedic surgery[J]. J Neuroinflammation, 2016, 13(1): 211. DOI: 10.1186/s12974-016-0681-9.
[77]
ZhouC, ZhuY, LiuZ, et al. Effect of dexmedetomidine on postoperative cognitive dysfunction in elderly patients after general anaesthesia: a meta-analysis[J]. J Int Med Res,2016,44(6):1182-1190. DOI: 10.1177/0300060516671623.
[78]
ManY, GuoZ, CaoJ, et al. Efficacy of perioperative dexmedetomidine in postoperative neurocognitive function: a meta-analysis[J]. Clin Exp Pharmacol Physiol, 2015, 42(8): 837-842. DOI: 10.1111/1440-1681.12432.
[79]
LiB, WangH, WuH, et al. Neurocognitive dysfunction risk alleviation with the use of dexmedetomidine in perioperative conditions or as ICU sedation: a meta-analysis[J]. Medicine (Baltimore), 2015, 94(14): e597. DOI: 10.1097/MD.0000000000000597.
[80]
DuanX, CoburnM, RossaintR, et al. Efficacy of perioperative dexmedetomidine on postoperative delirium: systematic review and meta-analysis with trial sequential analysis of randomised controlled trials[J]. Br J Anaesth, 2018, 121(2): 384-397. DOI: 10.1016/j.bja.2018.04.046.
[81]
WuM, LiangY, DaiZ, et al. Perioperative dexmedetomidine reduces delirium after cardiac surgery: A meta-analysis of randomized controlled trials[J]. J Clin Anesth,2018,50:33-42. DOI: 10.1016/j.jclinane.2018.06.045.
[82]
LvZT, HuangJM, ZhangJM, et al. Effect of ulinastatin in the treatment of postperative cognitive dysfunction: review of current literature[J]. Biomed Res Int, 2016, 2016: 2571080. DOI: 10.1155/2016/2571080.
[83]
WangKY, YangQY, TangP, et al. Effects of ulinastatin on early postoperative cognitive function after one-lung ventilation surgery in elderly patients receiving neoadjuvant chemotherapy[J]. Metab Brain Dis, 2017, 32(2): 427-435. DOI: 10.1007/s11011-016-9926-7.
[84]
ZhangM, ZhangYH, FuHQ, et al. Ulinastatin may significantly improve postoperative cognitive function of elderly patients undergoing spinal surgery by reducing the translocation of lipopolysaccharide and systemic inflammation [J]. Front Pharmacol, 2018, 9: 1007. DOI: 10.3389/fphar.2018.01007.
[85]
MillerD, LewisSR, PritchardMW, et al. Intravenous versus inhalational maintenance of anaesthesia for postoperative cognitive outcomes in elderly people undergoing non-cardiac surgery[J]. Cochrane Database Syst Rev, 2018, 8: CD012317. DOI: 10.1002/14651858.CD012317.pub2.
[86]
ZhangY, ShanGJ, ZhangYX, et al. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults[J]. Br J Anaesth, 2018, 121(3): 595-604. DOI: 10.1016/j.bja.2018.05.059.
[87]
ZywielMG, PrabhuA, PerruccioAV, et al. The influence of anesthesia and pain management on cognitive dysfunction after joint arthroplasty: a systematic review[J]. Clin Orthop Relat Res, 2014, 472(5): 1453-1466. DOI: 10.1007/s11999-013-3363-2.
[88]
LiuJ, YuanW, WangX, et al. Peripheral nerve blocks versus general anesthesia for total knee replacement in elderly patients on the postoperative quality of recovery[J]. Clin Interv Aging,2014,9:341-350. DOI: 10.2147/CIA.S56116.
[89]
MeiB, ZhaH, LuX, et al. Peripheral nerve block as a supplement to light or deep general anesthesia in elderly patients receiving total hip arthroplasty: a prospective randomized study[J]. Clin J Pain, 2017, 33(12): 1053-1059. DOI: 10.1097/AJP.0000000000000502.
[90]
TzimasP, SamaraE, PetrouA, et al. The influence of anesthetic techniques on postoperative cognitive function in elderly patients undergoing hip fracture surgery: General vs spinal anesthesia[J]. Injury, 2018, 49(12): 2221-2226. DOI: 10.1016/j.injury.2018.09.023.
[91]
WangY, ChengJ, YangL, et al. Ropivacaine for intercostal nerve block improves early postoperative cognitive dysfunction in patients following thoracotomy for esophageal cancer[J]. Med Sci Monit, 2019, 25: 460-465. DOI: 10.12659/MSM.912328.
[92]
SieberFE, ZakriyaKJ, GottschalkA, et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair[J]. Mayo Clin Proc, 2010, 85(1): 18-26. DOI: 10.4065/mcp.2009.0469.
[93]
SieberFE, NeufeldKJ, GottschalkA, et al. Effect of depth of sedation in older patients undergoing hip fracture repair on postoperative delirium: the STRIDE randomized clinical trial[J]. Jama Surg, 2018, 153(11): 987-995. DOI: 10.1001/jamasurg.2018.2602.
[94]
BrownCT, AzmanAS, GottschalkA, et al. Sedation depth during spinal anesthesia and survival in elderly patients undergoing hip fracture repair[J]. Anesth Analg, 2014, 118(5): 977-980. DOI: 10.1213/ANE.0000000000000157.
[95]
ShinHJ, KooBW, BangSU, et al. Intraoperative dexmedetomidine sedation reduces the postoperative agitated behavior in elderly patients undergoing orthopedic surgery compared to the propofol sedation[J]. Minerva Anestesiol,2017, 83(10):1042-1050. DOI: 10.23736/S0375-9393.17.11794-3.
[96]
DrummondJC. Depth of anesthesia causality dilemmas: the next generation[J]. Can J Anaesth, 2016, 63(2): 142-147. DOI: 10.1007/s12630-015-0489-6.
[97]
ChanMT, ChengBC, LeeTM, et al. BIS-guided anesthesia decreases postoperative delirium and cognitive decline[J]. J Neurosurg Anesthesiol, 2013, 25(1): 33-42. DOI: 10.1097/ANA.0b013e3182712fba.
[98]
RadtkeFM, FranckM, LendnerJ, et al. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction[J]. Br J Anaesth,2013,110Suppl 1:i98-i105. DOI: 10.1093/bja/aet055.
[99]
WillinghamMD, AvidanMS. Triple low, double low: it′s time to deal achilles heel a single deadly blow[J]. Br J Anaesth, 2017,119(1):1-4. DOI: 10.1093/bja/aex132.
[100]
MollerPA, KamenikM. Bispectral index-guided induction of general anaesthesia in patients undergoing major abdominal surgery using propofol or etomidate: a double-blind, randomized, clinical trial[J]. Br J Anaesth, 2013, 110(3): 388-396. DOI: 10.1093/bja/aes416.
[101]
SesslerDI, SiglJC, KelleySD, et al. Hospital stay and mortality are increased in patients having a "triple low" of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia[J]. Anesthesiology, 2012, 116(6): 1195-1203. DOI: 10.1097/ALN.0b013e31825683dc.
[102]
ShuAH, WangQ, ChenXB. Effect of different depths of anesthesia on postoperative cognitive function in laparoscopic patients: a randomized clinical trial[J]. Curr Med Res Opin, 2015, 31(10): 1883-1887. DOI: 10.1185/03007995.2015.1075968.
[103]
HouR, WangH, ChenL, et al. POCD in patients receiving total knee replacement under deep vs light anesthesia: A randomized controlled trial[J]. Brain Behav, 2018, 8(2): e910. DOI: 10.1002/brb3.910.
[104]
SteinmetzJ, FunderKS, DahlBT, et al. Depth of anaesthesia and post-operative cognitive dysfunction[J]. Acta Anaesthesiol Scand, 2010, 54(2): 162-168. DOI: 10.1111/j.1399-6576.2009.02098.x.
[105]
LuX, JinX, YangS, et al. The correlation of the depth of anesthesia and postoperative cognitive impairment: A meta-analysis based on randomized controlled trials[J]. J Clin Anesth,2018,45:55-59. DOI: 10.1016/j.jclinane.2017.12.002.
[106]
ChoH, NemotoEM, YonasH, et al. Cerebral monitoring by means of oximetry and somatosensory evoked potentials during carotid endarterectomy[J]. J Neurosurg, 1998, 89(4): 533-538. DOI: 10.3171/jns.1998.89.4.0533.
[107]
YaoFS, TsengCC, HoCY, et al. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery[J]. J Cardiothorac Vasc Anesth,2004,18(5):552-558. DOI: 0.1053/j.jvca.2004.07.007.
[108]
TrafidloT, GaszynskiT, GaszynskiW, et al. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: a pilot study[J]. Int J Surg,2015,16(Pt A):23-30. DOI: 10.1016/j.ijsu.2015.02.009.
[109]
GoettelN, BurkhartCS, RossiA, et al. Associations between impaired cerebral blood flow autoregulation, cerebral oxygenation, and biomarkers of brain injury and postoperative cognitive dysfunction in elderly patients after major noncardiac surgery[J]. Anesth Analg, 2017, 124(3): 934-942. DOI: 10.1213/ANE.0000000000001803.
[110]
YuY, ZhangK, ZhangL, et al. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults[J]. Cochrane Database Syst Rev, 2018, 1: D10947. DOI: 10.1002/14651858.CD010947.pub2.
[111]
BurkhartCS, RossiA, Dell-KusterS, et al. Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation[J]. Br J Anaesth,2011,107(5):742-748. DOI: 10.1093/bja/aer252.
[112]
DevereauxPJ, YangH, YusufS, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial[J]. Lancet, 2008, 371(9627): 1839-1847. DOI: 10.1016/S0140-6736(08)60601-7.
[113]
BijkerJB, PersoonS, PeelenLM, et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested case-control study[J]. Anesthesiology, 2012, 116(3):658-664. DOI: 10.1097/ALN.0b013e3182472320.
[114]
WesselinkEM, KappenTH, van KleiWA, et al. Intraoperative hypotension and delirium after on-pump cardiac surgery[J]. Br J Anaesth, 2015, 115(3): 427-433. DOI: 10.1093/bja/aev256.
[115]
ScholzAF, OldroydC, McCarthyK, et al. Systematic review and meta-analysis of risk factors for postoperative delirium among older patients undergoing gastrointestinal surgery[J]. Br J Surg,2016,103(2):e21-e28. DOI: 10.1002/bjs.10062.
[116]
LangerT, SantiniA, ZadekF, et al. Intraoperative hypotension is not associated with postoperative cognitive dysfunction in elderly patients undergoing general anesthesia for surgery: results of a randomized controlled pilot trial[J]. J Clin Anesth, 2019, 52: 111-118. DOI: 10.1016/j.jclinane.2018.09.021.
[117]
GeY, MaZ, ShiH, et al. Incidence and risk factors of postoperative cognitive dysfunction in patients underwent coronary artery bypass grafting surgery[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2014,39(10):1049-1055. DOI: 10.11817/j.issn.1672-7347.2014.10.011.
[118]
SchneiderAL, JonassaintC, SharrettAR, et al. Hemoglobin, anemia, and cognitive function: the atherosclerosis risk in communities study[J]. J Gerontol A Biol Sci Med Sci,2016,71(6):772-779. DOI: 10.1093/gerona/glv158.
[119]
WangR, ChenJ, WuG. Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery[J]. Int J Clin Exp Med,2015,8(11):21208-21214.
[120]
HabreW, PetakF. Perioperative use of oxygen: variabilities across age[J]. Br J Anaesth,2014,113 (Suppl 2):i26-i36. DOI: 10.1093/bja/aeu380.
[121]
GruneF, KazmaierS, SonntagH, et al. Moderate hyperventilation during intravenous anesthesia increases net cerebral lactate efflux[J]. Anesthesiology, 2014, 120(2): 335-342. DOI: 10.1097/ALN.0b013e3182a8eb09.
[122]
MadridE, UrrutiaG, RoqueIFM, et al. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults[J]. Cochrane Database Syst Rev, 2016, 4: D9016. DOI: 10.1002/14651858.CD009016.pub2.
[123]
中国老年医学学会认知障碍分会认知障碍患者照料及管理专家共识撰写组.中国认知障碍患者照料管理专家共识[J].中华老年医学杂志, 2016, 35(10): 1051-1060. DOI: 10.3760/cma.j.issn.0254-9026.2016.10.007.
[124]
ShajiKS, SivakumarPT, RaoGP, et al. Clinical practice guidelines for management of dementia[J]. Indian J Psychiatry, 2018, 60(Suppl 3): S312-S328. DOI: 10.4103/0019-5545.224472.
[125]
AndradeDC, FariaJW, CaramelliP, et al. The assessment and management of pain in the demented and non-demented elderly patient[J]. Arq Neuropsiquiatr, 2011, 69(2B): 387-394. DOI: 10.1590/S0004-282X2011000300023.
[126]
徐建国.成人手术后疼痛处理专家共识[J].临床麻醉学杂志,2017,33(9):911-917.
[127]
FalzoneE, HoffmannC, KeitaH. Postoperative analgesia in elderly patients[J]. Drugs Aging, 2013, 30(2): 81-90. DOI: 10.1007/s40266-012-0047-7.
[128]
彭美慈锺佩雯梁颖琴,.中文版晚期老年痴呆症疼痛评估量表的初步评价[J].中华护理杂志,2007,42(8):677-680.
[129]
HuCJ, LiaoCC, ChangCC, et al. Postoperative adverse outcomes in surgical patients with dementia: a retrospective cohort study[J]. World J Surg, 2012, 36(9): 2051-2058. DOI: 10.1007/s00268-012-1609-x.
[130]
BailK, BerryH, GrealishL, et al. Potentially preventable complications of urinary tract infections, pressure areas, pneumonia, and delirium in hospitalised dementia patients: retrospective cohort study[J]. BMJ Open, 2013, 3(6): e002770. DOI: 10.1136/bmjopen-2013-002770.
[131]
RacineAM, FongTG, GouY, et al. Clinical outcomes in older surgical patients with mild cognitive impairment[J]. Alzheimers Dement, 2018, 14(5): 590-600. DOI: 10.1016/j.jalz.2017.10.010.
[132]
GajdosC, KileD, HawnMT, et al. The significance of preoperative impaired sensorium on surgical outcomes in nonemergent general surgical operations[J]. JAMA Surg,2015, 150(1):30-36. DOI: 10.1001/jamasurg.2014.863.
[133]
CulleyDJ, FlahertyD, FaheyMC, et al. Poor performance on a preoperative cognitive screening test predicts postoperative complications in older orthopedic surgical patients[J]. Anesthesiology, 2017, 127(5): 765-774. DOI: 10.1097/ALN0000000000001859.
[134]
TrubnikovaOA, MamontovaAS, SyrovaID, et al. Does preoperative mild cognitive impairment predict postoperative cognitive dysfunction after on-pump coronary bypass surgery? [J]. J Alzheimers Dis,2014,42Suppl 3:S45-S51. DOI: 10.3233/JAD-132540.
[135]
KazmierskiJ, BanysA, LatekJ, et al. Mild cognitive impairment with associated inflammatory and cortisol alterations as independent risk factor for postoperative delirium[J]. Dement Geriatr Cogn Disord,2014,38(1-2):65-78. DOI: 10.1159/000357454.
[136]
万小健王东信方向明,.成人术后谵妄防治的专家共识[EB/OL]. (2014-07-15)[2018-12-08]. http://www.csahq.cn/guide/detail_214.html.
[137]
AldecoaC, BettelliG, BilottaF, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium[J]. Eur J Anaesthesiol, 2017,34(4):192-214. DOI: 10.1097/EJA.0000000000000594.
[138]
AlcornS, FooI. Perioperative management of patients with dementia[J]. BJA Education,2016, 17(3):94-98. DOI: 10.1093/bjaed/mkw038.
[139]
中华预防医学会医院感染控制分会第四届委员会重点部位感染防控学组.术后肺炎预防和控制专家共识[J].中华临床感染病杂志,2018, 11(1): 11-19. DOI: 10.3760/cma.j.issn.1674-2397.2018.01.003.
[140]
GuentherU, RadtkeFM. Delirium in the postanaesthesia period[J]. Curr Opin Anaesthesiol, 2011, 24(6): 670-675. DOI: 10.1097/ACO.0b013e32834c7b44.
[141]
OuimetS, KavanaghBP, GottfriedSB, et al. Incidence, risk factors and consequences of ICU delirium[J]. Intensive Care Med,2007, 33(1):66-73.DOI: 10.1007/s00134-006-0399-8.
[142]
ThomasonJW, ShintaniA, PetersonJF, et al. Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients[J]. Crit Care,2005, 9(4):R375-381.DOI: 10.1186/cc3729.
[143]
MilbrandtEB, DeppenS, HarrisonPL, et al. Costs associated with delirium in mechanically ventilated patients[J]. Crit Care Med, 2004, 32(4): 955-962. DOI: 10.1097/01.CCM.0000119429.16055.92.
[144]
HopkinsRO, JacksonJC. Short-and long-term cognitive outcomes in intensive care unit survivors[J]. Clin Chest Med, 2009, 30(1):143-153, ix. DOI: 10.1016/j.ccm.2008.11.001.
[145]
PisaniMA, KongSY, KaslSV, et al. Days of delirium are associated with 1-year mortality in an older intensive care unit population[J]. Am J Respir Crit Care Med, 2009, 180(11): 1092-1097. DOI: 10.1164/rccm.200904-0537oc.
[146]
InouyeSK, WestendorpRG, SaczynskiJS. Delirium in elderly people[J]. Lancet,2014, 383(9920):911-922.
[147]
VasilevskisEE, HanJH, HughesCG, et al. Epidemiology and risk factors for delirium across hospital settings[J]. Best Pract Res Clin Anaesthesiol, 2012, 26(3): 277-287. DOI: 10.1016/j.bpa.2012.07.003.
[148]
MilsteinA, PollackA, KleinmanG, et al. Confusion/delirium following cataract surgery: an incidence study of 1-year duration[J]. Int Psychogeriatr, 2002, 14(3): 301-306. DOI: 10.1017/S1041610202008499.
[149]
SuX, MengZT, WuXH, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial[J]. Lancet, 2016, 388(10054): 1893-1902. DOI: 10.1016/S0140-6736(16)30580-3.
[150]
PioliG, BendiniC, GiustiA, et al. Surgical delay is a risk factor of delirium in hip fracture patients with mild-moderate cognitive impairment[J]. Aging Clin Exp Res, 2019, 31(1): 41-47.DOI: 10.1007/s40520-018-0985-y.
[151]
GosseltAN, SlooterAJ, BoerePR, et al. Risk factors for delirium after on-pump cardiac surgery: a systematic review[J]. Crit Care,2015,19:346. DOI: 10.1186/s13054-015-1060-0.
[152]
AssociationAP. Diagnostic and statistical manual of mental disorders (Dsm-51)[M]. 5th ed. Amer Psychiatric Pub Inc, 2013.
[153]
SepulvedaE, FrancoJG, TrzepaczPT, et al. Delirium diagnosis defined by cluster analysis of symptoms versus diagnosis by DSM and ICD criteria: diagnostic accuracy study[J]. BMC Psychiatry, 2016, 16: 167. DOI: 10.1186/s12888-016-0878-6.
[154]
RitterSRF, CardosoAF, LinsMMP, et al. Underdiagnosis of delirium in the elderly in acute care hospital settings: lessons not learned[J]. Psychogeriatrics, 2018, 18(4): 268-275. DOI: 10.1111/psyg.12324.
[155]
InouyeSK, van DyckCH, AlessiCA, et al. Clarifying confusion: the confusion assessment method. A new method for detection of delirium[J]. Ann Intern Med, 1990, 113(12): 941-948. DOI: 10.7326/0003-4819-113-12-941.
[156]
LeungJ, LeungV, LeungCM, et al. Clinical utility and validation of two instruments (the Confusion Assessment Method Algorithm and the Chinese version of Nursing Delirium Screening Scale) to detect delirium in geriatric inpatients[J]. Gen Hosp Psychiatry,2008, 30(2):171-176. DOI: 10.1016/j.genhosppsych.2007.12.007.
[157]
ElyEW, MargolinR, FrancisJ, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) [J]. Crit Care Med, 2001, 29(7): 1370-1379. DOI: 10.1097/00003246-200107000-00012.
[158]
WangC, WuY, YueP, et al. Delirium assessment using confusion assessment method for the intensive care unit in Chinese critically ill patients[J]. J Crit Care, 2013, 28(3): 223-229. DOI: 10.1016/j.jcrc.2012.10.004.
[159]
MarcantonioER, NgoLH, O′ConnorM, et al. 3D-CAM: derivation and validation of a 3-minute diagnostic interview for CAM-defined delirium: a cross-sectional diagnostic test study[J]. Ann Intern Med, 2014, 161(8): 554-561. DOI: 10.7326/L14-5026-2.
[160]
RosenJ, SweetRA, MulsantBH, et al. The delirium rating scale in a psychogeriatric inpatient setting[J]. J Neuropsychiatry Clin Neurosci, 1994, 6(1): 30-35. DOI: 10.1176/jnp.6.1.30.
[161]
梅伟刘尚昆张治国,.中文版护理谵妄筛查量表的信度和效度研究[J].中华护理杂志,2010, 45(2):4. DOI: 10.3761/j.issn.0254-1769.2010.02.001.
[162]
ShiZ, WuY, LiC, et al. Using the Chinese version of Memorial Delirium Assessment Scale to describe postoperative delirium after hip surgery[J]. Front Aging Neurosci,2014,6:297. DOI: 10.3389/fnagi.2014.00297.
[163]
AldecoaC, BettelliG, BilottaF, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium[J]. Eur J Anaesthesiol, 2017, 34(4):192-214. DOI: 10.1097/EJA.0000000000000594.
[164]
DowningLJ, CaprioTV, LynessJM. Geriatric psychiatry review: differential diagnosis and treatment of the 3 D′s -delirium, dementia, and depression[J]. Curr Psychiatry Rep,2013, 15(6):365. DOI: 10.1007/s11920-013-0365-4.
[165]
ChevillonC, HellyarM, MadaniC, et al. Preoperative education on postoperative delirium, anxiety, and knowledge in pulmonary thromboendarterectomy patients[J]. Am J Crit Care,2015, 24(2):164-171. DOI: 10.4037/ajcc2015658.
[166]
EijlersR, LegersteeJS, DierckxB, et al. Development of a virtual reality exposure tool as psychological preparation for elective pediatric day care surgery: methodological approach for a randomized controlled trial[J]. JMIR Res Protoc,2017, 6(9):e174. DOI: 10.2196/resprot.7617.
[167]
MazzolaP, WardL, ZazzettaS, et al. Association between preoperative malnutrition and postoperative delirium after hip fracture surgery in older adults[J]. J Am Geriatr Soc,2017, 65(6):1222-1228. DOI: 10.1111/jgs.14764.
[168]
KratzT, HeinrichM, SchlaussE, et al. Preventing postoperative delirium[J]. Dtsch Arztebl Int, 2015, 112(17): 289-296. DOI: 10.3238/arztebl.2015.0289.
[169]
KassieGM, NguyenTA, Kalisch EllettLM, et al. Preoperative medication use and postoperative delirium: a systematic review[J]. BMC Geriatr, 2017, 17(1): 298. DOI: 10.1186/s12877-017-0695-x.
[170]
PapaioannouA, FraidakisO, MichaloudisD, et al. The impact of the type of anaesthesia on cognitive status and delirium during the first postoperative days in elderly patients[J]. Eur J Anaesthesiol, 2005, 22(7): 492-499. DOI: 10.1017/s0265021505000840.
[171]
SteenbergJ, MollerAM. Systematic review of the effects of fascia iliaca compartment block on hip fracture patients before operation[J]. Br J Anaesth, 2018, 120(6): 1368-1380. DOI: 10.1016/j.bja.2017.12.042.
[172]
WeinsteinSM, PoultsidesL, BaakliniLR, et al. Postoperative delirium in total knee and hip arthroplasty patients: a study of perioperative modifiable risk factors[J]. Br J Anaesth, 2018, 120(5):999-1008. DOI: 10.1016/j.bja.2017.12.046.
[173]
O′DonnellCM, McLoughlinL, PattersonCC, et al. Perioperative outcomes in the context of mode of anaesthesia for patients undergoing hip fracture surgery: systematic review and meta-analysis[J]. Br J Anaesth, 2018, 120(1): 37-50. DOI: 10.1016/j.bja.2017.09.002.
[174]
MasonSE, Noel-StorrA, RitchieCW. The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis[J]. J Alzheimers Dis, 2010, 22Suppl 3:67-79. DOI: 10.3233/JAD-2010-101086.
[175]
RadtkeFM, FranckM, LendnerJ, et al. Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction[J]. Br J Anaesth,2013, 110Suppl 1:i98-105. DOI: 10.1093/bja/aet055.
[176]
SahniN, AnandLK, GombarK, et al. Effect of intraoperative depth of anesthesia on postoperative pain and analgesic requirement: A randomized prospective observer blinded study[J]. J Anaesthesiol Clin Pharmacol,2011, 27(4):500-505. DOI: 10.4103/0970-9185.86595.
[177]
PunjasawadwongY, Chau-InW, LaopaiboonM, et al. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults[J]. Cochrane Database Syst Rev, 2018, 5: Cd011283. DOI: 10.1002/14651858.CD011283.pub2.
[178]
WildesTS, MickleAM, Ben AbdallahA, et al. Effect of electroencephalography-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery: the ENGAGES randomized clinical trial[J]. JAMA, 2019, 321(5):473-483. DOI: 10.1001/jama.2018.22005.
[179]
Calderon-ArnulphiM, AlarajA, SlavinKV. Near infrared technology in neuroscience: past, present and future[J]. Neurol Res,2009, 31(6):605-614.DOI: 10.1179/174313209X383286.
[180]
MorimotoY, YoshimuraM, UtadaK, et al. Prediction of postoperative delirium after abdominal surgery in the elderly[J]. J Anesth, 2009, 23(1): 51-56. DOI: 10.1034/j.1399-0012.2000.0140s3037.x.
[181]
PalmbergenWA, van SonderenA, Keyhan-FalsafiAM, et al. Improved perioperative neurological monitoring of coronary artery bypass graft patients reduces the incidence of postoperative delirium: the Haga Brain Care Strategy[J]. Interact Cardiovasc Thorac Surg, 2012, 15(4): 671-677. DOI: 10.1093/icvts/ivs317.
[182]
LopezMG, PandharipandeP, MorseJ, et al. Intraoperative cerebral oxygenation, oxidative injury, and delirium following cardiac surgery[J]. Free Radic Biol Med, 2017, 103: 192-198. DOI: 10.1016/j.freeradbiomed.2016.12.039.
[183]
WoodMD, MasloveDM, MuscedereJG, et al. Low brain tissue oxygenation contributes to the development of delirium in critically ill patients: A prospective observational study[J]. J Crit Care,2017,41:289-295. DOI: 10.1016/j.jcrc.2017.06.009.
[184]
Zorrilla-VacaA, HealyR, GrantMC, et al. Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials[J]. Can J Anaesth,2018, 65(5):529-542. DOI: 10.1007/s12630-018-1065-7.
[185]
GroupPS, DevereauxPJ, YangH, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial[J]. Lancet, 2008, 371(9627): 1839-1847. DOI: 10.1016/S0140-6736(08)60601-7.
[186]
BijkerJB, PersoonS, PeelenLM, et al. Intraoperative hypotension and perioperative ischemic stroke after general surgery: a nested case-control study[J]. Anesthesiology, 2012, 116(3):658-664. DOI: 10.1097/ALN.0b013e3182472320.
[187]
HoriD, BrownC, OnoM, et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium[J]. Br J Anaesth,2014, 113(6):1009-1017. DOI: 10.1093/bja/aeu319.
[188]
BjorkelundKB, HommelA, ThorngrenKG, et al. Reducing delirium in elderly patients with hip fracture: a multi-factorial intervention study[J]. Acta Anaesthesiol Scand, 2010, 54(6): 678-688. DOI: 10.1111/j.1399-6576.2010.02232.x.
[189]
TokitaK, TanakaH, KawamotoM, et al. Patient-controlled epidural analgesia with bupivacaine and fentanyl suppresses postoperative delirium following hepatectomy[J]. Masui, 2001, 50(7):742-746.
[190]
DevlinJW, SkrobikY, GelinasC, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU[J]. Crit Care Med, 2018, 46(9): e825-e873. DOI: 10.1097/CCM.0000000000003299.
[191]
ShettyRM, BelliniA, WijayatilakeDS, et al. BIS monitoring versus clinical assessment for sedation in mechanically ventilated adults in the intensive care unit and its impact on clinical outcomes and resource utilization[J]. Cochrane Database Syst Rev, 2018, 2: Cd011240. DOI: 10.1002/14651858.CD011240.
[192]
WangH, WangC, WangY, et al. Sedative drugs used for mechanically ventilated patients in Intensive Care Units: a systematic review and network meta-analysis[J]. Curr Med Res Opin, 2019, 35(3): 435-446. DOI: 10.1080/03007995.2018.1509573.
[193]
FraserGL, DevlinJW, WorbyCP, et al. Benzodiazepine versus nonbenzodiazepine-based sedation for mechanically ventilated, critically ill adults: a systematic review and meta-analysis of randomized trials[J]. Crit Care Med,2013, 41(9Suppl 1):S30-38. DOI: 10.1097/ccm.0b013e3182a16898.
[194]
BurryL, RoseL, McCullaghIJ, et al. Daily sedation interruption versus no daily sedation interruption for critically ill adult patients requiring invasive mechanical ventilation[J]. Cochrane Database Syst Rev, 2014, 7: CD009176. DOI: 10.1002/14651858.CD009176.
[195]
HuRF, JiangXY, ChenJ, et al. Non-pharmacological interventions for sleep promotion in the intensive care unit[J]. Cochrane Database Syst Rev, 2015, 10: CD008808. DOI: 10.1002/14651858.CD008808.pub2.
[196]
HshiehTT, YueJ, OhE, et al. Effectiveness of multicomponent nonpharmacological delirium interventions: a meta-analysis[J]. JAMA Intern Med, 2015, 175(4): 512-520. DOI: 10.1001/jamainternmed.2014.7779.
[197]
DuanX, CoburnM, RossaintR, et al.Efficacy of perioperative dexmedetomidine on postoperative delirium: systematic review and meta-analysis with trial sequential analysis of randomised controlled trials[J]. Br J Anaesth, 2018, 121(2): 384-397. DOI: 10.1016/j.bja.2018.04.046.
[198]
LiX, YangJ, NieXL, et al. Impact of dexmedetomidine on the incidence of delirium in elderly patients after cardiac surgery: A randomized controlled trial[J]. PLoS One, 2017, 12(2): e0170757. DOI: 10.1371/journal.pone.0170757.
[199]
DeinerS, LuoX, LinHM, et al. Intraoperative infusion of dexmedetomidine for prevention of postoperative delirium and cognitive dysfunction in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial[J]. JAMA Surg, 2017, 152(8): e171505. DOI: 10.1001/jamasurg.2017.1505.
[200]
ZhangDF, SuX, MengZT, et al. Impact of dexmedetomidine on long-term outcomes after noncardiac surgery in elderly: 3-year follow-up of a randomized controlled trial[J]. Ann Surg, 2018. DOI: 10.1097/SLA.0000000000002801.
[201]
SantosE, CardosoD, NevesH, et al. Effectiveness of haloperidol prophylaxis in critically ill patients with a high risk of delirium: a systematic review[J]. JBI Database System Rev Implement Rep, 2017, 15(5): 1440-1472. DOI: 10.11124/JBISRIR-2017-003391.
[202]
MehtaS, CookD, DevlinJW, et al. Prevalence, risk factors, and outcomes of delirium in mechanically ventilated adults[J]. Crit Care Med, 2015, 43(3): 557-566. DOI: 10.1097/CCM.0000000000000727.
[203]
PanY, JiangZ, YuanC, et al. Influence of physical restraint on delirium of adult patients in ICU: A nested case-control study[J]. J Clin Nurs, 2018, 27(9-10): 1950-1957. DOI: 10.1111/jocn.14334.
[204]
MartinezF, DonosoAM, MarquezC, et al. Implementing a multicomponent intervention to prevent delirium among critically ill patients[J]. Crit Care Nurse, 2017, 37(6): 36-46. DOI: 10.4037/ccn2017531.
[205]
LittonE, CarnegieV, ElliottR, et al. The efficacy of earplugs as a sleep hygiene strategy for reducing delirium in the ICU: a systematic review and meta-analysis[J]. Crit Care Med, 2016, 44(5):992-999. DOI: 10.1097/CCM.0000000000001557.
[206]
CheongCY, TanJA, FoongYL, et al. Creative music therapy in an acute care setting for older patients with delirium and dementia[J]. Dement Geriatr Cogn Dis Extra, 2016, 6(2): 268-275. DOI: 10.1159/000445883.
[207]
JohnsonK, FleuryJ, McClainD. Music intervention to prevent delirium among older patients admitted to a trauma intensive care unit and a trauma orthopaedic unit[J]. Intensive Crit Care Nurs, 2018, 47:7-14. DOI: 10.1016/j.iccn.2018.03.007.
[208]
Barnes-DalyMA, PhillipsG, ElyEW. Improving hospital survival and reducing brain dysfunction at seven california community hospitals: implementing PAD guidelines via the ABCDEF bundle in 6,064 Patients[J]. Crit Care Med,2017,45(2):171-178. DOI: 10.1097/CCM.0000000000002149.
[209]
GirardTD, PandharipandePP, CarsonSS, et al. Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial[J]. Crit Care Med, 2010, 38(2): 428-437. DOI: 10.1097/ccm.0b013e3181c58715.
[210]
DevlinJW, RobertsRJ, FongJJ, et al. Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study[J]. Crit Care Med, 2010, 38(2): 419-427. DOI: 10.1097/ccm.0b013e3181b9e302.
[211]
SkrobikYK, BergeronN, DumontM, et al. Olanzapine vs haloperidol: treating delirium in a critical care setting[J]. Intensive Care Med, 2004, 30(3): 444-449. DOI: 10.1007/s00134-003-2117-0.
[212]
WangEH, MabasaVH, LohGW, et al. Haloperidol dosing strategies in the treatment of delirium in the critically ill[J]. Neurocritical Care, 2012, 16(1): 170-183. DOI: 10.1007/s12028-011-9643-3.
[213]
FlukigerJ, HollingerA, SpeichB, et al. Dexmedetomidine in prevention and treatment of postoperative and intensive care unit delirium: a systematic review and meta-analysis[J]. Ann Intensive Care, 2018, 8(1): 92. DOI: 10.1186/s13613-018-0437-z.
 
 
展开/关闭提纲
查看图表详情
回到顶部
放大字体
缩小字体
标签
关键词